
CS 105 January 23, 2019

Lecture 1: Introduction to Computer Systems

Abstraction

• Example 1: Is x2 ≥ 0?
• Float’s: Yes!

• Int’s:
• 40000 * 40000 ➙ 1600000000
• 50000 * 50000 ➙ ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Unsigned & Signed Int’s: Yes!
• Float’s:

• (1e20 + -1e20) + 3.14 --> 3.14
• 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

Correctness

Computer Arithmetic
• Does not generate random values

• Arithmetic operations have important mathematical properties
• Cannot assume all “usual” mathematical properties

• Due to finiteness of representations
• Integer operations satisfy “ring” properties

• Commutativity, associativity, distributivity
• Floating point operations satisfy “ordering” properties

• Monotonicity, values of signs

• Observation
• Need to understand which abstractions apply in which contexts
• Important issues for compiler writers and serious application

programmers

Performance

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

Why The Performance Differs

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

copyij

copyji

Real-World Performance
• Constant factors matter too!
• And even exact op count does not predict performance

• Easily see 10:1 performance range depending on how code written
• Must optimize at multiple levels: algorithm, data representations,

procedures, and loops
• Must understand system to optimize performance

• How programs compiled and executed
• How to measure program performance and identify bottlenecks
• How to improve performance without destroying code modularity

and generality

Security
void admin_stuff(int authenticated){

if(authenticated){
// do admin stuff

}
}

int dontTryThisAtHome(char * user_input, int size) {
char data[size];
int ret = memcpy(*user_input, data);
return ret;

}

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Bits

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Bytes and Memory
• A byte is a unit of eight bits

• Memory is an array of bytes

• An index into the array is an address, location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at an address
• The value may be a single byte …
• … or a multi-byte quantity starting at that address

Binary Numbers

4211
= 4 ⋅ 10& + 2 ⋅ 10) + 1 ⋅ 10* + 1 ⋅ 10+

= 4211

1011
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+

= 11

Binary Numbers

Hexidecimal Numbers
• Use digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Compute numbers base 16

• one byte is two digits in hex

1011
= 1 ⋅ 2% + 0 ⋅ 2(+ 1 ⋅ 2) + 1 ⋅ 2*

= 11
= 1 ⋅ 10% + 0 ⋅ 10(+ 1 ⋅ 10) + 1 ⋅ 10*

= 1011
= 1 ⋅ 16% + 0 ⋅ 16(+ 1 ⋅ 16) + 1 ⋅ 16*

= 4113

ASCII characters

Doubles

−1 #$%& ⋅ 1 +)
*

+,
-./01234 52 − 2 ⋅ 2$ ⋅ 2789:&7&; <*=,>

x86 instructions
Machine code bytes Assembly

foo:
movl $0xFF001122, %eax
addl %ecx, %edx
xorl %es1, %es1
pushl %ebx
movl 4(%esp), %ebx
leal (%eax,%ecx,2), %exi
cmpl %eax, %ebx
jnae foo
retl

B8 22 11 00 FF
01 CA
31 F6
53
8B 5C 24 04
8D 34 48
39 C3
72 EB
C3

Bits and Bytes Require Interpretation

00000000 00110101 00110000 00110001

might be interpreted as

• The integer 3,485,74510

• A floating point number close to 4.884569 x 10-39

• The string “105”

• A portion of an image or video

• An address in memory

(or 0x00353031)

Information is Bits + Context

C

#include<stdio.h>

int main(int argc, char ** argv){
printf("Hello world!\n");
return 0;

}

code/intro/hello.c

Preprocessor Directives
• #include <filename>
• #include “filename”

• Usually include header files, with extension .h

• #define PI 3.14
• #define TIMESFOUR(j) ((j)<<2)

• Textual substitution--parentheses are important!

