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Lecture 12: Caches



Life without caches
• Imagine that you have a midterm coming up in your systems 

class next week (this should be easy to imagine!) and you 
decide it's time to learn everything there is to know about 
computer systems. 

• The library contains all the books you could possibly want, but 
you don't like to study in libraries, you prefer to study at home.

• You have the following constraints:

Desk
(can hold one book)

Library
(can hold many books)



Life without caches

• Average latency to access a 
book: 40mins

• Average throughput              
(incl. reading time): 1.2 books/hr
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Caching—The Very Idea
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• Keep “local” (spatially and temporally) memory values 
nearby in fast memory

• Modern systems have 3 or even 4 levels of caches

• Cache idea is widely used:
• Disk controllers
• Web
• (Virtual memory: main memory is a “cache” for the disk)



Memory Hierarchy
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Latency numbers every programmer 
should know (2019)

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Main memory reference 100 ns
memory 1MB sequential read 4,000 ns 4 !s
SSD random read 16,000 ns 16 !s
SSD 1MB sequential read 62,000 ns 62 !s
Disk random read 3,000,000 ns 3 ms
Disk 1MB sequential read 947,000 ns < 1 ms
Round trip in Datacenter 500,000 ns 500 !s
Round trip CA<->Europe 150,000,000 ns 150 ms



Life with caching

• Average latency to access a book: <20mins
• Average throughput (incl. reading time): ~2 books/hr



Caching—The Vocabulary
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• Size: the total number of bytes that can be stored in the cache

• Cache Hit: the desired value is in the cache and returned quickly
• Cache Miss: the desired value is not in the cache and must be 

fetched from a more distant cache (or ultimately from main 
memory)

• Miss rate: the fraction of accesses that are misses

• Hit time: the time to process a hit
• Miss penalty: the additional time to process a miss

• Average access time: hit-time + miss-rate * miss-penalty



Question: how do we decide which books 
to put on the bookshelf?



Example Access Patterns



Principle of Locality
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Programs tend to use data and instructions with addresses 
near or equal to those they have used recently

} Temporal locality:  
} Recently referenced items are likely 

to be referenced again in the near future

} Spatial locality:  
} Items with nearby addresses tend 

to be referenced close together in time



Locality Example
• Which of the following functions is better in terms of 

locality with respect to array src?

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell



CACHE ORGANIZATION



Word-oriented Memory Organization

• Addresses Specify Byte 
Locations

• Address of first byte in word
• Addresses of successive 

words differ by m=4 (32-bit) 
or m=8 (64-bit)

• There are (up to) ! = 2$
unique addresses in 
memory
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Cache Lines

• data block: cached data

• tag: uniquely identifies which data is stored in the cache line

• valid bit: indicates whether or not the line contains 
meaningful information

0 1 2 7tagv 3 654

valid bit tag data block



Direct-mapped Cache
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0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line 
(or set)

Assume: cache block size 8 bytes

identifies
byte in line

tag offset 00
Address of data:

index



Exercise: Direct-Mapped Cache

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?


