
CS 105 January 28, 2019

Lecture 2: Bits, Bytes, Ints

The C Language

2

• Syntax like Java: declarations, if, while, return

• Data and execution model are “closer to the
machine”

• More power and flexibility
• More ways to make mistakes
• Sometimes confusing relationships
• Pointers!!

• A possible resource from CMU:
• http://www.cs.cmu.edu/afs/cs/academic/class/15213-

s16/www/recitations/c_boot_camp.pdf

Memory: A (very large) array of bytes

3

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at an
address
• The value may be a single byte …
• … or a multi-byte quantity starting at that

address

• Larger words (32- or 64-bit) are stored in
contiguous bytes
• The address of a word is the address of its

first byte
• Successive addresses differ by word size

CS 105, Computer Systems Pomona College

Word-oriented Memory Organization

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000a
000b
000c
000d
000e
000f
0010
0011

addr=
0000

addr=
0004

addr=
0008

addr=
000b

addr=
0000

addr=
0008

32-bit
words

64-bit
words bytes

• Address is first byte of
word.

• Successive addresses
di↵er by word size.

9

Endianness

4

Boolean Algebra
• Developed by George Boole in 19th Century
• Algebraic representation of logic---encode “True” as 1 and

“False” as 0

And Or

Not Exclusive-Or (Xor)

5

General Boolean algebras

• Bitwise operations on words

• How does this map to set operations?

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

6

Practice with Boolean algebras
• Assume: a = 01101001, b = 01010101

• What are the results of evaluating the following Boolean
operations?

• ~a
• ~b
• a & b
• a | b
• a ^ b

Bitwise vs Logical Operations in C
• Apply to any “integral” data type

• int, unsigned, long, short, char

• Bitwise Operators &, |, ~, ^
• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

8

Bitwise vs Logical Operations in C
• Exercises (char data type, one byte)

• ~0x41
• ~0x00
• ~~0x41

• 0x69 & 0x55
• 0x69 | 0x55

• !0x41
• !0x00
• !!0x41

• 0x69 && 0x55
• 0x69 || 0x55

9

Bit Shifting
• Left Shift: x << y

• Shift bit-vector x left y positions

• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
• Shift bit-vector x right y positions

• Throw away extra bits on right
• Logical shift: Fill with 0’s on left

• Arithmetic shift: Replicate most
significant bit on left

Choice between logical and
arithmetic depends on the
type of data

10

Undefined Behavior if you
shift amount < 0 or ≥ word
size

Bit Shifting
• 0x41 << 4
• 0x41 >> 4

• 41 << 4
• 41 >> 4
• -41 << 4
• -41 >> 4

Representing Unsigned Integers

• Think of bits as the binary representation

• If you have w bits, what is the range?

• Can only represent non-negative numbers

UnsignedValue.x/ D
w�1X

j D0

xj � 2j

12

Representing Signed Numbers
• Option 1: sign-magnitude

• One bit for sign; interpret rest as magnitude

• Option 2: excess-K
• Choose a positive K in the middle of the unsigned range
• SignedValue(w) = UnsignedValue(w) – K

• Option 3: one’s complement
• Flip every bit to get the negation

13

Representing Signed Integers
• Option 4: two’s complement

• Most commonly used
• Like unsigned, except the high-order contribution is negative

• Assume C short (2 bytes)
• What is the hex/binary representation for 47?
• What is the hex/binary representation for -47?

SignedValue.x/ D �xw�1 � 2w�1 C
w�2X

j D0

xj � 2j

14

Example: Three-bit integers

15
CS 105, Computer Systems Pomona College

Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15

Two’s Complement Signed Integers
• “Signed” does not mean “negative”

• High order bit is the sign bit
• To negate, complement all the bits and add 1
• Remember the arithmetic right shift
• Sign extension

• Arithmetic is the same as unsigned—same circuitry

• Error conditions and comparisons are different

16

Unsigned and Signed Integers

17

• Use w-bit words; w can be 8, 16, 32, or 64
• The bit sequence bw-1 … b1 b0 represents an integer

• Important!! ”signed” does not mean “negative”

CS 105, Computer Systems Pomona College

Unsigned and Signed Integers

Use w-bit words. w can be 8, 16, 32, or 64.

The bit sequence bw�1 . . . b1b0 represents an integer.

unsigned signed

value
P

w�1
i=0 bi2i �bw�12w�1 +

P
w�2
i=0 bi2i

smallest 0 �2w�1

largest 2w � 1 2w�1 � 1

Important!! “signed” does not mean “negative.”

14

Important Signed Numbers

8 16 32 64
TMax 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

TMin 0x80 0x8000 0x80000000 0x8000000000000000

0 0x00 0x0000 0x00000000 0x0000000000000000

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

Fun with Integers: Using Bitwise Operations

19

• x & 1
• (x + 7) & 0xFFFFFFF8

• p & ~0x3FF
• ((p >> 10) << 10)

• p & 0x3FF

“x is odd”
“round up to a multiple of 8”

“start of 1K block containing p” (ish)
same location (really)

“offset of p within the block”

