Lecture 3: Arithmetic

CS 105 January 30, 2019

Representing Integers

- unsigned:

$$
\operatorname{UnsignedValue}(x)=\sum_{j=0}^{w-1} x_{j} \cdot 2^{j}
$$

- signed (two's complement):

$$
\operatorname{SignedValue}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{j=0}^{w-2} x_{j} \cdot 2^{j}
$$

Note: to compute -x for a signed int x , flip all the bits, then add 1

$$
x+\sim x=11 \ldots 1=-1, \text { so } x+(\sim x+1)=0
$$

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11... 1 .
- Signed values range between TMin and TMax.

This representation of signed values is called two's complement.

Addition Example

- Compute $5+1$ assuming all ints are stored as three-bit unsigned values
- Compute $-3+1$ assuming all ints are stored as three-bit signed values (two's complement)

Addition and Subtraction

- Usual addition and subtraction
- Like you learned in second grade, only binary
- Same for unsigned and signed
- ... but error conditions differ

Error Cases

- Unsigned addition:
- $x+{ }_{w}^{u} y=\left\{\begin{array}{lr}x+y & \text { (normal) } \\ x+y-2^{w} & \text { (overflow) }\end{array}\right.$
- overflow has occurred iff $x+{ }_{w}^{u} y<x$
- Signed addition:
$\cdot x+{ }_{w}^{t} y=\left\{\begin{array}{lr}x+y-2^{w} & \text { (positive overflow) } \\ x+y & \text { (normal) } \\ x+y+2^{w} & \text { (negative overflow }\end{array}\right.$
- over flow has occurred iff $x>0$ and $\mathrm{y}>0$ and $x+_{w}^{t} y<0$ or $x<0$ and $\mathrm{y}<0$ and $x+{ }_{w}^{t} y>0$

Multiplication Example

- Compute 5 * 3 assuming all ints are stored as three-bit unsigned values
- Compute -3 * 3 assuming all ints are stored as three-bit signed values (two's complement)

Arithmetic, Part 2

- Multiplication
- Product can be two words long; it may be truncated to one word
- Bit level equivalence for unsigned and signed

Error Cases

- Unsigned multiplication:
- $x *_{w}^{u} y=(x \cdot y) \bmod 2^{w}$
- Signed multiplication:
- $x *_{w}^{t} y=U 2 T\left((x \cdot y) \bmod 2^{w}\right)$

Multiplying with Shifts

C uses << and >>. The arithmetic/logical choice is made according the the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical right shift.

We can multiply (often faster than with the processor's multiply instruction) with shifts.

$$
\text { - } \begin{aligned}
x \times 24 & =x \times 32-x \times 8 \\
& =(x \ll 5)-(x \ll 3)
\end{aligned}
$$

Most compilers will generate this code automatically.

Signed Division by a Power of 2

- \mathbf{x} >> \mathbf{k} computes $\mathbf{x} / \mathbf{2}^{\mathrm{k}}$, rounded towards $-\infty$
- C on Intel processors rounds towards 0
- $-11 \gg 2==-3$, but $-11 / 4==-2$
- Solution: If $x<0$, add $2^{k}-1$ before shifting
-Why does this work?

```
if (x < 0)
    x += (1 << k) - 1;
return x >> k;
```


Integer Types in C

- All integer types (char, short, int, long) can be prefixed with unsigned
- Constants are, by default, signed. Unsigned constants have the suffix U
- Casting between unsigned and signed changes the interpretation, but not the bits

Casting Types in C

- "Casting" means changing the type of a value

```
sometype x;
othertype y;
x = y; // type error!
x = (sometype) y;
```

- Sometimes it means "interpret these bits in a different way"
- Unsigned to/from signed
- Other times it means "convert these bits to the same value in a different representation"
- Shorter integer types to/from longer
- Integer types to/from floating point
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
- Source of many errors!

