
Communication Strategies for Mentoring
in Software Development Projects

Shreya Kumar
Michigan Technological University

1400 Townsend Drive
Houghton MI 49931 USA

+1 906 487 2209
ShreyaK@mtu.edu

Charles Wallace
Michigan Technological University

1400 Townsend Drive
Houghton MI 49931 USA

+1 906 487 3431
Wallace@mtu.edu

ABSTRACT
As with professionals in all engineering disciplines, software
developers new to a project must be given the implicit and explicit
knowledge they need to be productive, in an effective and
appropriate way, due to fluid team dynamics, geographical
distribution, and other factors. As part of a broader study of
communication in software development, we focus here on
communication strategies for mentoring. We explore some
examples of mentoring-oriented communication, in an educational
setting and in an open-source consortium of academics and
professionals. We plan to draw out recurring patterns of
communication between mentors and protégés.

Categories and Subject Descriptors
K.6.31 [Project and People Management]

General Terms
Management

Keywords
Communication Patterns, Mentoring, Software Project
Communication.

1. INTRODUCTION
In collaborative creative endeavors like software development,
newcomers must be brought up to speed not only on matters of
fact but on deeper issues of rationale and motivation. The concept
of mentor – the experienced guide, conveying knowledge and
“know-how” to the protégé – is a time-honored tradition in
management. Whether through established, codified practices
(e.g. explicit mentoring initiatives by professional engineering
organizations [1]) or the more implicit processes captured in
legitimate peripheral participation [2], mentors provide
instruction, counseling and interaction to impart understanding in
a way that “reading the manual” (or the source code) cannot.

Software development, however, occupies a unique position in
this space, due to its innately fluid and fast-changing nature.
Software teams are formed and reformed at a rapid pace, in
response to evolving requirements, business alliances, and
personnel changes. Moreover, the flexibility afforded by software

development, exemplified most vividly by open-source projects
[3], allows theoretically limitless numbers of collaborators,
problematizing the notion of team altogether. In this context, the
concept of mentor must be expanded beyond its customary
definition. Mentoring relationships may be ad hoc and transitory,
with little or no clear delineation between those eligible for
mentor status and those seeking mentorship. Begel and Simon [4]
discuss the importance, advantages and challenges of mentoring
for novices in the software industry.

Several scholars have identified communication as a central
aspect of the mentoring process. Beyond the “simple exchange of
information and accomplishment of ability” which is the primary
goal of mentoring, Kalbfleisch [5] likens the process of
establishing a mentoring relationship to “the initiation of
friendships and love relationships in terms of communicating
appropriate relational expectations”. Buell [6] expands on this
idea by categorizing mentoring relationships in terms of cloning,
nurturing, friendship and apprenticeship, and noting the
importance of “turning points” where the nature of the mentoring
relationship changes [7].

In this paper, we explore the communication choices that
developers make as they initiate and conduct mentoring activities.
Our study samples include a student software development
project, with regular face-to-face interactions with a client/mentor,
and a globally distributed open source development project that
primarily communicates via email. We apply our notion of
communication patterns [8, 9] to characterize mentoring activities,
employing Buell’s mentoring models [6] as a guide.

2. COMMUNICATION PATTERNS
Earlier we have introduced the notion of a communication pattern
language, both as a tool to study project communication and as a
means of representing repeatable communication practices [8, 9].
Our motivation has been driven by pedagogical concerns: we seek
to expose the complexities of project communication to budding
software engineers, and to equip them the means to think
analytically about their communication choices. In this paper, we
discuss the strategies related to mentoring that we discovered in
different types of software projects. As we observe occurrences of
the same strategies more reliably in different types of projects, we
will establish them as patterns.

As Alexander explains in his seminal paper on software design
patterns, “[e]ach pattern describes a problem that occurs over and
over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way
twice.” [10] Patterns denote the essence of solutions to problems
without overspecifying them - a key advantage when dealing with
the fluid nature of the “softer” aspects of software development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE’14, June 2–3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2860-9/14/06 …$15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CHASE’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06...$15.00
http://dx.doi.org/10.1145/2593702.2593712

111

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2593702.2593712&domain=pdf&date_stamp=2014-06-02

Coplien and Harrison take advantage of this in their work on
organizational patterns. A pattern language approach has been
used to analyze the recurrences of configurations of roles in
software organizations, “using patterns in a generative way” [11].

