
CS 105 April 24, 2019

Lecture 25: Networking (cont'd)

OSI Model

Wires

Frames

IP

The Big Picture

Continuing up the Network Stack…

Domain Name System (DNS)
• Principals are identified by names

• for web hosts, typically a domain name
• e.g., www.cs.pomona.edu

• Internet hosts are identified by IP addresses
• used by network layer to route packets between hosts

• The role of DNS is to translate between domain names
and IP addresses

http://www.cs.pomona.edu/

Domain Name System (DNS)
• Distributed, hierarchical

database

• Application-level protocol:
hosts and DNS servers
communicate to resolve
names

• Names are separated into
components by dots

• lookup occurs top down

.net .edu .gov .com

pomona scrippshmc

cs math

www
134.173.66.214

amazon

www
176.32.98.166

cmc pitzer

DNS Lookup
• the client asks its local nameserver
• the local nameserver asks one of the root nameservers

DNS Root Name Servers
• contacted by local name server that can't resolve name
• owned by Internet Corporation for Assigned Names & Numbers

(ICANN)
• contacts authoritative name server if name mapping not known,

gets mapping
• returns mapping to local name server

DNS Lookup
• the client asks its local nameserver
• the local nameserver asks one of the root nameservers
• the root nameserver replies with the address of the

authoritative nameserver
• the server then queries that nameserver
• repeat until host is reached, cache result.

• Example: Client wants IP addr of www.amazon.com
1. Queries root server to find com DNS server
2. Queries .com DNS server to get amazon.com DNS server
3. Queries amazon.com DNS server to get IP address for

www.amazon.com

Web Server Basics

• Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
• Client and server establish TCP

connection
• Client requests content
• Server responds with requested

content
• Client and server close connection

(eventually)
• Current version is HTTP/2.0

• RFC 7540, 2015
• Includes protocol negotiation
• HTTP/1.1 still in use (RFC 2616, 1999)

Web
server

HTTP request

HTTP response
(content)

Web
client

(browser)

IP

TCP

HTTP

Datagrams

Streams

Web content

Web Content
• Web servers return content to clients

• content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

• Example MIME types
• text/html HTML document
• text/plain Unformatted text
• image/gif Binary image encoded in GIF

format
• image/png Binar image encoded in PNG

format
• image/jpeg Binary image encoded in JPEG

format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Static and Dynamic Content
• The content returned in HTTP responses can be either

static or dynamic
• Static content: content stored in files and retrieved in response to

an HTTP request
• Examples: HTML files, images, audio clips
• Request identifies which content file

• Dynamic content: content produced on-the-fly in response to an
HTTP request
• Example: content produced by a program executed by the server on

behalf of the client
• Request identifies file containing executable code

• Bottom line: Web content is associated with a file that is
managed by the server

URLs
• Unique name for a file: URL (Universal Resource Locator)
• Example URL:
http://www.cs.pomona.edu:80/~ebirrell/classes/cs105/2019sp/index.html

• Clients use prefix (http://www.cs.pomona.edu:80) to infer:
• What kind (protocol) of server to contact (HTTP)
• Where the server is (www.cs.pomona.edu)
• What port it is listening on (80)

• Servers use suffix
(/~ebirrell/classes/cs105/2019sp/index.html) to:
• Determine if request is for static or dynamic content.

• No hard and fast rules for this
• One convention: executables reside in cgi-bin directory

• Find file on file system
• Initial “/” in suffix denotes home directory for requested content.
• Minimal suffix is “/”, which server expands to configured default filename (usually,
index.html)

http://www.cs.pomona.edu/~ebirrell/classes/cs105/2019sp/index.html

HTTP Requests

• HTTP request is a request line, followed by zero or more

request headers

• Request line: <method> <uri> <version>
• <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

• <uri> is typically URL for proxies, URL suffix for servers

• A URL is a type of URI (Uniform Resource Identifier)

• See http://www.ietf.org/rfc/rfc2396.txt

• <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

• Request headers: <header name>: <header data>

• Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses
• HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

