Lecture 3: Arithmetic

CS 105

January 30, 2019

Representing Integers

• unsigned:

UnsignedValue
$$(x) = \sum_{j=0}^{w-1} x_j \cdot 2^j$$

signed (two's complement):

SignedValue
$$(x) = -x_{w-1} \cdot 2^{w-1} + \sum_{j=0}^{w-2} x_j \cdot 2^j$$

Note: to compute -x for a signed int x, flip all the bits, then add 1 $x + \sim x = 11 \dots 1 = -1$, so $x + (\sim x + 1) = 0$

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11...1.
- Signed values range between TMin and TMax.

This representation of signed values is called *two's complement*.

Addition Example

 Compute 5 + 1 assuming all ints are stored as three-bit unsigned values

 Compute -3 + 1 assuming all ints are stored as three-bit signed values (two's complement)

Addition and Subtraction

- Usual addition and subtraction
 - Like you learned in second grade, only binary
 - Same for unsigned and signed
 - ... but error conditions differ

Error Cases

Unsigned addition:

•
$$x + {}^{u}_{w} y = \begin{cases} x + y & \text{(normal)} \\ x + y - 2^{w} & \text{(overflow)} \end{cases}$$

- overflow has occurred iff $x + u_w^u y < x$
- Signed addition:

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & (positive overflow) \\ x + y & (normal) \\ x + y + 2^{w} & (negative overflow) \end{cases}$$

• over flow has occurred iff x > 0 and y > 0 and $x +_w^t y < 0$ or x < 0 and y < 0 and $x +_w^t y > 0$

Multiplication Example

 Compute 5 * 3 assuming all ints are stored as three-bit unsigned values

 Compute -3 * 3 assuming all ints are stored as three-bit signed values (two's complement)

Arithmetic, Part 2

Multiplication

- Product can be two words long; it may be truncated to one word
- Bit level equivalence for unsigned and signed

Error Cases

- Unsigned multiplication:
 - $x *^u_w y = (x \cdot y) \mod 2^w$

- Signed multiplication:
 - $x *_w^t y = U2T((x \cdot y) \mod 2^w)$

Multiplying with Shifts

C uses << and >>. The arithmetic/logical choice is made according the the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical right shift.

We can multiply (often faster than with the processor's multiply instruction) with shifts.

• $x \times 24 = x \times 32 - x \times 8$ = (x << 5) - (x << 3)

Most compilers will generate this code automatically.

Signed Division by a Power of 2

- x >> k computes x / 2^{k} , rounded towards $-\infty$
- C on Intel processors rounds towards 0
 - -11 >> 2 == -3, but -11/4 == -2
- Solution: If x < 0, add 2^k-1 before shifting
 - Why does this work?

if (x < 0)
 x += (1 << k) - 1;
return x >> k;

Integer Types in C

- All integer types (char, short, int, long) can be prefixed with unsigned
- Constants are, by default, signed. Unsigned constants have the suffix U
- Casting between unsigned and signed changes the interpretation, but not the bits

Casting Types in C

"Casting" means changing the type of a value

```
sometype x;
othertype y;
x = y; // type error!
x = (sometype) y;
```

- Sometimes it means "interpret these bits in a different way"
 - Unsigned to/from signed
- Other times it means "convert these bits to the same value in a different representation"
 - Shorter integer types to/from longer
 - Integer types to/from floating point
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
 - Source of many errors!

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value	Representatior
5 3/4	101.112
2 7/8	10.1112
1 7/16	1.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.0101010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point Representation

• Numerical Form:

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s exp

Precision options

Single precision (float): 32 bits

• Double precision (double): 64 bits

S	exp	frac
1	11-bits	52-bits

Normalized and Denormalized

- Normalized Values
 - exp is neither all zeros nor all ones
 - normal case
 - exponent is defined as $E = e_{k-1} \dots e_1 e_0$ bias, where bias = $2^k 1$ (e.g., 127 for float or 1023 for double)
 - significand is defined as $M = 1. f_{n-1} f_{n-2} \dots f_0$
- Denormalized Values
 - exp is either all zeros or all ones
 - if all zeros: E = 1 bias and $M = 0. f_{n-1}f_{n-2} ... f_0$
 - if all ones: infinity (if f is all zeros) or NaN

Visualization: Floating Point Encodings

}

u = ____; /* pack exp, frac */
return u2f(u); /* return as float */

Exercise s exp frac

• Write a C function to compute a floating point representation of $2^x y$ directly constructing the IEEE float representation of the result. When x is too small, return 0.0 When x is too large, return $+\infty$

```
float fpwr2(int x){
    unsigned exp, frac, u;
```

```
if(x<-149){ /* Too small. -126-23=-149 */
  exp = 0;
  frac = 0;
} else if (x < -126){ /* Denormalized */</pre>
  exp = 0;
  frac = 1 << (x+149);
} else if (x < 128){ /* Normalized */
  exp = x + 127;
  frac = 0;
} else { /* Too big. Return +infty */
  exp = 255;
  frac = 0;
}
```

23-bits

```
u = exp << 23 | frac; /* pack exp, frac */
return u2f(u); /* return as float */</pre>
```

}

Floating Point Addition

- (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2} •Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - •Sign s, significand M:
 - Result of signed align & add
 - •Exponent E: E1

Get binary points lined up

Fixing

- •If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- •Overflow if E out of range
- Round M to fit frac precision

FP Multiplication

- (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point in C

C Guarantees Two Levels

•float single precision

- •double double precision
- Conversions/Casting

• Casting between int, float, and double changes bit representation

- $\bullet \texttt{double/float} \to \texttt{int}$
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- $\bullet \texttt{int} \to \texttt{double}$
 - Exact conversion, as long as int has ≤ 53 bit word size
- \bullet int ightarrow float
 - Will round