
CS 105 April 1, 2019

Lecture 18: Processes

Processes
• Definition: A program is a file containing code + data that

describes a computation
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• Private address space

• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

• Logical control flow
• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing: The Illusion

• Computer runs many processes simultaneously
• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing Example
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently
• Process executions interleaved (multitasking)
• Address spaces managed by virtual memory system
• Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory
2. Schedule next process for execution

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers in memory
2. Schedule next process for execution
3. Load saved registers and switch address space

(context switch)

User View of Concurrent Processes
• Control flows for concurrent processes are physically

disjoint in time

• However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their

flows overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

Process A Process B Process C

Time

Context Switching
• Processes are managed by a shared chunk of memory-

resident OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.
• Control flow passes from one process to another via a

context switch
Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Process Control Block (PCB)
• To implement a context switch, OS maintains a PCB for

each process containing:
• location in memory
• register values
• PC, SP, eflags/status register
• location of executable on disk
• page tables
• which user is executing this process
• process identifier (pid)
• process privilege level
• process arguments (for identification with ps)
• process status
• scheduling information

... and more!

Multiprocessing: The (Modern) Reality

• Multicore processors
• Multiple CPUs on single chip
• Share main memory (and some of the caches)
• Each can execute a separate process

• Scheduling of processors onto cores done by kernel

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU

Registers

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms

• 1. Exceptions
• Change in control flow in response to a system event

(i.e., change in system state)
• Implemented using combination of hardware and OS software

• Higher level mechanisms
• 2. Process context switch

• Implemented by OS software and hardware timer
• 3. Signals

• Implemented by OS software
• 4. Nonlocal jumps: setjmp() and longjmp()

• Implemented by C runtime library

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

0
1
2 ...

n-1

Exception Tables
• Each type of event has a

unique exception number k

• k = index into exception table
(a.k.a. interrupt vector)

• Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

Synchronous Exceptions
• Caused by events that occur as a result of executing an

instruction:
• Traps

• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (unrecoverable),

floating point exceptions
• Either re-executes faulting (“current”) instruction or aborts

• Aborts
• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program

Process Status
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running
• Process is either executing, or waiting to be executed and will eventually

be scheduled (i.e., chosen to execute) by the kernel

• Stopped
• Process execution is suspended and will not be scheduled until further

notice

• Terminated
• Process is stopped permanently

So who should be allowed to create
a process?

Creating Processes
• Parent process creates a new running child process by calling
fork

• int fork(void)
• Returns 0 to the child process, child’s PID to parent process
• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s virtual address space.
• Child gets identical copies of the parent’s open file descriptors
• Child has a different PID than the parent

• fork is interesting (and often confusing) because
it is called once but returns twice

Obtaining Process IDs
• pid_t getpid(void)

• Returns PID of current process

• pid_t getppid(void)
• Returns PID of parent process

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate (next
lecture)

• Returning from the main routine
• Calling the exit function

• void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer value

from the main routine

• exit is called once but never returns.

fork Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

} fork.c

¢ Call once, return twice
¢ Concurrent execution

§ Can’t predict execution
order of parent and child

¢ Duplicate but separate
address space
§ x has a value of 1 when

fork returns in parent and
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in

both parent and child

Modeling fork with Process Graphs
• A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program:
• Each vertex is the execution of a statement
• a -> b means a happens before b
• Edges can be labeled with current value of variables
• printf vertices can be labeled with output
• Each graph begins with a vertex with no inedges

• Any topological sort of the graph corresponds to a
feasible total ordering.
• Total ordering of vertices where all edges point from left to right

Process Graph Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0
exit

Parent

Child

fork.c

Interpreting Process Graphs
• Original graph:

• Relabled graph:

child: x=2

main for
k

printf

printf

x==1

exit

parent: x=0
exit

a b

f

dc

e
a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

fork Example: Two consecutive forks
void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c

Which of these outputs are feasible? L0
L1
Bye
Bye
L1
Bye
Bye

L0
Bye
L1
Bye
L1
Bye
Bye

fork Example: Nested forks in parent
void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

forks.c

Which of these outputs are feasible?

fork Example: Nested forks in children
void fork5()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

print
fL0

L2

Bye

L1 Bye
printf
Bye

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

forks.c

Which of these outputs are feasible?

Non-terminating Child

31

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

}

32

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

} Child process still active even though
parent has terminated

} Must kill child explicitly, or else will
keep running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

} forks.c

“Reaping” Children

33

• Idea

• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables

• Called a “zombie”

• Living corpse, half alive and half dead

• Reaping

• Performed by parent on terminated child (using wait or waitpid)

• Parent is given exit status information

• Kernel then deletes zombie child process

• What if parent doesn’t reap?

• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

• So, only need explicit reaping in long-running processes

• e.g., shells and servers

34

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

} ps shows child process as
“defunct” (i.e., a zombie)

} Killing parent allows child to be
reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

} forks.c

wait: Synchronizing with Children

35

• Parent reaps a child by calling the wait function

• int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATIS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

• See textbook for details

wait Example

36

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

exit(0);
} else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

execve: Loading and Running Programs
• int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:
• Executable file filename

• Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

• …with argument list argv
• By convention argv[0]==filename

• …and environment variable list envp
• “name=value” strings (e.g., USER=droh)
• getenv, putenv, printenv

• Overwrites code, data, and stack
• Retains PID, open files and signal context

• Called once and never returns
• …except if there is an error

Linux Process Heirarchy

38

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…
……

Note: you can view the
hierarchy using the Linux
pstree command

pstree on big
39

big:~ 2$ pstree
systemd─┬─accounts-daemon─┬─{gdbus}

│ └─{gmain}
├─acpid
├─agetty
├─atd
├─cron

…
├─rpcbind
├─rsyslogd─┬─{in:imklog}
│ ├─{in:imuxsock}
│ └─{rs:main Q:Reg}
├─4*[sh───csim]
├─snapd───16*[{snapd}]
├─sshd─┬─sshd───sshd───bash───pstree
│ └─sshd───sshd───bash

…
partial output

