
CS 105 March 4, 2019

Lecture 12: Caches

Life without caches
• Imagine that you have a midterm coming up in your systems

class next week (this should be easy to imagine!) and you
decide it's time to learn everything there is to know about
computer systems.

• The library contains all the books you could possibly want, but
you don't like to study in libraries, you prefer to study at home.

• You have the following constraints:

Desk
(can hold one book)

Library
(can hold many books)

Life without caches

• Average latency to access a
book: 40mins

• Average throughput
(incl. reading time): 1.2 books/hr

A Computer System

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

The CPU-Memory Gap

5

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

DRAM

CPU

SSD

Disk

SRAM

Caching—The Very Idea

6

• Keep “local” (spatially and temporally) memory values
nearby in fast memory

• Modern systems have 3 or even 4 levels of caches

• Cache idea is widely used:
• Disk controllers
• Web
• (Virtual memory: main memory is a “cache” for the disk)

Memory Hierarchy

7

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Latency numbers every programmer
should know (2019)

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Main memory reference 100 ns
memory 1MB sequential read 4,000 ns 4 !s
SSD random read 16,000 ns 16 !s
SSD 1MB sequential read 62,000 ns 62 !s
Disk random read 3,000,000 ns 3 ms
Disk 1MB sequential read 947,000 ns < 1 ms
Round trip in Datacenter 500,000 ns 500 !s
Round trip CA<->Europe 150,000,000 ns 150 ms

Life with caching

• Average latency to access a book: <20mins
• Average throughput (incl. reading time): ~2 books/hr

Caching—The Vocabulary

10

• Size: the total number of bytes that can be stored in the cache

• Cache Hit: the desired value is in the cache and returned quickly
• Cache Miss: the desired value is not in the cache and must be

fetched from a more distant cache (or ultimately from main
memory)

• Miss rate: the fraction of accesses that are misses

• Hit time: the time to process a hit
• Miss penalty: the additional time to process a miss

• Average access time: hit-time + miss-rate * miss-penalty

Question: how do we decide which books
to put on the bookshelf?

Example Access Patterns

Principle of Locality

13

Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Locality Example
• Which of the following functions is better in terms of

locality with respect to array src?

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

CACHE ORGANIZATION

Word-oriented Memory Organization

• Addresses Specify Byte
Locations

• Address of first byte in word
• Addresses of successive

words differ by m=4 (32-bit)
or m=8 (64-bit)

• There are (up to) ! = 2$
unique addresses in
memory

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

18

Cache Lines

• data block: cached data

• tag: uniquely identifies which data is stored in the cache line

• valid bit: indicates whether or not the line contains
meaningful information

0 1 2 7tagv 3 654

valid bit tag data block

Direct-mapped Cache

20

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line
(or set)

Assume: cache block size 8 bytes

identifies
byte in line

tag offset 00
Address of data:

index

Exercise: Direct-Mapped Cache

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?