Each communication pattern describes a set of properties
associated with a communicative act. These properties, inspired
by the classic “Kipling questions” (Who, What, Where, When,
Why and How) include: power differential and roles between
participants (who); synchrony and frequency of communication
(when); presence of physical or virtual “subject matter” or tools
(what); medium of communication (how). Patterns may define
particular genres of communication (for instance, client demo,
requirements gathering session, burndown chart), but others
describe properties that cut across genre (for instance, given the
“brainstorming session” genre, whether to perform the act
synchronously with a facilitator, synchronously with all
participants acting collectively, or asynchronously with
participants providing input independently). In this way, patterns
can be overlaid on one another, and a single communication act
can be the combination of multiple patterns. Here we examine
how different mentoring relationships employ different strategies
of communication and how the strategies are affected by the
project context (for instance, the medium of communication).

Our data on student projects comes from earlier ethnographic
studies conducted at our institution [12, 13]. We use a grounded
theory approach [14] to identifying patterns in our project data,
conducting open coding on our first pass, identifying the instances
of mentoring-related communication that emerge, then selecting
for strategies used in these mentoring activities. In our current
focus on mentoring, a “turning point” in the mentoring
relationship is met with a change in communication strategy.

3. STUDENT MENTORING
In this section, we describe our observations of the “Nurturing
model” [6] of mentoring and the communication acts and
strategies associated with it in two student software projects,
where the communication context was characterized by face to
face interaction and accessibility to the client/expert/mentor.

Our two student software projects were each a semester long each
and consisted of a team of three software engineering students
working on a US Navy-sponsored project named “Seabase”. The
project centered on development of a controller for a ship-
mounted crane and involved conversion of some legacy code. The
client was “Hank”, a professor in the mechanical engineering
department who originally developed some of the legacy code.
With fresh, inexperienced teams and a short project duration, it is
difficult to establish repeatable practices for project work.
Students did however have the benefits of physical colocation and
a readily available and involved client.

In the two student projects – Seabase I and Seabase II, we witness
the “Nurturing Model” [6] of mentor relationship where the
mentor facilitates an environment for the protégé to learn and
provides help and encouragement with guidance, as opposed to
the “Cloning Model” where the mentor issues commands to be
followed. So how does the “Nurturing” relationship manifest itself
in communication strategies? We see two strategies – an initial
Mentor as Interrogator strategy and a more mature Mentor as
Oracle strategy, supported by a variety of communication tactics.

Mentor as Interrogator: The classic view of mentor, as illustrated
memorably in Socratic dialogue, is mentor as asker of questions,

carefully chosen to reveal gaps in knowledge or provoke
awareness among protégés. In this pattern, the interrogation is
typically followed by advice or sharing of strategies to overcome
the identified gap. In his exchange with Seabase II team member
“Bob” in Table 1, Hank is trying to determine Bob’s plan for
soliciting information from another student team. In fact, for the
first few weeks of the project, most of the team’s meetings with
Hank followed this pattern interspersed with giving advice and
taking progress updates. Interestingly, Hank’s mentoring in this
exchange is encouraging Bob to think strategically about his
upcoming communication with the team.

TABLE 1. MENTOR AS INTERROGATOR

Seabase II – Week 4 (Bob expresses that he might meet a different
student team that the SE team need data from)
Hank: What do you hope to get out of that meeting?
Bob: See how they are testing code, and how they are using Simulink
Hank: The reason to have that meeting with them was to understand
their system, right? Specifically.
Bob: Trying to see what values they are using for Simulink
Hank: Like sensors...
Bob: Yes, like sensors, values for testing
Hank: So what you might want before that meeting is the things you
need, like the sensors list that you would need. You won’t have a list
and they won’t have a list, but since you folks have the diagram for that
block. Do you know from that what values you will need?
[They look at the diagram and discuss some input parameters like
sway, swing angle, hoist, lock, etc.]
Hank: It might be a good idea to have this picture when you talk to
them.
(Bob and Hank together make a list of the values)
Hank: Ok, here is a low-level question. How do you want to go about it
when you meet them then? You are at the interface, you provide them
the list of things you need. Keep in mind that they are a senior design
team just like the platform team. It would be good if you have that
dialogue with them. I guess what I am trying to say is that you might
not get a quick answer. They should know, but they might not.

