
CS 105 March 24, 2019

Lecture 16: Dynamic Memory

Virtual Memory

2

• Each process has as much memory as it needs
• … within limits of the hardware, architecture. and operating system

• Each process has exclusive access to its memory
• … with a few exceptions
• Supports multitasking

• Disk is used as a backup for memory
• … or physical memory is a “cache” for the pages on disk

• address translation is managed by hardware

Virtual Memory

3

• Memory is managed by pages
• For us, a page is a 4KB block of memory
• Could be other sizes, or even mixed sizes

• An address is composed of
• Offset within page (lower bits, here 12 bits)
• Page number (upper bits—at most 52 bits, actually fewer)

• Each process has its own mapping from virtual page
numbers to physical page numbers
• Some pages are in physical memory
• Other pages are stored on the disk

Problems with Virtual Memory

4

• What happens when there is a

• TLB miss?

• Page fault?

• Context switch?

The Operating System
• an operating system is a layer of software interposed

between the hardware and application programs
• protects the hardware from misuse
• provides applications with simple and uniform mechanisms for

manipulating low-level hardware devices
• the operating system kernel is the portion of the operating

system code that is always in memory.
• kernel implements handlers for exceptions (e.g., faults,

interrupts)
• application programs transfer control to the kernel by

executing special system call instructions

Example system calls in Linux x86-64
Number Name Description

0 read Read file
1 write Write file
2 open Open file
3 close Close file
9 mmap Map memory page to file
12 brk Reset top of heap
39 getpid Get process id
57 fork Create process
59 execve Execute a program
60 _exit Terminate process

Virtual Address Space of a Linux Process

7

Kernel code and data

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data

structs (ptables,

task and mm structs,

kernel stack)
Kernel
virtual
memory

0x00400000

Different for
each process

Lots of unused areas—

more than is shown

Dynamic Memory Allocation

8

Dynamic memory allocator
• Part of the process’s runtime system

• Linked into program
• Manages the heap—within the process’s VM

• May ask OS for additional heap space

Dynamic Memory Allocators

• malloc and free in C
• new and delete in C++
• Manage the heap, an area of

process virtual memory
• For data structures whose size is

only known at runtime. Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack

0

Top
of
heap

9

Dynamic Memory Allocators
• Maintains the heap as collection of variable sized

blocks, which are either allocated or free

• Explicit allocator: application allocates and frees
space
• malloc and free in C; new and delete in C++
• Discussed today

• Implicit allocator: application allocates, but does not
free space
• Garbage collection in Java, SML, and Lisp

10

#include <stdio.h>
#include <stdlib.h>
void foo(int n) {

int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Example using malloc

11

First Example: A Simple Allocator

12

void *brk; // top of heap

void *malloc (size_t size) {
void *p = brk;
brk += size;
return p;

}

void free (void *ptr) {
// do nothing

}

Advantages
• Blazing fast
• Simple

Disadvantages
• Memory is never recycled
• No alignment

Desiderata
• Speed
• Alignment
• Efficient use of memory

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Cannot control number or size of allocated blocks
• Must respond immediately to malloc requests

• Cannot reorder or buffer requests
• Must allocate blocks from free memory
• Must align blocks so they satisfy alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux
• Cannot move the allocated blocks once they are malloc’d

• Compaction is not allowed

13

Allocation Example

14

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Performance Goals
• Throughput and Peak Memory Utilization

• These goals are often conflicting

• Throughput
• Number of completed requests per unit time
• Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds
• Throughput is 1,000 operations/second

• Peak Memory Utilization
• Minimize wasted space

15

Peak Memory Utilization
• Given some sequence of malloc and free requests:

• R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

• malloc(p) results in a block with a payload of p bytes
• After request Rk has completed, the aggregate payload Pk is the

sum of currently allocated payloads

• Def: Current heap size Hk

• Assume Hk is monotonically nondecreasing

• Def: Peak memory utilization after k+1 requests
• Uk = (maxi<=k Pi) / Hk

16

Utilization Blocker: Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is

smaller than block size

• Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions

(for example, returning a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

17

Payload Internal
fragmentation

Block

Internal
fragmentation

Utilization Blocker: External Fragmentation
• Occurs when there is enough aggregate heap memory,

but no single free block is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure

18

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation—many might fit?
• How do we reinsert a freed block?

19

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

20

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

21

5 4 26

Method 1: Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!
• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

22

Size

1 word

Format of
allocated and
free blocks Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

23

Implicit List: Finding a Free Block
• First fit. Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit. Like first fit, but search list starting where previous search finished:
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit. Search the list, choose the best free block: fits, with fewest bytes
left over:
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

24

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

• Since allocated space might be smaller than free space, we might
want to split the block

25

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Implicit List: Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

26

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?

27

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!

28

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

29

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

30

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Constant Time Coalescing (Case 2)

31

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

m1 0

Constant Time Coalescing (Case 3)

32

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

33

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: linear time in the worst case
• Free cost: constant time worst case–even with coalescing
• Memory usage: depends on the placement policy

• First-fit, next-fit, or best-fit

• Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

• However, the concepts of splitting and boundary tag
coalescing are general to all allocators

34

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within

each free block, and the length used as a key

35

5 4 26

5 4 26

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation
• Interesting observation: segregated free lists approximate a best fit

placement policy without having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called
• Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches some

threshold

36

