Lecture 3: Arithmetic

CS 105 January 30, 2019

Representing Integers

- unsigned:
w—1
UnsignedValue(x) = Z x; -2/
j=0

- signed (two's complement):
w—2
SignedValue(x) = —xyp—1 - 2% 1 + Z X j .27
Jj=0
Note: to compute —x for a signed int x, flip all the bits, then add 1
X+ [xF11...1=-1,so0x+ ([xH1)=0

Example: Three-bit integers

unsigned

111
110
101
100
011
010
001
000

OFR NWDOI O N

signed

011
010
001
000
111
110
101
100

= The high-order bit is the sign bit.

= The largest unsigned value is

11...1, UMax.

e The signed value for —1 is always
11...1.

e Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

Addition Example

- Compute 5 + 1 assuming all ints are stored as three-bit
unsigned values

- Compute -3 + 1 assuming all ints are stored as three-bit
signed values (two's complement)

Addition and Subtraction

- Usual addition and subtraction
- Like you learned in second grade, only binary
- Same for unsigned and signed
- ... but error conditions differ

Error Cases

- Unsigned addition:

x+y (normal)

[] u ju—
X twy {x + vy — 2% (overflow)

- overflow has occurred iff x +1, vy < x

- Signed addition:

x+y — 2% (positive overflow)
x4+l y=<x+y (normal)
x+y+2% (negative overflow

- over flow has occurred iffx >0andy > 0and x +f, y < 0
orx<0andy<Oandx+{, y>0

Multiplication Example

- Compute 5 * 3 assuming all ints are stored as three-bit
unsigned values

- Compute -3 * 3 assuming all ints are stored as three-bit
signed values (two's complement)

Arithmetic, Part 2

- Multiplication
« Product can be two words long; it may be truncated to one word
- Bit level equivalence for unsigned and signed

Error Cases

- Unsigned multiplication:

- x %%y = (x-y) mod 2%

- Signed multiplication:
« x *L, vy = U2T((x - y) mod 2%)

Multiplying with Shifts

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

e X X24= xx32 — xXxX8
= (x <<5) — (x <<3)

Most compilers will generate this code automatically.

Signed Division by a Power of 2

-x >> k computes x / 2k rounded towards — OO

- C on Intel processors rounds towards O
+ =11 >> 2 == -3, but -11/4 == -2

- Solution: If x < 0, add 2%-1 before shifting
- Why does this work?

if (x < 0)
Xx += (1 << k) - 1;
return x >> k;

Integer Types in C

- All integer types (char, short, int, long) can be prefixed
with unsigned

- Constants are, by default, signed. Unsigned constants
have the suffix U

- Casting between unsigned and signed changes the
interpretation, but not the bits

Casting Types in C

- “Casting” means changing the type of a value

sometype Xx;
othertype y;

X =y, // type error!

x (sometype) vy

- Sometimes it means “interpret these bits in a different way”
- Unsigned to/from signed

- Other times it means “convert these bits to the same value in a

different representation”

- Shorter integer types to/from longer

- Integer types to/from floating point

- Implicit casting occurs in assignments and parameter lists. In
mixed expressions, signed values are implicitly cast to
unsigned

« Source of many errors!

When to Use Unsigned

- Rarely

- When doing multi-precision arithmetic, or when you need
an extra bit of range ... but be careful!

Fractional binary numbers

- What is 1011.101,?

