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Abstract—Teaching assistants (TAs) play a crucial role in
Computer Science courses. When a student is stuck or confused,
they often rely on a TA to help them understand a concept or
debug their program. At the same time, TAs in Computer Science
courses are often very new at teaching, and somewhat new
at programming. They may lack the knowledge and resources
necessary to help students learn effectively. This work seeks
to better understand the nature of TA-student interactions and
identify potential opportunities for improvement. We conducted
an observational study of one-on-one TA-Student interactions
during office hours of a Computer Science course, and analyzed
these interactions through the lens of known practices of effective
one-on-one tutors. We found that TA-Student interactions focus
on code over concepts, and this focus may be detrimental to TAs’
use of good tutoring practices.

I. INTRODUCTION

As enrollment in Computer Science (CS) programs
grows[1], universities increasingly rely on undergraduate
Teaching Assistants (TAs) to scale their classes effectively[2].
One of the main TA duties is providing one-on-one assistance
to students during lab or office hours[2]. Students come to
these office hour sessions when they are stuck or confused,
and TAs take on the role of a tutor to help students work
through through their issues and misconceptions.

Research on effective tutoring suggests that learning gains
occur after a student reaches an impasse: they get stuck,
encounter an error, or are uncertain about something [3], [4],
[5]. Students come to TA office hours precisely because they
are seeking help with this type of impasse. This means that
office hour sessions hold a lot of potential for producing
learning gains by helping students at the precise time when
they are most receptive to learning. But to what extent is this
potential fulfilled?

Little is known about the moment-to-moment interactions
in TA office hours, and how these interactions affect student
learning. We conducted an observational study of one-on-
one TA-student interactions during office hours in order to
understand whether TAs engage in effective tutoring practices,
and whether there are specific barriers to good tutoring that can

be addressed. Specifically, we sought to answer the following
research questions:

RQ1. How does TAs’ behavior during office hours compare
with known effective tutoring practices?

RQ2. How does student behavior affect office hour dynam-
ics and outcomes?

RQ3. Are there specific barriers to TAs using good tutoring
practices?

II. RELATED WORK

Our work builds on two related areas of research: studies
of undergraduate Computer Science TAs, and research on
tutoring and what makes tutors effective.

A. Undergraduate CS TAs

Existing research on undergraduate TAs in Computer Sci-
ence departments falls into two broad categories: evaluations
of university TA programs, and studies of TA experiences.

1) Studies of TA programs: A recent systematic literature
review [2] surveyed the prior work on Undergraduate TA
(UTA) programs in computer science. They found that ex-
isting research describes several benefits of introducing UTA
programs in Computer Science departments. Some studies
identified improvements in students’ grade performance [6],
[7], [8] and attitudes towards the course [9], [10]. Studies
also reported benefits to TAs, including increased confidence
[11], [12] and improved interpersonal skills [13]. Finally, some
papers described benefits to the instructors and department,
including easing instructor workload [14], [15], [16] and
building a general sense of community [15], [10], [16], [17].

Although these studies suggest that TA-student interactions
can be beneficial to both TAs and students, they do not directly
investigate the nature of these interactions. Our study seeks to
analyze how undergraduate TAs interact with students during
office hours, and how these interactions compare to tutoring
practices used by effective tutors.
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2) Studies of TA experiences: Several recent studies seek
to understand the TA experience - How TAs fulfill their
responsibilities, what challenges they face, and what factors
affect their behavior and satisfaction.

Riese et al.[18] analyzed reflection essays written by TAs
and identified five categories of challenges TAs face, includ-
ing the use of best practices and threats to best practices.
Patitsas[19] used a combination of observations and semi-
structured interviews with TAs to find six environmental
factors that affect how TAs interact with students, and how
they feel about their job as TAs.

