
CS105 – Computer Systems Spring 2019

Assignment 6: Malloc Lab
Due: Tuesday, April 10, 2019 at 11:59pm

In this lab you will write a dynamic storage allocator for C programs with your own version of the malloc,
free and realloc routines. You are encouraged to explore the design space creatively and implement an
allocator that is correct, efficient, and fast.

You will work in a team of two. As usual, the material for the lab is in a tar file, available on the course web
page. Start by copying the file to a protected directory and unpacking it with the command

tar xvf malloclab-handout.tar

A number of files will appear. The only one you will modify is mm.c. The mdriver.c program is a
driver program that allows you to evaluate the performance of your allocator. Use the command make

to generate the driver code and run it with the command ./mdriver -V. (The -V flag displays helpful
summary information.)

Near the top of the file mm.c is a C structure team into which you should insert the requested identifying
information about the team members. Do this right away so you don’t forget.

When you have completed the lab, you will turn in two files: mm.c and feedback.txt. Submit it in the
usual way on the course submission site. Only one member of the team should submit the file. You may, of
course, submit several times—just be sure that all the submissions are made by the same team member and
all submissions include both files.

The Dynamic Storage Allocator

Your dynamic storage allocator will consist of the following four functions, which are declared in mm.h and
defined in mm.c.

int mm_init(void);

void *mm_malloc(size_t size);

void mm_free(void *ptr);

void *mm_realloc(void *ptr, size_t size);

The mm.c file we have given you implements a simple but functionally correct malloc package. Using it as
a starting point, modify the functions—and perhaps declare other private static functions. Your functions
must obey the following conditions.

• mm init: Before calling mm malloc, mm realloc, or mm free, the driver program calls mm init

to perform any necessary initializations, such as allocating the initial heap area. The return value
should be −1 if there was a problem in performing the initialization, and 0 otherwise.

• mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at least size
bytes. The entire allocated block should lie within the heap region and should not overlap with any
other allocated block.
We will comparing your implementation to the version of malloc supplied in the standard C library,
libc. Since the libc malloc always returns payload pointers that are aligned to 8 bytes, your malloc
implementation should do likewise and always return 8-byte aligned pointers.

6-1



• mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This routine is
only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to mm malloc

or mm realloc and has not yet been freed.
• mm realloc: The mm realloc routine returns a pointer to an allocated region of at least size bytes

with the following constraints.
– if ptr is NULL, the call is equivalent to mm malloc(size);
– if size is equal to zero, the call is equivalent to mm free(ptr);
– if ptr is not NULL, it must have been returned by an earlier call to mm malloc or mm realloc.

The call to mm realloc changes the size of the memory block pointed to by ptr (the old block)
to size bytes and returns the address of the new block. Notice that the address of the new block
might be the same as the old block, or it might be different, depending on your implementation,
the amount of internal fragmentation in the old block, and the size of the realloc request.
The contents of the new block are the same as those of the old ptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding libc functions malloc, realloc, and free.
Type man malloc to the shell for complete documentation.

The Coding Environment

Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib.c:

• void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive non-zero
integer and returns a generic pointer to the first byte of the newly allocated heap area. The semantics
are identical to the Unix sbrk function, except that mem sbrk accepts only a positive non-zero integer
argument.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.
• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.
• size t mem heapsize(void): Returns the current size of the heap in bytes.
• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

When the driver program starts, the allocated heap is empty, and

mem heap lo() == mem heap hi()

Your functions may extend the available heap by calling mem sbrk.

6-2



The Trace-driven Driver Program

The driver program mdriver.c in the malloclab-handout.tar distribution tests your mm.c package for
correctness, space utilization, and throughput. The driver program is controlled by a set of trace files that
are included in the malloclab-handout.tar distribution. Each trace file contains a sequence of allocate,
reallocate, and free directions that instruct the driver to call your mm malloc, mm realloc, and mm free

routines in some sequence. The driver and the trace files are the same ones we will use when we grade your
handin mm.c file.

The driver mdriver.c accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directory tracedir instead of the default direc-
tory defined in config.h.

• -f <tracefile>: Use one particular tracefile for testing instead of the default set of tracefiles.
• -h: Print a summary of the command line arguments.
• -l: Run and measure the libc version of malloc in addition to your code.
• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.
• -V: More verbose output. Prints additional diagnostic information as each trace file is processed.

Useful during debugging for determining which trace file is causing your malloc package to fail.

The driver program computes two metrics to evaluate your code.

• Space utilization, U , is the peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mm malloc or mm realloc but not yet freed via mm free) and the size of the heap
used by your allocator. The optimal ratio equals to 1. You should find good policies to minimize
fragmentation in order to make this ratio as close as possible to the optimal.

• Throughput, T , is the average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index, P ,
which is a weighted sum of the space utilization and throughput

P = wU + (1− w)min

(
1,

T

Tlibc

)
,

where w is a weighting factor of 0.6 and Tlibc is 600K operations per second, an estimate of the perfor-
mance of the native libc routines.

Both memory and CPU cycles are expensive system resources. The formula encourages a balanced op-
timization of memory utilization and throughput. Since each metric contributes a limited amount to the
performance index, you should not go to extremes to optimize either the memory utilization or the through-
put only. To receive a good score, you must achieve a balance between utilization and throughput.

Evaluation

Your code must obey the following rules.

