
CS105 – Computer Systems Spring 2019

Assignment 1: C Lab
Due: Tuesday, January 29, 2019 at 11:59pm

This laboratory exercise gives you practice programming in the C language and demonstrates how data
are stored in bytes and words. It will introduce you to the “C mindset,” which may be significantly
different from the way you are used to thinking about programming.

In many ways, the C language is like Java. The syntax for variable and function declarations, assignment
statements, for and while loops, and if-statements are the same in both languages. The big difference
is that in C we have a different view of data, one that is closer to the actual hardware. We must be
aware of where in memory values are located and how much space they occupy. The exercises in this
laboratory assignment will give you practice in thinking about variables, pointers, and arrays—and how
they relate to addresses and values in memory.

As with future labs, you should work in teams of two. Your partner will be assigned for this assignment.

To get started, you will need to acquire the starter files. They can be found in a compressed file called
clang.tar located on the server little.cs.pomona.edu in the directory /common/cs/cs105/labs/01-clang.
You will need to download a copy of the file to a local directory.

% scp little.cs.pomona.edu:/common/cs/cs105/labs/01-clang/clang.tar ./clang.tar

(A note on color-coding: In a few cases we display commands that you type in a terminal window and
the resulting output. We use % for the prompt. The characters that you are to type are in green, and the
system’s responses are in blue.)

Note that if you are doing this from a non-lab computer, you may need to explicitly enter your CS
username (e.g., scp [username]@little.cs.pomona.edu:...)

Once you have downloaded the file clang.tar, change to a protected directory and unpack the file with
the command

% tar xvf clang.tar

You will now have a directory clang which contains this writeup, a Makefile, and three C language
programs. As you follow the instructions below, you will produce or modify four files.

strings.solution

arrays.c

lists.c

feedback.txt

Be sure to put the names of both team members at the top of the C language files and the feedback
file, and at the bottom of strings.solution. Submit all four files—as separate files, not zipped or
tarred—on the course submission page. Use all the team members’ names when submitting.

A few paragraphs below, labeled “Reflections,” raise relevant questions and direct you to important
points that we want you to learn from the exercises. Remember to return to them when you have the
opportunity to contemplate.

1-1

1 Re-interpreting Data Values

The program strings.c reads six integers into an array. It then interprets the first four integers as a
string and the last two as a double and prints the results. Your job is to find integers that will cause the
program to print some specified values.

Begin by compiling the program. We have given you a Makefile, so you can just type

% make strings

on the command line. Do not change the program’s source. Next, create a text file named strings.solution
with six integers, one to a line. Begin by making them all zero. Put your names on the seventh and eighth
lines. Run the strings program with the input redirected from the strings.solution file.

% ./strings <strings.solution

0.0000000000000000

The blank line in the output shows that the string is empty. The double is zero. As a further warm-up,
change the first of the six integers to 14132. The string now has two characters—which happen to be
digits. (It is a string of characters, not a number!) The double is still zero.

% ./strings <strings.solution

47

0.0000000000000000

Your task Fill strings.solution with six integers to produce this result.

% ./strings <strings.solution

Cecil Sagehen

3.1415926535897931

When you have the solution, submit the file strings.solution on the course submission page. Re-
member to put all team members’ names in the file, after the six integers.

Hints and suggestions It is possible, but long and tedious, to compute by hand the four integers
corresponding to “Cecil Sagehen.” But it is not practical (or a good use of your lifespan!) to compute
the two integers corresponding to the decimal expansion of π. Think about writing a short program,
separate from strings.c, that will calculate the integers for you.

Reflections The actual values of the six integers are not important. If they were all you cared about,
you could ask someone in the lab. Be sure that you understand what is happening with the bytes in
memory. Also, take some time to understand the pointer arithmetic and type casts in the source file
strings.c.

The six-integer sequence you produced is not unique. Other sequences will produce the same result.
How many different solutions are there?

1-2

2 Re-shaping Arrays

This part of the lab is an exploration into how arrays are stored in memory. Suppose that we have a
two-dimensional 4× 7 array tda of integers whose values encode the indices. That is, tda[i][j] has
the value 10i+ j. If we print the array row-by-row we obtain this:

00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

Remember that arrays are stored in row-major order, so in memory the array looks like this:

00 01 02 03 04 05 06 10 11 12 13 14 15 16 20 21 22 23 24 25 26 30 31 32 33 34 35 36

If we take that block of memory—without changing the values stored there—and consider it as a 7× 4
array, we get this:

00 01 02 03

04 05 06 10

11 12 13 14

15 16 20 21

22 23 24 25

26 30 31 32

33 34 35 36

The same memory can be considered a one-dimensional 28-element array, a two-dimensional 4 × 7
array, a two-dimensional 7× 4 array, a three-dimensional 7× 2× 2 array, and so on.

As we saw in class, there is another way to represent two-dimensional arrays—as arrays of arrays. The
idea is to have a one-dimensional array of rows. Each element in that array is a pointer that points to the
beginning of another one-dimensional array which contains the data values of that particular row. With
this representation, the 7×4 array shown above would be an array of seven pointers, each pointing to an
array of four integers. The strategy uses a little more memory (for the pointers), but it is more flexible.
The rows need not all be the same size.

Your task Your lab material contains an almost-complete program arrays.c. It declares and initial-
izes a 4 × 7 array tda like the one above. It also declares an array aoa of seven rows. Your job is to
fill in seven assignment statements in the main function so that aoa is a 7× 4 array like the one above,
except with the rows in reverse order.

Make no changes to the program, except to add your names and complete the assignment statements.
When you are ready, type

% make arrays

% ./arrays

If your assignments are correct, you will see the output shown in Figure 1., showing the original array
and the modified one. Submit your program arrays.c on the course submission page.