Some studies focused specifically on what happens during
TA office hours. Ren et al.[20] used the Design Recipe [21]
methodology as a basis for designing short forms which TAs
and students filled out before and after office hour sessions.
These forms were used to both guide and track student help-
seeking activity in office hours. Markel and Guo [22] presented
an experience report of one TA conducting office hours,
organized into a four-part model of TA-student interactions.

Several common themes emerge around factors that can
present challenges to TAs, including: time pressures experi-
enced when trying to help students[18], [19], [22]; the level of
familiarity and comfort with the underlying material[22], [18];
and the tension between helping students learn and helping
them achieve a better grade[22], [19].

These studies primarily focus on the TA’s perspective, and
often rely on TA reporting to capture what happens during
TA-student interactions. In our study, we instead directly
observe and analyze the interaction between TAs and students
in order to understand how these interactions may affect
student outcomes, and to identify potential opportunities for
improvement.

B. Practices of effective tutors

Prior research on tutors and tutoring has sought to identify
behaviors and practices that differentiate effective tutors from
less effective ones.

In particular, studies have shown that effective tutors tend to
provide indirect guidance rather than direct answers [23], [24],
[25], [26], allowing students to come to the correct conclusion
themselves [3], [4], [5], [27]. They often do this by asking
questions that lead the student to an important idea or answer
[24], [28], [25], [29], [30].

Effective tutors proactively seek to assess the student’s
current level of understanding and diagnose misconceptions
[24], [25]. They also explicitly look for opportunities to
generalize, summarize, and reflect on the work the student
had just done, and connect it with the broader topics that they
are covering [28], [24], [25], [3]

In this study, we seek to apply this research to analyze
behaviors of teaching assistants conducting office hours. When
helping students during office hours, TAs need to make similar
decisions and apply similar pedagogical skills to the tutors
described in the studies above. But in contrast to traditional
tutors, TAs have less control over the tutoring scenario: their
task is to help the student with the specific assignment and

specific issue the student is asking about. So they cannot
choose the topic of the tutoring session, guide the student’s
learning by assigning practice problems, or plan to reinforce
concepts in follow-up sessions.

III. METHODS

In order to understand the nature of TA-student interactions
during office hours, we collected and analyzed recordings of
office hours in an advanced Computer Science course held at
Washington University in St. Louis.

A. Data Collection

We collected recordings of online TA-led office hours from
one semester of an advanced-level undergraduate Program-
ming Languages course. TAs for this class were selected from
students who performed well in the class in prior semesters.
All TAs are required to go through a mandatory training by
the university, which focuses on appropriate interactions and
anti-harassment training. There was no class-specific training.
The TAs and the professor interacted regularly through a Slack
channel, where the TAs were able to bring up common student
issues and ask for help with problems they could not figure
out themselves.

The TA office hours for the class were conducted remotely
via Zoom, a teleconferencing application. All Zoom office
hour sessions were recorded as part of the course. The course’s
professor then extracted and made available to the researchers
those parts of the recordings where both the student and the
TA had agreed to participate in this study.

Three TAs and 34 students agreed to participate in this
study, out of a total of 4 TAs and 50 students in the class. 13 of
these 34 students went to TA office hours at least once in the
semester. Due to a technical problem, most of the office hours
for one of the three TAs who consented to the study were not
recorded. Altogether, we collected recordings from 26 office
hour periods which represent 98 self-contained help sessions
between a student and a TA. These recordings contained 8203
total utterances.

B. Data Preparation

The raw data consisted of 16 hours and 54 minutes of
recorded TA-student dialog and automatically-generated tran-
scripts. In order to code and analyze these recordings, we first
had to correct the transcription and divide the recordings into
self-contained problem-solving sessions where one TA was
helping one student with a single problem.

The automatic transcription generated by Zoom was imper-
fect, especially when the participants used terms and phrases
that are uncommon in day-to-day English conversations, such
as specific functions, programming language constructs, and
variable names. In addition, these transcriptions were some-
times wrong about who said a particular utterance, and other
times merged several participants’ overlapping utterances into
a single sentence attributed to one of the speakers. To address
these issues, two of the authors corrected and augmented the



generated transcripts to capture what was actually said by each
participant.

