
CS105 – Computer Systems Spring 2019

Assignment 3: Debugger Lab
Due: Tuesday, February 12, 2019 at 11:59pm

Introduction and Goals

The goals of this assignment are to do some basic investigation of the X86-64 architecture and assembly
language, and to begin learning how to use gdb. The assignments page has links to a quick gdb summary
and to a printable gdb reference card; you can also find other information on Google.

Collect your answers to all of the following questions in a plain-text file named “a2.txt”. Identify each
section by problem number, and each answer by question number. Submit only your file a2.txt on submit.
cs.pomona.edu.

The source code for this assignment is available on the course website or on the department servers at
/common/cs/cs105/labs/. We strongly encourage you to compile and run this code on project5, as
you might get different answers on your own machine! Do not change either of the programs in this lab.

Problem 1: Running gdb (9 Points)

problem1.c contains a function that has a small while loop, and a simple main that calls it. Briefly study
the loop_while function to understand how it works (you don’t need to fully decode it; just get a clue about
what’s going on).

It will be useful to know what the atoi function does. Type “man atoi” in a terminal window to find out.

Compile the program with the -g switch and with no optimization: “gcc -g -o problem1 problem1.c”.
Run gdb problem1 and set a breakpoint in main (“b main”). Tell gdb not to debug the atoi function by
typing skip atoi. Run the program by typing “r” or “run”. The program will stop in main. (Ignore any
warnings; they’re meaningful but we’ll work around them.)

(Note: to help you keep track of what you’re supposed to doing, we have used italics to list the breakpoints
you should have already set at the beginning of each step—except when they don’t matter.)

1. Existing breakpoint at main.
Type “c” (or “continue”) to continue past the breakpoint. What happens?

2. Existing breakpoint at main.
Type “bt” (or “backtrace”) to get a trace of the call stack and find out how you got where you are.
Take note of the numbers in the left column. Type “up n”, where n is one of those numbers, to get to
main’s stack frame so that you can look at main’s variables. (In general, you can use up and down to
move up or down one frame in the stack.) What file and line number are you on?

3. Existing breakpoint at main.
Usually when bad things happen in the library it’s your fault, not the library’s. In this case, the problem
is that main passed a bad argument to atoi. There are two ways to find out what the bad argument

3-1

is: look at atoi’s stack frame (more on this next week!), or print the argument. Rerun the program
by typing “r” and let it stop at the breakpoint. Note that in step 2, we saw that the problem occurred
when atoi was called with the argument “argv[1]”. You can find out the value that was passed to
atoi with the command “print argv[1]”. What is printed? Given what you’ve discovered, why
do you think the program segfaulted in step 1?

4. Existing breakpoint at main.
Rerun the program with an argument of 5 by typing “r 5”. Continue from the the breakpoint. What
does the program print?

5. Existing breakpoint at main.
Without restarting gdb, type “r” (without any further parameters) to run the program yet again. (If
you restarted gdb, you must first repeat Step 4.) When you get to the breakpoint, examine the vari-
ables argc and argv by using the print command. For example, type “print argv[0].” Also
try “print argv[0]@argc”, which is gdb’s notation for saying “print elements of the argv array
starting at element 0 and continuing for argc elements.” What is the value of argc? What are the
elements of the argv array? Where did they come from, given that you didn’t add anything to the run
command?

6. Existing breakpoint at main.
The step or s command is a useful way to follow a program’s execution one line at a time. Type “s”.
Where do you wind up?

7. Existing breakpoint at main.
gdb always shows you the line that is about to be executed. Sometimes it’s useful to see some context.
Type “list” What lines do you see? Hit the return key. What do you see now?

8. Existing breakpoint at main.
Enter “s” to step to the next line. Then hit the return key three times. What do you think the return
key does?

9. Existing breakpoint at main.
What are the current values of result, a, and b?

Type “quit” to exit gdb. (You’ll have to tell it to kill the “inferior process”, which is the program you are
debugging.)

Problem 2: Compiler Optimizations (5 Points)

1. Recompile the program, this time optimizing it with -O1 (and including -g for debugging). Debug it,
set a breakpoint at loop_while (not at main!), and run it with an argument of 10. Step three times.
What four lines of code from program1.c are shown to you? Why do you think the debugger is
showing you those lines in that order?

