
CS 105 March 27, 2019

Lecture 17: Dynamic Memory (cont'd)

Dynamic Memory Allocation Goals

2

• Provide memory (in heap) to a running program
• Recycle memory when necessary

• High throughput

• Good memory usage
• Avoid fragmentation

Dynamic Memory Allocation Basics

3

• Maintaining free blocks
• Implicit lists, with boundary tags (covered last time)
• Explicit lists, exclude free blocks (faster, but more overhead)
• Segregated lists (different lists for different sized blocks)
• Fancy data structures (red-black trees, for example)

• Allocation strategy
• First-fit, Next-fit, Best-fit

• Coalescing free blocks

Memory-Related Perils and Pitfalls
• Dereferencing bad pointers

• Referencing non-existent variables

• Reading uninitialized memory

• Overreading memory

• Overwriting memory

• Referencing freed blocks

• Freeing blocks multiple times

• Failing to free blocks

4

(Correctness)

(Correctness)

(Correctness)

(Security)

(Security)

(Security)

(Security)

(Performance)

Segregated Lists
• Each size class of blocks has its own free list

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Segregated List Blocks
Allocated Blocks Free Blocks

Block Size

Allocated
Payload

1 Block Size

Free Space

0

FW Free Block Ptr

BK Free Block Ptr

Block Size 0

Seglist Allocator

• Given an array of free lists, each one for some size class

• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)

• If no block is found, try next larger class

• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())

• Allocate block of n bytes from this new memory

• Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)
• To free a block:

• Coalesce and place on appropriate list

• Advantages of seglist allocators
• Higher throughput

• log time for power-of-two size classes
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search of
entire heap.

• Extreme case: Giving each block its own size class is equivalent to
best-fit.

Buffer Overflow
Block Size

Allocated
Payload

1

Block Size

Buffer

1Block Size

Exploit code

0

Fake FW Ptr

Fake BK Ptr

Block Size 0

Block Size

Free Space

0

FW Free Block Ptr

BK Free Block Ptr

Block Size 0

Ret Ptr

Then what happens when
the top block gets freed?

Tools for Dealing With Memory Bugs
• Debugger: gdb

• Good for finding bad pointer dereferences
• Hard to detect the other memory bugs

• Heap consistency checker (e.g., mcheck)
• Usually run silently, printing message only on error
• Can be used as a probe to find an error

• glibc malloc contains checking code
• setenv MALLOC_CHECK_ 3

• Binary translator: valgrind
• Powerful debugging and analysis technique
• Rewrites text section of executable object file
• Checks each individual reference at runtime

• Bad pointers, overwrites, refs outside of allocated block

10

Garbage Collection (Implicit Allocator)
• Garbage collection: automatic reclamation of heap-

allocated storage—application never has to free

• Common in many dynamic languages:
• Python, Java, Ruby, Perl, ML, Lisp, Mathematica

• Variants (“conservative” garbage collectors) exist for C
and C++
• However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Garbage Collection
• How does the memory manager know when memory can

be freed?
• In general we cannot know what is going to be used in the future

since it depends on conditionals
• But we can tell that certain blocks cannot be used if there are no

pointers to them

• Must make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers
• All pointers point to the start of a block
• Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

Classical GC Algorithms
• Mark-and-sweep collection (McCarthy, 1960)

• Does not move blocks (unless you also “compact”)
• Reference counting (Collins, 1960)

• Does not move blocks (not discussed)
• Copying collection (Minsky, 1963)

• Moves blocks (not discussed)
• Generational Collectors (Lieberman and Hewitt, 1983)

• Collection based on lifetimes
• Most allocations become garbage very soon
• So focus reclamation work on zones of memory recently allocated

Memory as a Graph
• We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, locations on the stack, global
variables)

Root nodes

Heap nodes
Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Mark and Sweep Collecting
• Can build on top of malloc/free package

• Allocate using malloc until you “run out of space”
• When out of space:

• Use extra mark bit in the head of each block
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Mark and Sweep (cont.)
ptr mark(ptr p) {

if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

}

Conservative Mark & Sweep in C
• A “conservative garbage collector” for C programs

• is_ptr() determines if a word is a pointer by checking if it points
to an allocated block of memory

• But, in C pointers can point to the middle of a block

• So how to find the beginning of the block?
• Can use a balanced binary tree to keep track of all allocated blocks

(key is start-of-block)
• Balanced-tree pointers can be stored in header (use two additional

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Introduction to the Malloc Lab

18

Simulate a dynamic memory allocator by implementing four
functions

Goals are
• Correctness
• Performance: space utilization and throughput
• Programming style

int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

