
CS 105 April 22, 2019

Lecture 24: Networking (cont'd)



OSI Model

Wires

Frames

IP



OSI Layers

Network path determination across multiple network 
segments, routing, logical addressing IP

Link decides whose turn it is to talk, finds 
physical device on network Ethernet, 802.11

Physical exchanges bits on the media wires, signal 
encoding

Transport data transfer, logical communication 
between processes on hosts ???



Should the network guarantee packet 
delivery?



Transport Layer Protocols
User Datagram Protocol (UDP)

• unreliable, unordered 
delivery

• connectionless

• best-effort, segments might 
be lost, delivered out-of-
order, duplicated

• reliability (if required) is the 
responsibility of the app

Transmission Control Protocol (TCP)

• reliable, inorder delivery

• connection setup

• flow control

• congestion control



UDP: creating a segment
• Sending application:

• specifies IP address and port
• uses socket bound to source 

port

• Transport Layer (UDP):
• breaks application message into 

smaller chunks 
• adds transport-layer header to 

each message to form a 
segment

• header size = 8 bytes

• Network Layer (IP):
• adds network-layer header to 

each datagram

application message (payload)

transport-layer header

Source IP Dest. IP

application message (payload)

Source Port # Dest. Port #

length of seg. checksum



UDP: tradeoffs
• fast: 

• no connection setup
• no rate-limiting

• simple:
• no connection state
• small header (8 bytes)

• (possibly) extra work 
for applications
• reordering
• duplicate suppression
• handle missing packets



Transport Protocols by Application
Application Application-Level 

Protocol
Transport Protocol

Name Translation DNS Typically UDP
Routing Protocol RIP Typically UDP
Network Management SNMP Typically UDP
Remote File Server NFS Typically UDP
Streaming multimedia (proprietary) UDP or TCP
Internet telephony (proprietary) UDP or TCP
Remote terminal access Telnet TCP
File Transfer (S)FTP TCP
Email SMTP TCP
Web HTTP(S) TCP



TCP Segment Format
• S,A,F flags used to
manage connection

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options



TCP Connections
• TCP is connection-
oriented

• A connection is initiated 
with a three-way 
handshake
• Recall: server will typically 

create a new socket to 
handle the new connection

• FIN works (mostly) like 
SYN but to teardown a 
connection

SYN
SYN, ACK

ACK
…

FIN
ACK



TCP Segment Format
• S,A,F flags used to
manage connection

• sequence number and 
acknowledgement 
number (+ A flag) are 
used to implement 
reliable transport

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options



Reliable Transport
• Each SYN segment will include 

a randomly chosen sequence 
number

• Sequence number of each
segment is incremented by data 
length 

• Receiver sends ACK segments 
acknowledging latest sequence 
number received

• Sender maintains copy of all 
sent but unacknowledged 
segments; resends if ACK does 
not arrive within timeout

• Timeout is dynamically adjusted
to account for round-trip delay

SYN
SYN, ACK

ACK

FIN
ACK

data (Seq = 47)
ACK 47

data (Seq = 48)

ACK 49
data (Seq = 49)

data (Seq = 50)

ACK 49
data (Seq = 50)

Send Timeout



Pipelined Protocols
• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets
• increases throughput
• needs buffering at sender and receiver

• what if a packet in the middle goes missing?
• how big should the window be?



Example: Window Size = 4
• sender can have up to 
4 unacknowledged 
messages

• when ACK for first 
message is received, it 
can send another 
message 

ACK 47 

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 48 

ACK 49 

ACK 50 data (Seq = 51)
data (Seq = 52)
data (Seq = 53)
data (Seq = 54)



TCP Fast Retransmit
• Receiver always acks 
the last id it 
successfully received

• Sender detects loss 
without waiting for 
timeout, resends 
missing packet

ACK 47 

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 47 

ACK 50 data (Seq = 51)data (Seq = 48)
data (Seq = 48)

ACK 47 

ACK 51 

ACK 51 



TCP Congestion Control
• TCP operates under a principle of additive increase-

multiplicative decrease
• window size++ every RTT if no packets lost
• window size/2 if a packet is dropped



TCP Fairness
• Goal: if k TCP sessions share same bottleneck link of 

bandwidth R, each should have average rate of R/k 

R

RConnection 1 throughput

C
on

ne
ct

io
n 

2 
th

ro
ug

hp
ut

Loss: decreases throughput 
proportional to current bandwidth

Congestion avoidance: increases 
throughput linearly (evenly)



TCP Slow Start
• Problem: linear increase takes a long time to build up a 

decent window size, and most transactions are small

• Solution: allow window size to increase exponentially until 
first loss



TCP Summary
• Reliable, in-order message delivery

• Connection-oriented, three-way handshake

• Transmission window for better throughput
• timeouts based on link parameters (e.g., RTT, variance)

• Congestion control 
• Linear increase, exponential backoff

• Fast adaptation 
• Exponential increase in the initial phase 



Denial of Service Attacks
• a SYN flood is a simple denial of service attack
• implemented by sending SYN messages (first message of

TCP handshake) and suppressing ACK messages (third 
message of handshake)



Example DDoS Attack

vs



Continuing up the Network Stack…


