
CS 105 April 17, 2019

Lecture 23: Networking

Unix I/O Overview
• All I/O devices are represented as files:

• /dev/sda2 (/usr disk partition)
• /dev/tty2 (terminal)

• A Linux file is a sequence of m bytes:
• B0 , B1 , , Bk , , Bm-1

• Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
• Opening a file

• open()and close()
• Reading and writing a file

• read() and write()
• Changing the current file position lseek()

2

What is the Internet?

A Client-Server Transaction
• Most network applications are based on the client-server

model:
• A server process and one or more client processes
• Server manages some resource
• Server provides service by manipulating resource for clients
• Server activated by request from client

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Hardware Organization of a Network Host

main
memory

I/O
bridgeMI

ALU

register fileCPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Computer Networks
• A network is a hierarchical system of boxes and wires

organized by geographical proximity
• LAN (Local Area Network) spans a building or campus

• Ethernet is most prominent example
• WAN (Wide Area Network) spans country or world

• Typically high-speed point-to-point phone lines

• An internetwork (internet) is an interconnected set of
networks
• The Global IP Internet (uppercase “I”) is the most famous example

of an internet (lowercase “i”)

• Let’s see how an internet is built from the ground up

Lowest Level: Ethernet Segment

• Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

• Spans room or floor in a building
• Operation

• Each Ethernet adapter has a unique 48-bit address (MAC address)
• E.g., 00:16:ea:e3:54:e6

• Hosts send bits to any other host in chunks called frames
• Hub copies each bit from each port to every other port

• Every host sees every bit
• Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough to

replace them

host host host

hub
100 Mb/s100 Mb/s

port

Next Level: Bridged Ethernet Segment

• Spans building or campus

• Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Conceptual View of LANs
• For simplicity, hubs, bridges, and wires are often shown

as a collection of hosts attached to a single wire:

host host host...

Next Level: internets
• Multiple incompatible LANs can be physically connected

by specialized computers called routers
• The connected networks are called an internet (lower

case)
host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router
LAN 1 LAN 2

Logical Structure of an internet

• Ad hoc interconnection of networks
• No particular topology
• Vastly different router & link capacities

• Send packets from source to destination by hopping through
networks
• Router forms bridge from one network to another
• Different packets may take different routes

router

router

router
router

router

router

host
host

The Notion of an internet Protocol
• How is it possible to send bits across incompatible LANs

and WANs?

• Solution: protocol software running on each host and
router
• Protocol is a set of rules that governs how hosts and routers should

cooperate when they transfer data from network to network.
• Smooths out the differences between the different networks

What Does an internet Protocol Do?
• Provides a naming scheme

• An internet protocol defines a uniform format for host addresses
• Each host (and router) is assigned at least one of these internet

addresses that uniquely identifies it

• Provides a delivery mechanism
• An internet protocol defines a standard transfer unit (packet)
• Packet consists of header and payload

• Header: contains info such as packet size, source and destination
addresses

• Payload: contains data bits sent from source host

LAN2

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

Transferring internet Data Via Encapsulation

OSI Model

Wires

Frames

IP

TCP

Global IP Internet (upper case)
• Most famous example of an internet

• Based on the TCP/IP protocol family
• IP (Internet Protocol) :

• Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

• UDP (Unreliable Datagram Protocol)
• Uses IP to provide unreliable datagram delivery from

process-to-process
• TCP (Transmission Control Protocol)

• Uses IP to provide reliable byte streams from process-to-process over
connections

• Accessed via a mix of Unix file I/O and functions from the
sockets interface

Hardware and Software Interfaces

A Programmer’s View of the Internet
1. Hosts are mapped to a set of 32-bit IP addresses

• 134.173.66.214

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names

• 134.173.66.214 is mapped to www.cs.pomona.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Aside: IPv4 and IPv6
• The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
• Intended as the successor to IPv4

• As of April 2019, majority of Internet traffic still carried by IPv4
• 22-27% of users access Google services using IPv6.

• We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

(1) IP Addresses
• 32-bit IP addresses are stored in an IP address struct

• IP addresses are always stored in memory in network byte order
(big-endian byte order)

• True in general for any integer transferred in a packet header from
one machine to another.
• E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {

uint32_t s_addr; /* network byte order (big-endian) */
};

Warning! TCP/IP uses big-endian byte order for any integer data item
use ntohl and htonl to convert between network byte order and host byte order

Dotted Decimal Notation
• By convention, each byte in a 32-bit IP address is

represented by its decimal value and separated by a
period

• IP address: 0x8002C2F2 = 128.2.194.242

• Use getaddrinfo and getnameinfo functions to
convert between IP addresses and dotted decimal format.