2. Quit gdb again and recompile with -O2. Debug the program. Disassemble the main function by
typing “disassem main”. What is the address of the instruction that calls atoi? What is the address
of the instruction that calls printf? (You will have to do some deduction here, because gcc mangles
the names a bit.)

3-2

3. What is the address of the instruction that calls loop_while?

4. Recall that functions return results in %rax (also known, for this problem, as %eax), so the result of
atoi will be in %rax. After the call to atoi there are four instructions that set up the arguments
to printf, followed by xor %eax, %eax (which zeros out the register for the return value from
printf) and then the call to printf. What do each of those four instructions do?

5. Now you (kind of) understand the optimized main. What happened to the call to loop_while? Why
is the compiled assembly code correct?

Problem 3: Looking at Data (9 Points)

Look at the file problem2.c This file contains three static constants and three functions. Read the
functions and figure out what they do. (If you’re new to C, you may need to consult your C book or
some online references.) Here are some hints: argv is an array containing the strings that were passed to the
program on the command line (or from gdb’s run command); argc is the number of arguments that were
passed. By convention, argv[0] is the name of the program, so argc is always at least 1. The malloc line
allocates a variable-sized array big enough to hold argc integers (which is slightly wasteful, since we only
store argc-1 integers there, but what the heck).

By now we hope you’ve learned that optimization is bad for debugging. So compile the program without
optimization (but with -g!) and bring up the debugger on it.

1. gdb provides you lots of ways to look at memory. For example, type “print puzzle1” (something
you should already be familiar with). What is printed? Gee, that wasn’t very useful. Sometimes it’s
worth trying different ways of exploring things. How about “p/x puzzle1”? What does that print? Is
it more edifying?

2. You’ve just looked at puzzle1 in decimal and hex. There’s also a way to treat it as a string, although
the notation is a bit inconvenient. The “x” (examine) command lets you look at arbitrary memory in
a variety of formats and notations. For example, “x/bx” examines bytes in hexadecimal. Let’s give
that a try. Type “x/4bx &puzzle1” (the “&” symbol means “address of”; it’s necessary because the
x command requires addresses rather than variable names). How does the output you see relate to the
result of “p/x puzzle1”? (Incidentally, you can look at any arbitrary memory location with x, as in
“x/wx 0x8048500”.)

3. OK, that was interesting (and maybe a bit weird), but we still don’t know what’s in puzzle1. We need
help! And fortunately gdb has help built in. So type “help x”. Then experiment on puzzle1 with
various forms of the x command. For example, you might try “x/16i &puzzle1”. (x/16i is one
of our favorite gdb commands—but since here we suspect that puzzle1 is data, not instructions, the
results might be interesting but probably not correct.) Keep experimenting until you find a sensible
value for puzzle1. (Hint: Although puzzle1 is declared as an int, it’s not. But on our machine
an int is 4 bytes, 2 halfwords, or one—in gdb terms—word.) What is the human-friendly value of
puzzle1? (Don’t accept an answer that is partially garbage!)

4. Now we can move on to puzzle2. It pretends to be an array of ints, but you might suspect that it
isn’t. Using your newfound skills, figure out what it is. (Hint: since there are two ints, the entire
value occupies 8 bytes. What is the human-friendly value?)

3-3

5. We have one puzzle left. By this point you may have already stumbled across its value. If not, figure
it out; it’s often the case that in a debugger you need to make sense of apparently random data. What
is stored in puzzle3?

Problem 4: Stepping (10 points)

1. We did all of Problem 3 without actually running the program. But now it’s time to execute problem2!
Set a breakpoint in fix_array. Run the program with the arguments 1 1 2 3 5 8 13 21 44 65.
When it stops, print a_size and verify that it is 10. Did you really need to use a print command to
find the value of a_size? (Hint: look carefully at the output produced by gdb.)

2. Existing breakpoint at fix array.
What is the value of a?

3. Existing breakpoint at fix array.
Type “display a” to tell gdb that it should display a every time you stop. Step six times. You’ll
note that one of the lines executed is a right curly brace; this is common when you’re in gdb and often
indicates the end of a loop or the return from a function. After returning, what is the value of a?