In order to prepare the video recording data for coding by
multiple raters, one of the authors split the data into individual
problem-solving sessions, such that each session could be
coded by a single rater without needing the context of other
conversations outside of this one. The specific criterion for this
split was that each session should cover a single conversation
between the TA and one student, which addresses one specific
self-contained part of an assignment that a student was having
trouble solving on their own. Usually, though not always, this
meant a single function that the homework asked them to
implement.

C. Data Analysis
To understand how TAs and students interact during office

hour sessions, and how this may affect the outcome of the
sessions, we analyzed the data on two levels: per-session
labeling and per-utterance coding.

1) Per-session Labels: In order to capture the nature of
each problem-solving session, we labeled each session with
three categories of metadata:

• Type(s) of issue addressed in this session (one or more
type may apply to each session):

– Conceptual: The student explicitly asked for help
understanding and interpreting the concepts involved
in solving the problem at hand.

– Implementing: The session involved the TA and
student working together to implement some part of
a programming assignment.

– Debugging: The session involved the TA and student
working together to find and fix bugs in the student’s
code.

• Student’s code state before coming to office hours: When
the student came into this problem-solving session, did
they have any code already written? Or were they asking
for help with programming problems which they hadn’t
started working on yet?

• Outcome: Were the student and TA successful in resolv-
ing the student’s issue(s) during this session?

2) Per-utterance Coding: We developed a coding scheme
to categorize each utterance within a problem-solving session.
This coding scheme seeks to describe the information flow
between TA and student during the session, with a focus on the
types of guidance the student asked for and the TA provided.

Starting with an initial candidate coding scheme, the authors
iterated by independently coding a small subset of the data
(two representative conversation samples totalling 82 utter-
ances) and then coming together to discuss and resolve any
disagreements and ambiguities in the scheme. The first author
then updated the coding scheme based on the discussion,
and the process was repeated. The authors went through this
iteration process 6 times before converging on the final coding
scheme.

The resulting coding scheme categorized each utterance
along three dimensions:

• A label, chosen from 21 options shown in Table I,
categorizing the purpose of the utterance in the context
of the issue being solved

• A Boolean flag denoting whether this utterance shifted
the conversation to a different sub-topic or context

• A Boolean flag indicating whether this utterance was
phrased as a leading question rather than a direct state-
ment.

The 21 per-utterance labels are split across four high-level
types of utterances, based on the information owner: which
participant knows (or is presumed to know) the information
that’s being discussed, and which participant is the intended
recipient of the information?

• Student to TA: The intent is for the student to commu-
nicate something to the TA, usually about the issue they
are having or the problem they are working on.

• TA to student: The intent is for the TA to communicate
something to the student, usually some kind of guidance
to help the student with the problem at hand.

• Mutually created information: Neither the student nor
the TA have the information in question; the goal is to
build a new understanding through the interaction. This
most often happens during debugging: the student and
TA are trying to understand and address the bug(s) in the
student code.

• Social glue: Utterances that do not carry any information
related to the problem at hand.

Note that these categories do not define the speaker. Either
participant could make an utterance which belongs in any of
these high-level categories. For example, a student requesting
some specific type of guidance would be a “TA to Student”
type of utterance.

Table I lists the full set of classification labels within these
four high-level categories, and provides an example of each
type of utterance. The guidance levels in the “TA to student”
category are a particularly important subset of labels: they
capture how explicitly and directly the TA guided the student
toward an answer. Research suggests that effective tutors try
to provide indirect answers which allow the tutee to make
their own cognitive leaps[24], [25], so less explicit guidance
levels may be indicative of greater adherence to good tutoring
practices. A full document describing the detailed criteria for
each category is available online [31].