Mentor as Oracle: This is the strategy of learning in the presence
of a mentor with the protégé posing questions and the mentor
answering them. The Seabase II software engineering team, when
tasked with learning MATLAB, spent some time trying to learn
from their client and technical expert, Hank’s directions and
reference material, but solicited Hank’s time to ask specific
questions about the language and platform where Hank (in the
role of the mentor) resolved their queries through demonstration.

In Week 7 of Seabase II, Denise, a leading member of the SE
team, meets Hank to learn MATLAB, which was a project
requirement. After going through the reference material and code
examples that Hank shared, the team is having trouble with a
specific portion of the code regarding the damping mode block.
Hank suggests using one block to calculate the damping values
instead. The team watches Hank work on his computer as he
demonstrates how some flags are being set in different S-
functions of the code. He then tells the team they can choose to
use whichever method they like best. Denise then asks about the
placement and detection of logical breaks in the code to structure
it better and Hank makes suggestions to structure the code better.

We observe a use of the Over The Shoulder Learning [15] tactic
in the context of the workplace where the team observes Hank as
he works step by step through examples of flag setting in the
code. This is easily implemented in the face-to-face synchronous
setting available to Seabase II.

112

In Seabase II, we observe an unmistakable “turning point” in
Hank’s relationship with the team, from the “Nurturing Model” to
the “Friendship Model”[6]. In Buell’s conception, the Friendship
Model is characterized by “collaborative, reciprocal, mutual
engagement” and weak or nonexistent hierarchy in the mentor-
protégé relationship.

The turning point in Seabase II occurs during a meeting where
team member Denise brings an elaborate hand drawn chart to
depict data dependencies between blocks of the original legacy
code. The chart was something Hank had repeatedly requested of
the Seabase I team and finally found to his satisfaction with the
Seabase II team. The hand-drawn chart plays a crucial role in
demonstrating commitment to the client. Interestingly, the chart
originated as a pedagogical tool for Denise, helping her to “get her
head around” the legacy code. As such, it is messy and difficult
for other readers to understand; however, Denise takes advantage
of the synchronous, face-to-face communication with the client to
“talk him through” the document, thereby mitigating any
confusion caused by its hand-drawn nature. We call this tactic
Artifact Facilitated Discussion.

TABLE 2. ARTIFACT FACILITATED DISCUSSION – MENTOR AS
INTERLOCUTOR

Seabase II – Week 6 – [Denise and Hank are looking at her chart
together.]
Denise: This is where we need some help. So this is what happens in
the code [pointing at Denise's chart]
[Denise explains on her chart that she has color coded based on which
blocks are her responsibility and how the chart describes the blocks.]
Hank: Can you show me some example within the code? This is great.
Don't throw this out. Is this hand-drawn?
Week 9 - [Hank and Denise are looking at the chart and Denise is
explaining how init runs and affects other S-functions. Hank asks what
some of the functions do, especially init. Denise explains the purpose]
Hank: Oh that is sweet! That makes sense now. So when this one is
high, that value becomes high and this one goes low, that value is low.
I finally get it.. what is setup?
[Denise explains what setup is.]
Hank: I love it. I love it! The beauty of something like this is that I can
understand it. Someone with a high level of knowledge of how the
code or the function works can look at it and completely understand it.

Artifact Facilitated Discussion: This tactic is observed when the
presence of an artifact, like a diagram, or piece of code, or design
document becomes the center of discussion and facilitates and
captures the understanding of the participants. It is associated with
communication situations where participants have large gaps in
their shared knowledge, where the problem of articulating the
question and discovering the right question to ask is difficult.

It is typically found in a synchronous communication setting, so
participants can confirm understanding with each other through
the “catalyst” of the artifact. This is also an example of incidental
learning [16] in the presence of an artifact - the hand drawn chart
that Denise made to trace flow of code module dependencies. In
this pattern, the presence of the artifact allows for more questions
to be asked and promotes collaborative learning. The ability to
point at places on the artifact to explain or better ground one’s
questions is valuable.