• #if #elif #else #endif

#ifndef _STDIO_H_
#define _STDIO_H_

All of the code

#endif /* _STDIO_H_ */

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

long long 8 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Typedefs
• Abbreviation for complex types

int b[6][8]; // b is a two-dim array
// variable

typedef int b_type[6][8];
b_type b_var; // b_var is a two-dim array

Structs
• Heterogeneous records, like Java objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

How many bytes are
allocated for c?
for p?

p->next is an
bbreviation for
(*p).next

Find the error →

Memory Access in C
int x; // an integer
int *p // a pointer to an integer

// normal initialization:
x = 0;

// silly, but illustrative:
p = &x; // & means “address of”
*p = 0; // * means “memory at address”

• & and * are inverses of one another
• prefix vs infix operators
• x occupies 4 bytes in memory; p occupies 8

Arrays
• Contiguous block of memory
• Pointer to start, then indexed by element size

• Indices start at zero

• ary[k] is the same as *(ary+k)
• Location of ary+k depends on the type of array elements

Two-dimensional Arrays
• Same storage layout:
int a[48]; // 48 integers
int b[6][8]; // 6 rows, 8 columns

• b[i][j] is the same as b[8*i+j]

int *p[47];

• Array of pointers … or … pointer to an array??

• It’s an array of 47 pointers
• p[3] is the fourth pointer in the array p
• p[3] is the base of an array
• p[3][6] is the integer at position 6 in the array p[3]

Arrays and Pointers Combined

What is printed?

int a[100];
int *p[47];

p[3] = a+12;
for (int i = 0; i < 100; i++)

a[i] = i;

printf(“%d\n”, p[3][4]);

Compilation

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

#include<stdio.h>

int main(int argc,
char ** argv){

printf("Hello world!\n");
return 0;

}

Running a Program
• ./hello

A Computer System

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

LOGISTICS

Prerequisites and Assumptions
• Proficiency with:

• Representing numbers in different bases
• Writing reasonably complex programs in Java/C/C++
• Data structures such as: linked lists, arrays, stacks, trees
• Debugging

• Experience with:
• Terminal window and command line
• Learning new languages and applications
• Experimenting and being confused
• Searching for and reading documentation

Course staff
Prof. Eleanor Birrell
Edmunds 221

Research in security and privacy
OH: M 8-10pm, T 5:30-7pm

Greg Gabriel Victor Wentao Guo Harini Salgado
Cannon de Motta de Fontnouvelle

The Course in a Nutshell
• Textbooks

• Required:
• Bryant and O’Halloran, Computer Systems: A Programmer’s

Perspective, third edition, Pearson, 2016
• Optional: some reference for the C language

• Kernighan and Ritchie, The C Programming Language, second edition,
Prentice Hall, 1988

• Miller and Quilici, The Joy of C, third edition, Wiley, 1997
• Be cautious about web resources!

• Classes
• Monday and Wednesday, 2:45-4pm in Edmunds 101
• Come prepared—do the reading first!

Nutshell, continued
• Participation

• 5% of the grade

• Labs
• Wednesday 7-8:15 in Edmunds 229
• Start tonight! Be sure to have an account and password

• Assignments
• Introduced during labs, Due Tuesdays at 11:59pm
• Tremendous fun, work in pairs
• 45% of the grade

• Midterm exam
• March 13
• 20% of the grade each

• Final exam
• Friday, May 17, 2:00—5:00 pm
• 30% of the grade
• Important: The exam is late in finals week; make travel plans accordingly

Course website
http://www.cs.pomona.edu/classes/cs105/2019sp/

• All information is on the course website
• Links from the course page:

• Piazza, for questions and discussion

• Lab assistants and mentors, schedule

• Submission site

• Sakai, for recording lab grades only

http://www.cs.pomona.edu/classes/cs105/2019sp/

PERMs
• If you are already registered in the class, welcome!
• If you are not registered:

• Make sure you have submitted a PERM request
• Put your name on the sign-up sheet

Things to Do Right Away
• For lab tonight

• Be sure you have an account on the Pomona CS system

• For class on Monday
• Begin the reading: Chapters 1 and 2.1-2.3

• This week
• Accept the invitation to our course’s Piazza site
• Enroll in CS 105 on submit.cs.pomona.edu

