Lecture 2: Bits, Bytes, Ints

CS 105 January 28, 2019

The C Language

- Syntax like Java: declarations, if, while, return
- Data and execution model are "closer to the machine"
- More power and flexibility
- More ways to make mistakes
- Sometimes confusing relationships
- Pointers!!
- A possible resource from CMU:
- http://www.cs.cmu.edu/afs/cs/academic/class/15213s16/www/recitations/c_boot_camp.pdf

Memory: A (very large) array of bytes

- An index into the array is an address, location, or pointer
- Often expressed in hexadecimal
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address
- Larger words (32- or 64-bit) are stored in
 contiguous bytes
- The address of a word is the address of its first byte
- Successive addresses differ by word size

Endianness

BIG ENDIAR - The way people always broke their egga in the Lilliput land

LITTLE EADIAN - The way the king then
ordered the people to break their egge

Boolean Algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic---encode "True" as 1 and "False" as 0

And	\&	0	1	Or	1	0	1
	1	0	0		0	0	1
		0	1		1	1	1
Not	\sim			Exclusive-Or (Xor)	\wedge	0	1
	0	1			0	0	1
	1	0			1	1	0

General Boolean algebras

- Bitwise operations on words

01101001	01101001	01101001	
\& 01010101	01010101	01010101	~ 01010101
1000001	01111101	0011110	0101

- How does this map to set operations?

Practice with Boolean algebras

- Assume: $\mathrm{a}=01101001, \mathrm{~b}=01010101$
- What are the results of evaluating the following Boolean operations?
- ~a
- ~b
- $a \& b$
- $a \mid b$
- $a^{\wedge} b$

Bitwise vs Logical Operations in C

- Apply to any "integral" data type
- int, unsigned, long, short, char
- Bitwise Operators \& I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators \&\&, ||, !
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination

Bitwise vs Logical Operations in C

- Exercises (char data type, one byte)
- ~0x41
- ~0x00
- ~~0x41
- 0x69 \& 0x55
- 0x69 | 0x55
-! 0×41
-!0x00
-!!0x41
- 0x69 \&\& 0x55
- 0x69 || 0x55

Bit Shifting

- Left Shift: $\quad \mathbf{x} \ll \mathbf{y}$
- Shift bit-vector \mathbf{x} left y positions
- Throw away extra bits on left
- Fill with 0's on right
Undefined Behavior if you shift amount < 0 or \geq word size
- Right Shift: x >> y
- Shift bit-vector \mathbf{x} right y positions
- Throw away extra bits on right
- Logical shift: Fill with 0's on left
- Arithmetic shift: Replicate most

Choice between logical and arithmetic depends on the type of data significant bit on left

Bit Shifting

- $0 \times 41 \ll 4$
-0x41 >> 4
. 41 << 4
. $41 \gg 4$
- $-41 \ll 4$
- -41 >> 4

Representing Unsigned Integers

- Think of bits as the binary representation

$$
\operatorname{UnsignedValue}(x)=\sum_{j=0}^{w-1} x_{j} \cdot 2^{j}
$$

- If you have w bits, what is the range?
- Can only represent non-negative numbers

Representing Signed Numbers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue(w) - K
- Option 3: one's complement
- Flip every bit to get the negation

Representing Signed Integers

- Option 4: two's complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative

$$
\operatorname{SignedValue}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{j=0}^{w-2} x_{j} \cdot 2^{j}
$$

- Assume C short (2 bytes)
-What is the hex/binary representation for 47 ?
- What is the hex/binary representation for -47 ?

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11...1.
- Signed values range between TMin and TMax.

This representation of signed values is called two's complement.

Two's Complement Signed Integers

- "Signed" does not mean "negative"
- High order bit is the sign bit
- To negate, complement all the bits and add 1
- Remember the arithmetic right shift
- Sign extension
- Arithmetic is the same as unsigned-same circuitry
- Error conditions and comparisons are different

Unsigned and Signed Integers

- Use w-bit words; w can be 8, 16, 32, or 64
- The bit sequence $b_{w-1} \ldots b_{1} b_{0}$ represents an integer

	unsigned	signed
value	$\sum_{i=0}^{w-1} b_{i} 2^{i}$	$-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}$
smallest	0	-2^{w-1}
largest	$2^{w}-1$	$2^{w-1}-1$

- Important!! "signed" does not mean "negative"

Important Signed Numbers

	8	16	32	64
TMax	$0 \times 7 F$	$0 x 7 F F F$	$0 \times 7 F F F F F F F$	$0 x 7 F F F F F F F F F F F F F F F$
TMin	0×80	0×8000	0×80000000	$0 \times 8000000000000000$
0	0×00	0×0000	0×00000000	$0 \times 0000000000000000$
-1	$0 x F F$	$0 x F F F F$	$0 x F F F F F F F F$	$0 x F F F F F F F F F F F F F F F F$

Fun with Integers: Using Bitwise Operations

- x \& 1
$\cdot(x+7) \& 0 x F F F F F F F 8$
- p \& ~0x3FF
-((p>> 10) << 10)
- p \& 0x3FF
" x is odd"
"round up to a multiple of 8"
"start of 1K block containing p" (ish) same location (really)
"offset of p within the block"