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
```


Fractional binary numbers

-What is 1011.101_{2} ?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

Fractional Binary Numbers: Examples

- Value
$53 / 4$
$27 / 8$
$17 / 16$

Representation
101.112
10.111_{2}
1.0111_{2}

■ Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{\mathrm{k}}$
- Other rational numbers have repeating bit representations
- Value
- 1/3 Representation
- $1 / 5$
0.0101010101[01] ...2
- 1/10 $0.0001100110011[0011]$... 2
- Limitation \#2
- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form:

$$
(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}
$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range $[1.0,2.0$).
- Exponent E weights value by power of two
- Encoding
- s is sign bit s
- \exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s	\exp	frac

Precision options

- Single precision (float): 32 bits

s	\exp	frac	
$1 \quad$ 8-bits	23-bits		

- Double precision (double): 64 bits

s	\exp	frac	
1	11-bits	52-bits	

Normalized and Denormalized

s	\exp	frac	
1	8-bits	${ }^{23 \text {-bits }}$	
		$(-1)^{\mathrm{S}} \mathrm{M}^{\mathrm{E}}$	

- Normalized Values
- exp is neither all zeros nor all ones
- normal case
- exponent is defined as $\mathrm{E}=e_{k-1} \ldots e_{1} e_{0}$ - bias, where bias $=2^{k}-1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M=1 . f_{n-1} f_{n-2} \ldots f_{0}$
- Denormalized Values
- exp is either all zeros or all ones
- if all zeros: $\mathrm{E}=1$ - bias and $M=0 . f_{n-1} f_{n-2} \ldots f_{0}$
- if all ones: infinity (if f is all zeros) or NaN

Visualization: Floating Point Encodings

Exercise

s	\exp	frac
1	8-bits	23-bits

- Write a C function to compute a floating point representation of $2^{\wedge} x y$ directly constructing the IEEE float representation of the result. When x is too small, return 0.0 When x is too large, return $+\infty$

```
float fpwr2(int x){
    unsigned exp, frac, u;
    if(x<___){ /* Too small */
        exp = ____;
        frac =
```

\qquad

``` ;
    } else if (x < ____){ /* Denormalized */
        exp = ___;
        frac =
```

\qquad

```
\} else if (x <
``` \(\qquad\)
```

                ){ /* Normalized */
        exp =
    ```
\(\qquad\)
``` frac =
``` \(\qquad\)
``` ;
\} else \{ /* Too big */ exp =
``` \(\qquad\)
``` ; frac =
``` \(\qquad\)
``` ;
\}
\(\mathrm{u}=\)
``` \(\qquad\)
``` ; /* pack exp, frac */
    return u2f(u); /* return as float */
}
```


Exercise

s	exp	frac	
1	8-bits	23-bits	

- Write a C function to compute a floating point representation of $2^{\wedge} x y$ directly constructing the IEEE float representation of the result. When x is too small, return 0.0 When x is too large, return $+\infty$

```
float fpwr2(int x){
    unsigned exp, frac, u;
    if(x<-149){ /* Too small. -126-23=-149 */
        exp = 0;
        frac = 0;
    } else if (x < -126){ /* Denormalized */
        exp = 0;
        frac = 1 << (x+149);
    } else if (x < 128){ /* Normalized */
        exp = x+127;
        frac = 0;
    } else { /* Too big. Return +infty */
        exp = 255;
        frac = 0;
    }
    u = exp << 23 | frac; /* pack exp, frac */
    return u2f(u); /* return as float */
}
```


Floating Point Addition

- $(-1)^{\mathrm{s} 1} \mathrm{M} 12^{\mathrm{E} 1}+(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$ Get binary points lined up -Assume E1 > E2
- Exact Result: $(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$ -Sign s, significand M:
- Result of signed align \& add -Exponent E: E1

- Fixing
-If $M \geq 2$, shift M right, increment E
-if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
-Round M to fit frac precision

FP Multiplication

- $(-1)^{\mathrm{s} 1} \mathrm{M} 12^{\mathrm{E} 1} \times(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
- Exact Result: $(-1)^{\mathrm{S}} \mathrm{M} 2^{\mathrm{E}}$
- Sign s:
s1 ^ s 2
- Significand M:

M1 x M2

- Exponent E: E1 + E2
- Fixing
- If $\mathrm{M} \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
-float single precision
-double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round