• Response line:
<version> <status code> <status msg>

• <version> is HTTP version of the response
• <status code> is numeric status
• <status msg> is corresponding English text

• 200 OK Request was handled without error
• 301 Moved Provide alternate URL
• 404 Not found Server couldn’t find the file

• Response headers: <header name>: <header data>
• Provide additional information about response
• Content-Type: MIME type of content in response body
• Content-Length: Length of content in response body

Tiny Web Server
• Tiny Web server described in text

• Tiny is a sequential Web server
• Serves static and dynamic content to real browsers

• text files, HTML files, GIF, PNG, and JPEG images

• 239 lines of commented C code
• Not as complete or robust as a real Web server

• You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

Tiny Operation

• Accept connection from client

• Read request from client (via connected socket)
• Split into <method> <uri> <version>

• If method not GET, then return error

• If URI contains “cgi-bin” then serve dynamic content
• (Would do wrong thing if had file “abcgi-bingo.html”)

• Fork process to execute program

• Otherwise serve static content
• Copy file to output

Tiny Serving Static Content
void serve_static(int fd, char *filename, int filesize)
{

int srcfd;
char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */
get_filetype(filename, filetype);
sprintf(buf, "HTTP/1.0 200 OK\r\n");
sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
sprintf(buf, "%sConnection: close\r\n", buf);
sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */
srcfd = Open(filename, O_RDONLY, 0);
srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
Close(srcfd);
Rio_writen(fd, srcp, filesize);
Munmap(srcp, filesize);

}
tiny.c

Serving Dynamic Content

• Client sends request to
server

• If request URI contains
the string “/cgi-bin”,
the Tiny server
assumes that the
request is for dynamic
content

Client Server

GET /cgi-bin/env.pl HTTP/1.1

Serving Dynamic Content (cont)

• The server creates a
child process and runs
the program identified
by the URI in that
process

Client Server

env.pl

fork/exec

Serving Dynamic Content (cont)

• The child runs and
generates the dynamic
content

• The server captures
the content of the child
and forwards it without
modification to the
client

Client Server

env.pl

Content

Content

Issues in Serving Dynamic Content
• How does the client pass

program arguments to the
server?

• How does the server pass
these arguments to the
child?

• How does the server pass
other info relevant to the
request to the child?

• How does the server
capture the content
produced by the child?

• These issues are
addressed by the Common
Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

CGI
• Because the children are written according to the CGI

spec, they are often called CGI programs.

• However, CGI really defines a simple standard for
transferring information between the client (browser), the
server, and the child process.

• CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
• E.g., fastCGI, Apache modules, Java servlets, Rails controllers
• Avoid having to create process on the fly (expensive and slow).

The add.com Experience

Output page

host port CGI program

arguments

Serving Dynamic Content With GET

• Question: How does the client pass arguments to the
server?

• Answer: The arguments are appended to the URI

• Can be encoded directly in a URL typed to a browser or a
URL in an HTML link
• http://add.com/cgi-bin/adder?15213&18213
• adder is the CGI program on the server that will do the addition.
• argument list starts with “?”
• arguments separated by “&”
• spaces represented by “+” or “%20”

Testing Servers Using telnet
• The telnet program is invaluable for testing servers

that transmit ASCII strings over Internet connections
• Our simple echo server
• Web servers
• Mail servers

• Usage:
• linux> telnet <host> <portnumber>
• Creates a connection with a server running on <host> and

listening on port <portnumber>

Proxies
• A proxy is an intermediary between a client and an origin

server
• To the client, the proxy acts like a server
• To the server, the proxy acts like a client

Client Proxy Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Why Proxies?
• Can perform useful functions as requests and responses

pass by
• Examples: Caching, logging, anonymization, filtering

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more
expensive
global network

Firewalls

• Firewalls
• Hides organizations nodes from rest of Internet
• Use local IP addresses within organization
• For external service, provides proxy service

1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Corporation X

Firewall

Internet

10.2.2.2
1
4 2

3

176.3.3.3

216.99.99.99