• You must not change any of the interfaces in mm.c.
• You may not invoke any memory-management related library calls or system calls. This excludes the

use of malloc, calloc, free, realloc, sbrk, brk, or any variants of these calls in your code.

6-3



• You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. However, you may declare global scalar variables such as inte-
gers, floats, and pointers in mm.c.

• For consistency with the libc malloc package, which returns blocks aligned on 8-byte boundaries,
your allocator must always return pointers that are aligned to 8-byte boundaries. The driver will
enforce this requirement for you.

You will receive zero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your score will be calculated as follows:

Correctness (20 points) You will receive full points if your solution passes the correctness tests performed
by the driver program. You will receive partial credit for each correct trace.

Performance (35 points) The performance index computed by the driver program will be scaled to 35
points.

Style (8 points) The graders will inspect your code with the following points in mind.
Feedback (2 points) You will receive full points for submitting a completed feedback.txt.

• The code should be presented clearly and consistently.
• The code should be decomposed into functions and use as few global variables as possible.
• The file should begin with a header comment that describes the structure of your free and allocated

blocks, the organization of the free list, and how your allocator manipulates the free list.
• Each function should be preceded by a header comment that describes what the function does and

how it does it.

Hints and Suggestions

Some General points

• Use the mdriver -f option. During initial development, using tiny trace files will simplify debugging
and testing. We have included two such trace files, short1-bal.rep and short2-bal.rep, that you
can use for initial debugging.

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for each trace
file. The -V will also indicate when each trace file is read, which will help you isolate errors.

• Compile with gcc -g and use a debugger. A debugger will help you isolate and identify out of bounds
memory references.

• Understand every line of the malloc implementation in the textbook. Section 9.9 has a detailed exam-
ple of a simple allocator based on an implicit free list. Use it as a point of departure. Do not start
working on your allocator until you understand everything about the simple implicit list allocator.
Keep in mind, though, that the textbook’s example uses 32-bit pointers, and your code will use 64-bit
pointers. Some translation will be necessary.

• Encapsulate your pointer arithmetic in C preprocessor macros or short, simple functions. Pointer
arithmetic in memory managers is confusing and error-prone because of all the casting that is neces-
sary. You can reduce the complexity significantly by writing functions for your pointer operations.
See the comment below and the examples in the text.

• Do your implementation in stages. The first eight traces contain requests to malloc and free. Only
the last two traces contain requests for realloc. We recommend that you start by getting your
malloc and free routines working correctly and efficiently on the first eight traces. Only then should

6-4



you turn your attention to realloc. You can build realloc on top of your existing malloc and free
implementations, but to get really good performance, you will need to build a stand-alone realloc.

• Use a profiler. You may find the gprof tool helpful for optimizing performance.
• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we

can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You may find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?
• Are there any contiguous free blocks that somehow escaped coalescing?
• Is every free block actually in the free list?
• Do the pointers in the free list point to valid free blocks?
• Do any allocated blocks overlap?
• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm check(void) in mm.c. It will check any invariants
or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when mm check fails.

This consistency checker is for your own debugging during development. When you submit mm.c, make
sure to remove any calls to mm check as they will slow down your throughput.

Macros vs Functions

Traditionally, C programmers have used preprocessor macros, short substitutions which are expanded before
the compilation takes place. Here are two examples, from the sample implementation you are given.

#define ALIGNMENT 8

/* rounds up to the nearest multiple of ALIGNMENT */

#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~(ALIGNMENT-1))

The first simply defines a constant. Using it is good programming practice—its name indicates the purpose
of the constant, and its value can be changed consistently throughout the program.

The macro ALIGN is used to avoid the overhead of a function call. It was essential in the days when com-
pilers did little optimization. Macros operate by pure textual substitution. The parentheses are there to
avoid ambiguities when complex expressions are substituted for size or when the result is part of another
expression. We encourage you to use simple functions instead.

size_t align(size_t size) {

return (size + ALIGNMENT - 1) & ~(ALIGNMENT - 1);

6-5



}

Using the function gives us the more natural semantics of function calls and avoids the difficulties of textual
substitution. There is no performance penalty because modern compilers can optimize away the function
call and generate code that is as efficient as that with the macro.

You may use functions or macros. Choose one style and rely on it. It is virtually impossible to be consistent
with all the type casts and offsets without these devices.

Improving Your Score

The supplied simple version of mm.c is fast but is so wasteful of memory that it will not even run all the
tests.

Your first attempt with a simple management strategy may give disappointing results. It’s common to have
utilization under 50% and throughput in the double digits. Focus first on correctness, and then move on to
improving performance.

• A performance index of 45/100, as reported by the driver program, is acceptable. That value is about
what we expect from a solid implementation of the first-fit, implicit-list example in the textbook.

• An index above 70/100 is good.
• An index above 90/100 is stellar.

The best performance indexes we have seen are 93/100 and 95/100. Those implementations have utilization
around 90% and throughput that exceeds the threshhold of Tlibc.

Coalescing is a very important part of improving throughput. Be sure that your heap never has adjacent free
blocks. You may also want to experiment with search strategies other than first-fit.

One essential part of improving throughput is to avoid searching long lists. Consider other data structures
to maintain the free list.

Feedback

Please remember to upload to submit.cs a file called feedback.txt that answers the following questions:

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

As always, how you answer these questions will not affect your grade, but whether you answer them will.

6-6