4. Existing breakpoint at fix array.
Step again (a seventh time). What is the value of a now? What is i?

5. Existing breakpoint at fix array.
At this point you should (again) be at the call to hmc_pomona_fix. You already know what that
function does, and stepping through it is a bit of a pain. The authors of debuggers are aware of that
fact, and they always provide two ways to step line-by-line through a program. The one we’ve been
using (step) is traditionally referred to as “step into”—if you are at the point of a function call, you
move stepwise into the function being called. The alternative is “step over”—if you are at a normal
line it operates just like step, but if you are at a function call it does the whole function just as if it
were a single line. Let’s try that now. In gdb, it’s called next or just n. What line do we wind up at?
(Incidentally, in gdb as in most debuggers, the line shown is the next line to be executed.)

6. Existing breakpoint at fix array.
Use n to step past that line, verifying that it works just like s when you’re not at a function call. What’s
a now?

7. Existing breakpoint at fix array.
It’s often useful to be able to follow pointers. gdb is unusually smart in this respect; you can type
complicated expressions like p *a.b->c[i].d->e. Here, we have kind of lost track of a, and we
just want to know what it’s pointing at. Type “p *a”. What do you get?

8. Existing breakpoint at fix array.
Often when debugging, you know that you don’t care about what happens in the next three or twelve
lines. You could type “s” or “n” that many times, but we’re computer scientists, and CS types sneer
at work that computers could do for them—especially mentally taxing tasks like counting to twelve.
So on a guess, type “next 12”. What line are you at?

3-4

9. Existing breakpoint at fix array.
What is the value of a now?

10. Existing breakpoint at fix array.
What is the value of *a?

Finally, a small side comment: if you’ve set up a lot of display commands and want to get rid of some of
them, investigate info display and undisplay.

Problem 5: Assembly-Level Debugging (15 Points)

So far, we’ve been taking advantage of the fact that gdb understands your program at the source level: it
knows about strings, source lines, call chains, and even complicated C++ data structures. But sometimes it’s
necessary to get down and dirty with the assembly code.

To be sure we’re all on the same page, let’s quit gdb, reassemble problem two with optimization level zero
(“gcc -g -O0 -o problem2 problem2.c”) and bring it up on problem2 again. Run the program with
arguments of 1 42 2 47 3.

1. What is the output?

2. Set a breakpoint in main. Run the program again. Where does it stop? Type “list” to see what’s
nearby, then type “b 35” and “c”. Where does it stop now?

3. Existing breakpoints at main lines 33 and 35.
So since that’s the start of the loop, typing “c” will take you to the next iteration, right? Oops. Good
thing we can start over by just typing “r”. Continue past that first breakpoint to the second one,
which is what we care about. But why, if we’re in the for statement, didn’t it stop the second time?
Type “info b” (or “info breakpoints” for the terminally verbose). Lots of good stuff there. The
important thing is in the “address” column. Take note of the address given for breakpoint 2, and then
type “disassem main”. You’ll note that there’s a helpful little arrow right at breakpoint 2’s address,
since that’s the instruction we’re about to execute. Looking back at the corresponding source code,
what part of the for statement does this assembly code correspond to?

4. Existing breakpoints at main lines 33 and 35.
The code at +44 jumps to main+104, which has three instructions that jump back to main+46. This
is all part of the loop pattern we covered briefly in class (in this case, a for). We’ve successfully
breaked (“broken?” “Set a breakpoint?”) at the initialization of the loop. But we’d like to have a
breakpoint inside the for loop, so we could stop on every iteration. The jump to main+46 tells us that
we want to stop there. But that’s not a source line; it’s in the middle clause of the for statement. No
worries, though, because gdb will let us set a breakpoint on any instruction even if it’s in the middle of
a statement. Just type “b *(main+46)” or “b *0x40069b” (assuming that’s the address of main+46,
as it was when I wrote these instructions). The asterisk tells gdb to interpret the rest of the command
as an address in memory, as opposed to a line number in the source code. What does “info b” tell
you about the line number you chose? (Fine, we could have just set a breakpoint at that line. But there
are more complicated situations where there isn’t a simple line number, so it’s still useful to know
about the asterisk.)