Mentor as Interlocutor: Denise’s chart initiates a turning point in
Hank’s relationship with Denise, toward a “Friendship Model” of
mentoring. In communication terms, a new strategy emerges –
one in which questions arise from both the mentor and protégé
and they play off each to share knowledge. Most meetings from

the Artifact Facilitated Discussion onwards followed this strategy,
where the team, implicitly led by Denise would brainstorm with
Hank about strategies for arriving at solutions to identified
obstacles.

4. OPEN SOURCE MENTORING
In our student project case studies, we find that the student teams
clearly benefit from the physical colocation of mentor and team
and frequent synchronous communication – factors that facilitate
more traditional mentoring approaches. How do mentoring
strategies change when this easy access to communication is not
available? In this section, we describe the mentoring strategies we
observed in an open source software project where the
communication landscape was drastically different. It allows us to
study similar mentoring strategies in contrasting contexts to
appreciate the essential attributes of the mentoring strategies that
work for different situations.

We are currently studying an open source visualization software
project with developers distributed geographically (primarily in
Europe and South America) and varying in their levels of
experience and of commitment to the project. Communication is
conducted almost exclusively on a common list serve. The project
has an implicit core group of programmers, who often take on an
implied mentoring stance for the “newcomers”.

We observe the same mentoring models as the student project –
Nurturing and Friendship. The Nurturing model is seen typically
between the experienced programmers and the newcomers and the
Friendship model exists between the core programmer group. We
witness turning points where novice programmers become experts
and switch to a mentor role from that of a protégé. However, in
this asynchronous medium of communication, we focus on how
these mentoring models translate into communication patterns.

We also observe the Mentor as Interrogator and Mentor as
Oracle mentoring strategies very often, where when a new or less
experienced programmer would pose a question, typically the host
would acknowledge it, start with appreciation and encouragement
and then pose questions to arrive at the core of the issue. When
satisfied that the question is valid and properly articulated, the
host would typically answer with a solution along with advice,
often with code detail and steps to follow.

Email is a less than ideal, asynchronous form of communication
and the project members have to use it even for interaction that is
typically conducted face to face. In the student projects, an
important recurring communication strategy was the Artifact
Facilitated Discussion, which is impossible in the open source
project as the project members are geographically distributed and
spread across different time zones. We examine how they cope to
still facilitate incidental learning.

The participants are typically proficient programmers, many of
whom are well versed with the library they are working on with
many years of experience, code as part of the email body very
frequently becomes part of the conversation. On a closer, more
qualitative look, we observe the Code As Conversation pattern,
where participants on the forum ask a question related to the code
and paste a code snippet in their email. In turn, respondents also
use code in their email to share or propose solutions, along with
some text as explanation. This exchange is often used to arrive at
implementation strategies, make design decisions or even to
debug code together.

113

TABLE 3. CODE AS CONVERSATON

 (“Novice” replies with corrections)
thank you for the navigation. There is the script: <script code
pasted in email>
(“Host” appreciates the script)
Thanks! Now, it will be easier to review :)
(“Host” critiques and guides “novice” gently towards other solutions)

Hi, I looked at it a bit. It's a start, but I think the direction is not quite
right yet. Let's take a look at one of your examples:
<code example here>
I like that you are using a matrix model.
But, what is not so clean is mixing shapes and elements. Right now,
you are creating elements within the definition of the shape (i.e.,
#instVarNames).
A rule of thumb should be that shapes should be interchangeable.
Consider the following Mondrian example:
<code example here>

In Table 3, we observe a combination of the Code As
Conversation pattern and the Mentor as Oracle and Interrogator
mentoring strategies. We share an excerpt from an email thread
started by a programmer with comparably less experience on the
project than some of the senior team members. The “novice”
programmer wants the “host” to review his code implementation.
The “host” starts with encouragement and shares the correct
procedure for collaboration. When the “novice” creates the correct
script, the “host” programmer informs him that he will examine
his code, he soon replies with some comments – he talks to him
about the direction of the solution and uses the novice’s code
example to illustrate what should be different. He then shares his
own code example to demonstrate how to accomplish what the
“novice” was attempting.