Fractional Binary Numbers

2I
2i—1
‘ — 1
bi [bi-1| *s* | b2 | b bolb-l b-2| b3 | ees | by
1/2 — |
1/4 ® 00
1/8
- Representation 21
- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number: Z by, x 2F

Fractional Binary Numbers: Examples

m Value Representation
53/4 101.112
27/8 10.1112
17/16 1.01112

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...2 are just below 1.0
= 1/2+1/4+1/8+..+1/2'+...— 1.0
= Use notation 1.0—¢

Representable Numbers

« Limitation #1

- Can only exactly represent numbers of the form x/2X
- Other rational numbers have repeating bit representations

- Value Representation
- 1/3 0.0101010101[01]..2
- 1/5 0.001100110011[0011]..2

- 110 0.0001100110011[0011]..2

- Limitation #2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form:
(=1)s M 2E
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

- Encoding
- S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S |exp frac

Precision options

- Single precision (float): 32 bits

S |exp frac

1 8-bits 23-bits

- Double precision (double): 64 bits

S |exp frac

1 11-bits 52-bits

Normalized and Denormalized

exp

frac

1

8-bits

23-bits
(=1)° M 2F

- Normalized Values
- exp is neither all zeros nor all ones

« normal case

- exponent is defined as E = e;_; ...e; e — bias, where
bias = 2% — 1 (e.g., 127 for float or 1023 for double)

- significand is definedas M = 1. f,,_1 fn—2 - fo

- Denormalized Values
- exp is either all zeros or all ones
- ifall zeros: E=1—biasand M = 0. f,,_1fn—2 - fo
- if all ones: infinity (if f is all zeros) or NaN

Visualization: Floating Point Encodings

-0 _ . +00
| —Normalized | -Denorm . .+Denorm +Normalized |

=
Ix: | |
\ NaN
+0

I I _O=/

Exercise L2

frac

1 8-bits

- Write a C function to
compute a floating point
representation of 2*x y
directly constructing the
IEEE float representation
of the result. When x is too
small, return 0.0 When x is
too large, return 4-oo

23-bits

float fpwr2(int x){
unsigned exp, frac, u;

if(x<){ /* Too small */
exp = 5
frac =

} else if (x < ____){ /* Denormalized */
exp = 5
frac =

} else if (x < ___){ /* Normalized */
exp = 5
frac = ;

} else { /* Too big */
exp = 5
frac = ;

}

u

= 5 /* pack exp, frac */

return u2f(u); /* return as float */

frac

: S |exp
Exercise S —

- Write a C function to
compute a floating point
representation of 2*x y
directly constructing the
IEEE float representation
of the result. When x is too
small, return 0.0 When x is
too large, return 4-oo

23-bits

float fpwr2(int x){
unsigned exp, frac, u;

if(x<-149){ /* Too small. -126-23=-149 */

}

u

exp = 9,

frac = 0;

else if (x < -126){ /* Denormalized */
exp = 9,

frac = 1 << (x+149);

else if (x < 128){ /* Normalized */
exp = x+127;

frac = 0;

else { /* Too big. Return +infty */
exp = 255;

frac = 0;

= exp << 23 | frac; /* pack exp, frac */

return u2f(u); /* return as float */

Floating Point Addition

« (1)1 M1 280+ (-1)2M2 282 Get binary points lined up

-Assume E1 > E2 ——E1-E2]

‘(—1)51 M1
- Exact Result: (-1)* M 2°
-Sign s, significand M: + |(—1)52 M2
- Result of signed align & add
‘Exponent E: E1 ‘(_1)5 M
- Fixing

If M = 2, shift M right, increment E

-if M < 1, shift M left k positions, decrement E by k
-Overflow if E out of range

-Round M to fit £rac precision

FP Multiplication

. (_1)81 M1 281 x (=1)2 M2 2F2
- Exact Result: (-1)* M 2°

- Sign s: s1”s2
- Significand M: M1 Xx M2
- Exponent E: E1l+ E2

- Fixing

- If M = 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit £rac precision

- Implementation
- Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
-float single precision
double double precision

- Conversions/Casting

- Casting between int, £loat, and double changes bit
representation
- double/float — int

- Truncates fractional part

- Like rounding toward zero

- Not defined when out of range or NaN: Generally sets to TMin
-int — double

- Exact conversion, as long as int has < 53 bit word size
-int — float

 Will round

