Lecture 21: Semaphores and Conditional Variables

CS 105 April 10, 2019

Semaphores

- A semaphore s is a stateful synchronization primitive
comprised of:
- a value (non-negative integer)
- alock
- aqueue

- Interface:

- init(sem_t *s, unsigned int val)

- P(sem_t * s): If s is nonzero, the P decrements s and returns
immediately. If s is zero, then adds the thread to queue(s); after
restarting, the P operation decrements s and returns.

- V(sem_t * s): Increments s by 1. If there are any threads in

queue(s), then V restarts exactly one of these threads, which then
completes the P operation.

Why P and V?

- Edsger Dijkstra was from the Netherlands
- P comes from the Dutch word proberen (to test)
- V comes from the Dutch word verhogen (to increment)

- Better names than the alternatives
- decrement_or_if value is zero block then decrement after waking
- increment_and_wake_a_waiting_process_if any

Example: Shared counter

volatile long cnt = 0;

/* Thread routine */
void *thread(void *vargp)

{
long i1, niters =
* ((long *)vargp) ;
for (1 = 0; i < niters; i++){

cnt++;

}

return NULL;

cnt

Thread 2
g |
|) A
Critical | ,
sectiory i B |
wrt . . :

L, Unsafe

-~} trajectory

H ' ~ Thread 1
Hi Ly U S Ty

D AN
Critical section wrt cnt

Example: Shared counter

volatile long cnt = 0;
sem t s;

sem init(&s, 1);

/* Thread routine */
void *thread(void *vargp)

{

long i1, niters =

for (1 = 0; i < niters;
P(&s)
cnt++;
V(&s)

}

return NULL;

*((long *)vargp);

i++) {

Thread 2
l1 [] 1 [O [O [0 [0 [] 1
T,
l1 [] 1 [O [O [0 [0 [] 1
V)s o Forbiddenregion o
S, 1 1 -1 1
b 0 ° 0 oi -1 e -1 e -1 -1E- ° 0
Us , o |1 Unsafe regioni 0
p ° o: -1 o -1 o -1 -1:0| °
LZ'O L0 !i:l___;it___gl__:j! L0
P(S>1 t o o 0o 0 f
Ha
1 1 0 0 0 0 1
Hy P(s) Ly U; Sqy V(s) Ty
Thread 1

Example: Synchronization Barrier

- With data parallel programming, a computation proceeds
in parallel, with each thread operating on a different
section of the data. Once all threads have completed,
they can safely use each others results.

- MapReduce is an example of this!

- To do this safely, we need a way to check whether all n
threads have completed.

Counting Semaphores

- A semaphore that is initialize with a value greater than 1 is
called a counting semaphore,

- Provide a more flexible primitive for mediating access to
shared resources

Example: Bounded Buffers

finite cac'Ai‘t (e.g. 20 :Ioaes)
implemented as a queue

Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off
them in the queue the queue

Example: Bounded Buffers

ety - e —

f|n|te capaC|ty (e.g. 20 Ioaves)
implemented as a queue

Separation of concerns:

1. How do you implement a queue in an array?

2. How do you implement a bounded buffer, which
allows producers to add to it and consumers to take

things from it, all in parallel?
Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off
them in the queue the queue

Example Bounded Buffers

0 2 3 4 5 (n=06)
b |3 2| 4|1 Values wrap around!!
4 4
rear front
typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+l % n, © <= rear < n
} bbuf t
void init(bbuf_t * ptr, int n){ void put(bbuf t * ptr, int val){
ptr->b = malloc(n*sizeof(int)); ptr->b[ptr->rear]= val;

ptr->n = n;
ptr->front = 0;
ptr->rear

,‘ ptr->rear= ((ptr->rear)+1)%(ptr- >n),
}

int get(bbuf t * ptr){
int val= ptr->b[ptr->front]; .
ptr->front= ((ptr->front)+1)%(ptr->n);
return val;

}

]
()
e

Exercise: Readers/Writers

- Consider a collection of concurrent threads that have
access to a shared object

- Some threads are readers, some threads are writers
- a unlimited number of readers can access the object at the same
time
- a writer must have exclusive access to the object

int reader(void *shared){ void writer(void *shared, int val){
int x = read(shared); write(shared, val);
return x }

Limitations of Semaphores

- semaphores are a very spartan mechanism
- they are simple, and have few features
- more designed for proofs than synchronization

- they lack many practical synchronization features
- it is easy to deadlock with semaphores
- one cannot check the lock without blocking

- strange interactions with OS scheduling (priority
inheritance)

Condition Variables

- A condition variable cv is a stateless synchronization
primitive that is used in combination with locks (mutexes)
a value (non-negative integer)

- condition variables allow threads to efficiently wait for a change to
the shared state protected by the lock

- a condition variable is comprised of a waitlist

- Interface:

- wait(CV * cv, Lock * lock): Atomically releases the lock, suspends
execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

- signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if walitlist is empty.)

- broadcast(CV * cv): takes all threads off cv's waitlist and marks
them as eligible to run. (No-op if waitlist is empty.)

Using a Condition Variable

1.

Add a lock. Each shared value needs a lock to enforce
mutually exclusive access to the shared value.

Add code to acquire and release the lock. All code
access the shared value must hold the objects lock.

|dentify and add condition variables. A good rule of
thumb is to add a condition variable for each situation in
which a function must wait.

Add loops to wait. Threads might not be scheduled
immediately after they are eligible to run. Even if a
contdition was true when signal/broadcast was called, it
might not be true when a thread resumes execution.

Example: Synchronization Barrier

- With data parallel programming, a computation proceeds
in parallel, with each thread operating on a different
section of the data. Once all threads have completed,
they can safely use each others results.

- MapReduce is an example of this!

- To do this safely, we need a way to check whether all n
threads have completed.

Exercise: Readers/Writers

- Consider a collection of concurrent threads that have
access to a shared object

- Some threads are readers, some threads are writers
- a unlimited number of readers can access the object at the same
time
- a writer must have exclusive access to the object

int reader(void *shared){ void writer(void *shared, int val){
int x = read(shared); write(shared, val);
return x }

Condition Variables in C

- Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs
- Creating and reaping threads
- pthread create()
- pthread join()
- Determining your thread ID
- pthread self()
- Terminating threads
- pthread cancel()
- pthread exit()
- exit () [terminates all threads], RET [terminates current thread]
- Synchronizing access to shared variables
- pthread mutex init
- pthread mutex [un]lock
- pthread cond wait
- pthread cond signal

Condition Variables in C

// global declarations
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALI ZER;

pthread cond t has_value PTHREAD COND INITIALIZER;
pthread cond t has space = PTHREAD COND INITIALIZER;

// inside enqueue function
pthread mutex lock (&mutex) ;
while (“no space”)

pthread cond wait (&has_space, &mutex);

critical section: ... do useful work ...

pthread mutex unlock (&mutex) ;
pthread cond signal (&has value) ;

