
CS 105 April 3, 2019

Lecture 19: Threads

Processes
• Definition: A program is a file containing code + data that

describes a computation
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• Private address space

• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

• Logical control flow
• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

CPU

Registers

Memory

Stack
Heap

Code
Data

Traditional View of a Process

• Process = process context + code, data, and stack

Shared libraries

Run-time heap

0

Read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:
VM structures
Descriptor table
brk pointer

Alternate View of a Process
• Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and kernel context

Read-only code/data

StackSP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

A Process With Multiple Threads

• Multiple threads can be associated with a process

• Each thread has its own logical control flow

• Each thread has its own stack for local variables

• Each thread has its own thread id (TID)

• Each thread shares the same code, data, and kernel context

Thread 1 context:

Data registers

Condition codes

SP1

PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures

Descriptor table

brk pointer

Thread 2 context:

Data registers

Condition codes

SP2

PC2

stack 2

Thread 2 (peer thread)

Threads vs. Processes
• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different

cores)
• Each is context switched

Concurrent Threads
• Two threads are concurrent if their flows overlap in
time

• Otherwise, they are sequential

• Examples:
• Concurrent: A & B, A&C
• Sequential: B & C

Time

Thread A Thread B Thread C

Concurrent Thread Execution
• Single Core Processor

• Simulate parallelism by time slicing
• Multi-Core Processor

• Can have true parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Threads vs. Processes
• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different

cores)
• Each is context switched

• How threads and processes are different
• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are somewhat less expensive than processes

• Process control (creating and reaping) twice as expensive as thread
control

• Linux numbers:
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

Logical View of Threads
• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

Process hierarchy

T1

Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Posix Threads (Pthreads) Interface
• Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()
• exit() [terminates all threads] , RET [terminates current thread]

void *thread(void *vargp) /* thread routine */
{

printf("Hello, world!\n");
return NULL;

}

The Pthreads "hello, world" Program
/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h"
void *thread(void *vargp);

int main()
{

pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Execution of Threaded “hello, world”
Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

Using Threads for Parallelism
• on a multi-core system, the OS can schedule
concurrent threads in parallel on multiple cores

• … so concurrent programs can run faster that
sequential programs

1.06

0.54

0.28 0.29 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

El
ap

se
d

tim
e

(s
)

Threads

Shared Variables in Threaded Programs
• Question: Which variables in a threaded C program are

shared?
• The answer is not as simple as “global variables are shared” and

“stack variables are private”

• Def: A variable x is shared if and only if multiple threads
refer to some instance of x.

• Requires answers to the following questions:
• What is the memory model for threads?
• How are instances of variables mapped to memory?
• How many threads might refer to each of these instances?

15

Threads Memory Model
• Conceptual model:

• Multiple threads run within the context of a single process
• Each thread has its own separate thread context

• Thread ID, stack, stack pointer, PC, condition codes, and GP registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments of the process virtual address space
• Open files and installed handlers

• Operationally, this model is not strictly enforced:
• Register values are truly separate and protected, but…
• Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

16

Example Program to Illustrate Sharing

17

char **ptr; /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

Mapping Variable Instances to Memory
• Global variables

• Def: Variable declared outside of a function
• Virtual memory contains exactly one instance of any global

variable

• Local variables
• Def: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Def: Variable declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local

static variable.

18

char **ptr; /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Mapping Variable Instances to Memory

19

Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

Local vars: 1 instance (i.m, msgs.m)

sharing.c

Shared Variable Analysis
• Which variables are shared?

• Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

n ptr, cnt, and msgs are shared
n i and myid are not shared

20

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

Pros and Cons of Thread-Based Designs
+ Threads are more efficient than processes

+ Easy to share data structures between threads
e.g., logging information, file cache

- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
• The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads
• Hard to know which data shared & which private
• Hard to detect by testing

• Probability of bad race outcome very low. But nonzero!

badcnt.c: Improper Synchronization

22

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.
What went wrong?

badcnt.c

Assembly Code for Counter Loop

23

for (i = 0; i < niters; i++)
cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx
testq %rcx,%rcx
jle .L2
movl $0, %eax

.L3:
movq cnt(%rip),%rdx
addq $1, %rdx
movq %rdx, cnt(%rip)
addq $1, %rax
cmpq %rcx, %rax
jne .L3

.L2:

Hi : Head

Asm code for thread i

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Ti : Tail

Safe Schedules
• A schedule of instructions is safe if the resulting

concurrent computation returns the correct answer
• Assume two threads executing routine thread. Which of

the following schedules are safe?
• !", $", %", &", !', $', %', &', (', ("
• !', $', !", $", %", &", (", %', &', ('
• !",!', $', %', &', $", %", &", (", ('

Progress Graphs

25

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Trajectories in Progress Graphs

26

A trajectory is a sequence of legal state
transitions that describes one possible
concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Critical Sections and Unsafe Regions

27

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Critical Sections and Unsafe Regions

28

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Enforcing Mutual Exclusion
• Question: How can we guarantee a safe trajectory?

• Answer: We must synchronize the execution of the
threads so that they can never have an unsafe trajectory.

• i.e., need to guarantee mutually exclusive access for each critical
section.

• Possible solutions:
• Locks
• Semaphores
• Condition variables

29

