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Lecture 3: Arithmetic



Representing Integers
• unsigned:

• signed (two's complement):

Note: to compute –x for a signed int x, flip all the bits, then add 1 

UnsignedValue.x/ D
w�1X

j D0

xj � 2j

SignedValue.x/ D �xw�1 � 2w�1 C
w�2X

j D0

xj � 2j
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Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.
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Example: Three-bit integers
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Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.
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Addition Example
• Compute 5 + 1 assuming all ints are stored as three-bit 

unsigned values

• Compute -3 + 1 assuming all ints are stored as three-bit 
signed values (two's complement)



Addition and Subtraction
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• Usual addition and subtraction
• Like you learned in second grade, only binary
• Same for unsigned and signed
• … but error conditions differ



Error Cases
• Unsigned addition: 

• ! +#$ % = '
! + % (normal)
! + % − 2# (over4low)

• overflow has occurred iff ! +#$ % < !

• Signed addition:

• ! +#7 % = 8
! + % − 2# (9:;<=<>? :>?@AB:C)
! + % (D:@EFB)
! + % + 2# (D?GF=<>? :>?@AB:C

• over flow has occurred iff ! > 0 and y > 0 and ! +#7 % < 0
or ! < 0 and y < 0 and ! +#7 % > 0



Multiplication Example
• Compute 5 * 3 assuming all ints are stored as three-bit 

unsigned values

• Compute -3 * 3 assuming all ints are stored as three-bit 
signed values (two's complement)



Arithmetic, Part 2
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• Multiplication
• Product can be two words long; it may be truncated to one word
• Bit level equivalence for unsigned and signed



Error Cases
• Unsigned multiplication:

• ! ∗#$ % = ! ⋅ % mod 2#

• Signed multiplication:
• ! ∗#, % = -2.( ! ⋅ % mod 2#)



Multiplying with Shifts
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Shifts, continued

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

• x ⇥ 24 = x ⇥ 32 � x ⇥ 8
= (x << 5) � (x << 3)

Most compilers will generate this code automatically.
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Signed Division by a Power of 2
• x >> k computes x / 2k, rounded towards 

• C on Intel processors rounds towards 0
• -11 >> 2 == -3,   but   -11/4 == -2

• Solution: If x < 0, add 2k-1 before shifting
• Why does this work?

�1

if (x < 0)
x += (1 << k) – 1;

return x >> k;
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Integer Types in C
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• All integer types (char, short, int, long) can be prefixed 
with unsigned

• Constants are, by default, signed. Unsigned constants 
have the suffix U

• Casting between unsigned and signed changes the 
interpretation, but not the bits



Casting Types in C
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• “Casting” means changing the type of a value

• Sometimes it means “interpret these bits in a different way”
• Unsigned to/from signed

• Other times it means “convert these bits to the same value in a 
different representation”

• Shorter integer types to/from longer
• Integer types to/from floating point

• Implicit casting occurs in assignments and parameter lists. In 
mixed expressions, signed values are implicitly cast to 
unsigned

• Source of many errors!

sometype x;
othertype y;

x = y;     // type error!

x = (sometype) y;



When to Use Unsigned
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• Rarely
• When doing multi-precision arithmetic, or when you need 

an extra bit of range … but be careful!

unsigned i; 
for (i = cnt-2; i >= 0; i--) 

a[i] += a[i+1]; 



Fractional binary numbers
• What is 1011.1012?



2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number:

• • •



Fractional Binary Numbers: Examples
¢ Value Representation

5 3/4 101.112
2 7/8 010.1112
1 7/16 001.01112

¢ Observations

§ Divide by 2 by shifting right (unsigned)

§ Multiply by 2 by shifting left

§ Numbers of form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

§ Use notation 1.0 – ε



Representable Numbers
• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations

• Value Representation
• 1/3 0.0101010101[01]…2
• 1/5 0.001100110011[0011]…2
• 1/10 0.0001100110011[0011]…2

• Limitation #2
• Just one setting of binary point within the w bits

• Limited range of numbers (very small values?  very large?)



• Numerical Form: 
(–1)s M 2E

• Sign bit s determines whether number is negative or positive
• Significand M normally a fractional value in range [1.0,2.0).
• Exponent E weights value by power of two

• Encoding
• s is sign bit s
• exp field encodes E (but is not equal to E)
• frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac



Precision options
• Single precision (float): 32 bits

• Double precision (double): 64 bits

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits



Normalized and Denormalized

(–1)s M 2E

• Normalized Values
• exp is neither all zeros nor all ones

• normal case

• exponent is defined as E = #$%& …#&#( − bias, where               
bias = 2$ − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 0 = 1. 23%&23%4 …2(

• Denormalized Values
• exp is either all zeros or all ones

• if all zeros: E = 1 − bias and 0 = 0. 23%&23%4 …2(
• if all ones: infinity (if f is all zeros) or NaN

s exp frac

1 8-bits 23-bits



Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN



Exercise
• Write a C function to 

compute a floating point 
representation of 2^x y 
directly constructing the 
IEEE float representation 
of the result. When x is too 
small, return 0.0 When x is 
too large, return +∞

float fpwr2(int x){
unsigned exp, frac, u;

if(x<_______________){  /* Too small */
exp = ____________;
frac = ___________;

} else if (x < _____){  /* Denormalized */
exp = ____________;
frac = ___________;

} else if (x < _____){  /* Normalized */
exp = ____________;
frac = ___________;

} else {  /* Too big */
exp = ____________;
frac = ___________;

}

u = ________________;  /* pack exp, frac */
return u2f(u);  /* return as float */

}

s exp frac
1 8-bits 23-bits



Exercise
• Write a C function to 

compute a floating point 
representation of 2^x y 
directly constructing the 
IEEE float representation 
of the result. When x is too 
small, return 0.0 When x is 
too large, return +∞

float fpwr2(int x){
unsigned exp, frac, u;

if(x<-149){  /* Too small. -126-23=-149 */
exp = 0;
frac = 0;

} else if (x < -126){  /* Denormalized */
exp = 0;
frac = 1 << (x+149); 

} else if (x < 128){  /* Normalized */
exp = x+127;
frac = 0;

} else {  /* Too big. Return +infty */
exp = 255;
frac = 0;

}

u = exp << 23 | frac;  /* pack exp, frac */
return u2f(u);  /* return as float */

}

s exp frac
1 8-bits 23-bits



Floating Point Addition
• (–1)s1 M1 2E1 +   (-1)s2 M2 2E2

•Assume E1 > E2

• Exact Result: (–1)s M 2E

•Sign s, significand M: 
• Result of signed align & add

•Exponent E: E1

• Fixing
•If M ≥ 2, shift M right, increment E
•if M < 1, shift M left k positions, decrement E by k
•Overflow if E out of range
•Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up



FP Multiplication
• (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

• Exact Result: (–1)s M 2E

• Sign s: s1 ^ s2
• Significand M: M1 x M2
• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E
• If E out of range, overflow 
• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands



Floating Point in C
• C Guarantees Two Levels

•float single precision
•double double precision

• Conversions/Casting
• Casting between int, float, and double changes bit 
representation
• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion, as long as int has ≤ 53 bit word size

• int → float
• Will round