Although the mentoring models observed in both the student and
open source projects have similarities, the change of medium to
email only affects the tactics. When tone is not easily conveyed
and the ability to point at a collectively viewed artifact is missing,
we see that both the “host” and “novice” carefully craft responses
with lots of information included, sometimes step by step
directions to overcome the lack of a face to face interaction, where
even partially articulated questions accompanied with gestures
and pointing convey one’s meaning. Pointing at common code is
replaced by copying and pasting code fragments. We see that
“Over The Shoulder” learning is not possible but “incidental
learning” assisted by the code fragments takes place.

Finally, we note that protégés eventually become mentors as an
example of the “turning point” where we see a “novice”
programmer used to pose questions to the forum very frequently
accompanied by statements like “I am very confused” and “I am
sure this is a stupid question”. Over the years, the “novice” has
turned into an “expert” where we notice him responding to and
encouraging “novices” with statements like “It is great that you
are working on… and let us know if you need any help”.

5. FUTURE WORK
Our initial work on these project case studies has elicited
instances of strategies and tactics; as we examine a broader base
of projects, we expect to discover more instances of similar
communication activities, thus allowing us to establish true
patterns of communication. We also plan to develop a method to
assess mentoring strategies. Objectively rating a communication
act or strategy is difficult, as communication contexts are varied
and the notion of success or failure of communication strategies is

complex. However, the structure of our patterns do provide a
rubric for determining fitness to a particular context, by matching
the attributes of the communication pattern with attributes of the
communication context.

6. REFERENCES
[1] National Society of Professional Engineers, 2002,

Mentoring Guide for Small, Medium, and Large Firms.
[2] Lave, J., Wenger, E., Situated learning: Legitimate

peripheral participation, Cambridge University Press,
1991.

[3] Yu, Y., Benlian, A., Hess, T., 2012, An Empirical Study
of Volunteer Members' Perceived Turnover in Open
Source Software Projects, Hawaii International
Conference on System Science (HICSS), IEEE, 3396-
3405.

[4] Begel, A., Simon, B., 2008, Novice software developers,
all over again, International Workshop on Computing
Education Research, ACM, 3-14.

[5] Kalbfleisch, P. J., 2002, Communicating in mentoring
relationships: A theory for enactment, in
Communication Theory 12, 63-69.

[6] Buell, C., 2004, Models of mentoring in communication,
in Communication Education 53.

[7] Bullis, C., Bach, B. W., 1989, Are mentor relationships
helping organizations? An exploration of developing
mentee-­‐mentor-­‐organizational identifications using
turning point analysis, in Communication Quarterly 37,
199-213.

[8] Kumar, S., Wallace, C., 2013, A tale of two projects: A
pattern based comparison of communication strategies
in student software development, Frontiers in Education
Conference, IEEE, pp. 1844-1850.

[9] Wallace, C., Kumar, S., 2013, Communication patterns:
a tool for analyzing communication in emerging
computer science educational practices, ACM
Technical Symposium on Computer Science Education,
ACM, pp. 729-729.

[10] Alexander, C., The timeless way of building, Oxford
Univ. Press, New York, 1977.

[11] Coplien, J. O., Harrison, N. B., Organizational Patterns
of Agile Software Development, Prentice-Hall, Inc.,
2004.

[12] Brady, A., Seigel, M., Vosecky, T., Wallace, C., 2008,
Speaking of Software: Case Studies in Software
Communication, in Software Engineering: Effective
Teaching and Learning Approaches and Practices.

[13] Vosecky, T., Seigel, M., Wallace, C., 2010, Making and
Acting, in Qualitative Research in Technical
Communication, 276.

[14] Glaser, B. G., Strauss, A. L., The discovery of grounded
theory: Strategies for qualitative research, Transaction
Books, 2009.

[15] Twidale, M. B., 2005, Over the shoulder learning:
supporting brief informal learning, in Computer
Supported Cooperative Work 14, 505-547.

[16] Cook, C. R., Scholtz, J. C., Spohrer, J. C., 1993,
Empirical Studies of Programmers: Fifth Workshop.
Norwood (NJ): Ablex Publishing Corporation.

114