3-5

5. Existing breakpoints at main lines 33 and 35, and instruction main+46.
We can look at the current value of the array by typing “p array[0]@argc”. But the current value
isn’t interesting. Let’s continue a few times and see what it looks like then. Typing “c” over and over
is tedious (especially if you need to do it 10,000 times!) so let’s continue to breakpoint 3 and then try
“c 4”. What are the full contents of array?

6. Existing breakpoints at main lines 33 and 35, and instruction main+46.
Perhaps we wish we had done “c 3” instead of “c 4”. We can rerun the program, but we really don’t
need all the breakpoints; we’re only working with breakpoint 3. Type “info b” to find out what’s
going on right now. Then use “d 1” or “delete 1” to completely get rid of breakpoint 1. But maybe
breakpoint 2 will be useful in the future, so type “disable 2”. Use “info b” to verify that it’s no
longer enabled (“Enb”). Continue past breakpoint 3, where we’re stopped. Where do we stop next?
(Hopefully that wasn’t too much of a surprise!)

7. Sometimes, instead of stepping through a program line by line, we want to see what the individual
instructions do. Of course, instructions manipulate registers. Quit gdb and restart it, setting a break-
point in fix_array. Run the program with arguments of 1 42 2 47 3. Type “info registers”
to see all the processor registers in both hex and decimal. What flags are set right now?

8. Existing breakpoint at fix array.
Often, looking at all the registers is excessive. Perhaps we only care about one. Type “p $rax”. What
is the value? Is “p/x $rax” more meaningful?

9. Existing breakpoint at fix array.
We mentioned a fondness for “x/16i”. Actually, what we really like is “x/16i $rip”. What do you
see? Compare that to the result of “disassem fix array”.

10. Existing breakpoint at fix array.
Finally, we mentioned stepping by instructions. That’s done with “stepi” (“step one instruction”).
Type that now, and note that gdb gives a new instruction address but still says that you’re in the for
loop. Hit return to stepi again, and keep hitting return until the displayed line doesn’t contain a
hexadecimal instruction address. Where are you?

11. Existing breakpoint at fix array.
It’s useful to use “x/16i $rip” here to make sure we understand what’s about to happen. You should
see three mov instructions followed by a call. Use stepi 3 to get past the movs. What instruction
address will be executed next?

12. Existing breakpoint at fix array.
As with source-level debugging, at the assembly level it’s often useful to skip over function calls. At
this point you have a choice of typing “stepi” or “nexti”. If you type “stepi”, what do you expect
the next instruction to be (hexadecimal address)? What about “nexti”? (By now, your debugginggdb
skills should be strong enough that you can try one, restart the program, and try the other, so there’s
little excuse for getting this one wrong!)

13. Existing breakpoint at fix array.
Almost there! Stepping one instruction at a time can be tedious. You can always use “stepi n”
to zip past a bunch, but when you’re dealing with loops and conditionals it can be hard to decide

3-6

whether it’s going to be 1,042 or 47,093 instructions before you reach the next interesting point in
your program. Sure, you could set a breakpoint at the next suspect line. But sometimes the definition
of “interesting” in inside a line. Let’s say, just for the sake of argument, that you are interested in how
the leavq instruction works. You can set a breakpoint there by typing “b *0x40066b” (assuming
that 0x40066b is its address, as it was when I wrote these instructions). Do so, and then continue.
What source line is listed?

14. Existing breakpoints at fix array and *0x40066b.
The leaveq instruction manipulates registers in some fashion. Start by looking at what %rsp points
to. You can find out the address with “p $rsp” and then use the x command, or you could just try
“p/x $rsp”. What are the values of rsp and rbp?

15. Existing breakpoints at fix array and *0x40066b.
Use “info reg” to find out what all the registers. Step one instruction further to execute the leave
instruction, and then look at all the registers again. Have the values in the rsp or rbp registers
changed, and what are their old and new values?

Problem 6: Feedback (2 points)

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

How you answer these questions will not affect your grade, but whether you answer them will.

3-7