(2) Internet Domain Names

.net .edu .gov .com

pomona scrippshmc

cs math

unnamed root

www
134.173.66.214

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names

cmc pitzer

Domain Naming System (DNS)
• The Internet maintains a mapping between IP addresses

and domain names in a huge worldwide distributed
database called DNS

• Conceptually, programmers can view the DNS database
as a collection of millions of host entries.

• Each host entry defines the mapping between a set of domain
names and IP addresses.

• In a mathematical sense, a host entry is an equivalence class of
domain names and IP addresses.

Properties of DNS Mappings
• Can explore properties of DNS mappings using
nslookup
• Output edited for brevity

• Each host has a locally defined domain name
localhost which always maps to the loopback address
127.0.0.1

• Use hostname to determine real domain name of local
host:

linux> nslookup localhost
Address: 127.0.0.1

linux> hostname
little.cs.pomona.edu

Properties of DNS Mappings (cont)
• Simple case: one-to-one mapping between domain name

and IP address:

• Multiple domain names mapped to the same IP address:

linux> nslookup little.cs.pomona.edu
Address: 134.173.66.223

linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Properties of DNS Mappings (cont)
• Multiple domain names mapped to multiple IP addresses:

• Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

linux> nslookup cs.pomona.edu
*** Can't find cs.pomona.edu: No answer

(3) Internet Connections
• Clients and servers communicate by sending streams of

bytes over connections. Each connection is:
• Point-to-point: connects a pair of processes.
• Full-duplex: data can flow in both directions at the same time,
• Reliable: stream of bytes sent by the source is eventually received

by the destination in the same order it was sent (assuming TCP).

• A socket is an endpoint of a connection
• Socket address is an IPaddress:port pair

• A port is a 16-bit integer that identifies a process:
• Ephemeral port: Assigned automatically by client kernel when

client makes a connection request.
• Well-known port: Associated with some service provided by a

server (e.g., port 80 is associated with Web servers)

Well-known Ports and Service Names

• Popular services have permanently assigned well-known
ports and corresponding well-known service names:

• echo server: 7/echo

• ssh servers: 22/ssh

• email server: 25/smtp

• Web servers: 80/http

• Mappings between well-known ports and service names

is contained in the file /etc/services on each Linux

machine.

Anatomy of a Connection
• A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
• (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Using Ports to Identify Services
Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Client Server

Sockets
• What is a socket?

• To the kernel, a socket is an endpoint of communication
• To an application, a socket is a file descriptor that lets the

application read/write from/to the network
• Remember: All Unix I/O devices, including networks, are modeled as

files

• Clients and servers communicate with each other by
reading from and writing to socket descriptors

• The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Sockets Interface

• Set of system-level functions used in conjunction with

Unix I/O to build network applications.

• Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of the

Internet protocols.

• Available on all modern systems

• Unix variants, Windows, OS X, IOS, Android, ARM

Socket Address Structures
• Generic socket address:

• For address arguments to connect, bind, and accept
• Necessary only because C did not have generic (void *) pointers

when the sockets interface was designed

struct sockaddr {
uint16_t sa_family; /* Protocol family */
char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

Socket Address Structures
• Internet-specific socket address:

• Must cast (struct sockaddr_in *) to (struct sockaddr *)
for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {
uint16_t sin_family; /* Protocol family (always AF_INET) */
uint16_t sin_port; /* Port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Host and Service Conversion: getaddrinfo
• getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
• Replaces obsolete gethostbyname and getservbyname funcs.

• Advantages:
• Reentrant (can be safely used by threaded programs).
• Allows us to write portable protocol-independent code

• Works with both IPv4 and IPv6

• Disadvantages
• Somewhat complex
• Fortunately, a small number of usage patterns suffice in most

cases.

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: socket
• Clients and servers use the socket function to create a

socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: bind
• A server uses bind to ask the kernel to associate the

server’s socket address with a socket descriptor:

• The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

• Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: listen
• By default, kernel assumes that descriptor from socket

function is an active socket that will be on the client end of
a connection.

• A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

• Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

• backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: accept
• Servers wait for connection requests from clients by

calling accept:

• Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address in
addr and size of the socket address in addrlen.

• Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: connect
• A client establishes a connection with a server by calling

connect:

• Attempts to establish a connection with server at socket
address addr
• If successful, then clientfd is now ready for reading and writing.
• Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)
• x is client address
• y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Connected vs. Listening Descriptors
• Listening descriptor

• End point for client connection requests
• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server
• A new descriptor is created each time the server accepts a

connection request from a client
• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many

client connections simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the

request

Exercise: Concurrent Connections
int main(int argc, char **argv){

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
char client_hostname[MAXLINE], client_port[MAXLINE];

listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, clientaddr, &clientlen);
Getnameinfo(&clientaddr, clientlen, client_hostname, MAXLINE,

client_port, MAXLINE, 0);
printf("Connected to (%s, %s)\n", client_hostname, client_port);

echo(connfd);
Close(connfd);

}
return 0;

}