Hints and suggestions Avoid trial and error. Think about the starting points of the various rows of
the result, relative to the beginning of tda.

1-3

% ./arrays

00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

33 34 35 36

26 30 31 32

22 23 24 25

15 16 20 21

11 12 13 14

04 05 06 10

00 01 02 03

Figure 1: The correct output for the program arrays.

Reflections Notice that the assignments to aoa are made before tda is initialized. Why does that
work? Notice also that the bodies of print two dim array and print array of arrays are character-
for-character identical. Why is it necessary to have two functions? Be sure that you understand the
difference between the two ways of representing two-dimensional arrays.

3 A Linked List

For this part of the lab, you will complete a simple linked list program. It is the sort of exercise that you
may have done in a data structures course. We have given you a partially-complete program lists.c.
You are to implement three functions with these prototypes:

void makeempty(cell_t** thelist)

void prepend(int newvalue, cell_t** thelist)

void reverse(cell_t** thelist)

The type cell t is a structure with two members, value and next. For us, a list is a pointer to a
cell t. The next field in the structure, a pointer, is the rest of the list. The empty list is a pointer
whose value is NULL.

All three functions operate on a list. The function makeempty removes and recycles all the elements
of the given list. The function prepend creates a new cell t with the specified value and places it at
the front of the list. The function reverse reorders the elements in the list. It does so by moving the
elements of the list, not by creating new copies of elements.

Your task Implement the four functions listed above. Do not change the functions printlist and
main When you have finished, compile and run the program.

% make lists

% ./lists

Make sure that the output is correct by comparing it to the listing in Figure 2. Submit your program
lists.c on the course submission page.

1-4

% ./lists

backward

9, 0x971130

8, 0x971110

7, 0x9710f0

6, 0x9710d0

5, 0x9710b0

4, 0x971090

3, 0x971070

2, 0x971050

1, 0x971030

0, 0x971010

backward reversed

0, 0x971010

1, 0x971030

2, 0x971050

3, 0x971070

4, 0x971090

5, 0x9710b0

6, 0x9710d0

7, 0x9710f0

8, 0x971110

9, 0x971130

empty

forward

0, 0x971130

1, 0x971110

2, 0x9710f0

3, 0x9710d0

4, 0x9710b0

5, 0x971090

6, 0x971070

7, 0x971050

8, 0x971030

9, 0x971010

forward reversed

9, 0x971010

8, 0x971030

7, 0x971050

6, 0x971070

5, 0x971090

4, 0x9710b0

3, 0x9710d0

2, 0x9710f0

1, 0x971110

0, 0x971130

empty again

Figure 2: The correct output for the program lists. The addresses, the hexadecimal values after the
commas, may differ in your output, but they should be spaced apart by the same amounts.

1-5

What you need to know Pointers are used to refer to elements in the list. Remember that a pointer
simply holds an address in memory. If you want it to point to something useful, you must allocate space
in memory and set the pointer to the address of that space. Here is how to create an element for a list:

cell_t *p = (cell_t *) malloc(sizeof(cell_t));

You can then initialize the fields of the list element by assigning to p->value and p->next. Keep in
mind the distinction that p is the address in memory of an element and *p is the element itself. You will
need to allocate space for new elements in prepend and append.

When an element is created with malloc, it lasts until it is explicitly disposed, or until the program
ends. To dispose of an element and recycle the memory that has been allocated to it, make a call to free

with a pointer to the element.

free(p);

The value of the pointer must have come from a call to malloc. There should be only one call to free

for each call to malloc. In makeempty, you will need to free all the elements in the given list.

Pay special attention to the list argument in the functions you write. A list for us is a pointer to cell t.
The argument to your functions is a pointer to a list, of type cell t**. In the function

void makeempty(cell_t** thelist)

the variable thelist is a pointer to a list. That is, it is the address of a place in memory that holds
the address of the first element of the list. The reason for using a double pointer is so that the function
makeempty can change the value of the list back in the caller. The last act of makeempty (after it has
recycled the memory of all the original list elements) is to make the assignment

*thelist = NULL;

so that the caller’s list will now be empty.

As an extended example, we have given you the C code for the function append. It creates a new cell t

with the specified value and places it at the end of the specified list. Figure 3 shows a heavily-annotated
copy of the function.

Hints and suggestions Do not get carried away! You are to write four functions, and each one will
be no more than 15 lines long, often shorter. On the other hand, programming with pointers is delicate
work. The few lines of code that you write must be precisely correct.

Reflections The function printlist prints the addresses of the various list elements. One reason for
that is to be able to check that reverse creates a list with the very same elements, just in a different
order. You can use those addresses to determine how many bytes are used for each cell t. How many
bytes are actually required by the data in the structure? How many bytes are needed according to our
alignment rules? How many bytes are actually used by the system? (The answers are all different.)

1-6

void append(int newvalue, cell_t** thelist) {
// Create a new cell to be added to the list.

cell_t *newelt = (cell_t*) malloc(sizeof(cell_t));

// Fill in the components of the new cell.

// The cell will go at the end of the list, so

// the next field is NULL.

newelt->value = newvalue;

newelt->next = NULL;

// Appending to an empty list is a special case.

if (*thelist == NULL)

*thelist = newelt;

// If the list is not empty, find the last element,

// and then tack on the new cell.

else {
cell_t *p = *thelist;

while (p->next != NULL)

p = p->next;

p->next = newelt;

}
}

Figure 3: An annotated version of append.

1-7

4 Feedback

Please create a file called feedback.txt that answers the following questions:

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

How you answer these questions will not affect your grade, but whether you answer them will.

1-8