We measured inter-rater reliability separately along each
of these dimensions. To do this, each author independently
coded the same randomly-chosen subset of the data (around
10% of the total data set). The Fleiss’ kappa measure for the
utterance label was 0.74, indicating substantial agreement. For
the context change flag, the Fleiss’ kappa was 0.82, indicating
very good or “almost perfect” agreement. For the leading
question flag, the Fleiss’ kappa was 0.50, indicating moderate
agreement. The inter-rater agreement was much lower for the
leading question flag than the other two dimensions, in large
part because there were very few leading questions asked. For
example, in the subset of data used to determine inter-rater



Table I
UTTERANCE CLASSIFICATION LABELS

Type Label Example

St
ud

en
t

to
TA

Issue the student needs help with Student: If you had time, I just would love some help debugging this insert function
Establishing context TA: Sorry, did you send what you have? Oh yeah, okay it’s right there.
Symptoms of the issue Student: my test empty is passing in the brackets, and test full is failing.
Student’s approach so far Student: I was thinking of like trying to delete each element... and count[ing] them...
Student’s knowledge state TA: Um, so have you ever worked with the “E...” thing before?

TA
to

St
ud

en
t

(Guidance 5) Explicit answer TA: So just put an ‘a right before “treenode”
(Guidance 4) Explicit algorithm or solution TA: You want to create a local binding with the head and the tail of the list and then...
(Guidance 3) Strategizing: step(s) to resolve the issue TA: What I would recommend is putting it in a data structure that you can reverse easily
(Guidance 2) Declarative description of state TA: [Your function is] calling both insert and remove in the same calls.
(Guidance 1) Building understanding TA: So, the way the “above” [function] works is...
(Guidance 0) General relevant resources Student: What are the helper functions that would be helpful, like from the library?
Generalizing, Reflecting, Making connections TA: Yeah, usually with SML, the first thing is like “we should probably add a helper”
Tangential information Student: Is partial credit available?

M
ut

ua
lly

cr
ea

te
d

in
fo

rm
at

io
n

Reproducing the issue TA: Let me pull up my Racket thing and see what happens when I try to run mine.
Making changes and analyzing the result Student: What if I add “val item = rootnode” ... “#2”
Referencing TA’s own solution TA: Let me see if I can pull up how I did it... I had dictionary...
Referencing third-party solutions TA: Yeah, [the professor’s solution] does it in quite an interesting way.
Diagnosing student’s misconception TA: Can you explain why you structured it like that?
Code (or system) comprehension TA: I think what happens is... what happens? how does it make the matrix?

So
ci

al
gl

ue

One’s internal state as it relates to the problem Student: It’s reassuring, I guess, to know that I have like the right structure, hopefully.
Conversational social glue TA: Hey, how’s it going?

Figure 1. Distribution of total speaking time by category of utterance and by
speaker role

reliability, between 1 and 5 utterances(depending on the rater)
out of 808 were labeled as “leading questions”.

IV. RESULTS

Figure 1 summarizes how speaking time was distributed
across the four utterance categories and the two participant
roles (TA and student). The majority of the time (50.1%) was
spent on TA-to-student utterances, which is expected, since the
main purpose of office hours is for TAs to provide guidance
to students.

Notably, the participants did not spend much time in the
Mutually Creating Information category, which is the cat-
egory that contains all debugging utterances. In fact, they
spent nearly as much time on Social Glue interactions as
on Mutually Creating Information. This is in line with the

more detailed findings described below: both TAs and students
tended to avoid debugging behaviors in favor of rewriting code
to match the TA’s own solution to the problem.

In the subsections below, we address each of our research
questions: (RQ1) How does TA behavior during office hours
compare with known effective tutoring practices? (RQ2) How
does student behavior affect the office hour dynamics and
outcomes? (RQ3) Are there specific barriers to TAs using
good tutoring practices?

A. TA Behavior

TA behavior deviated from known effective tutoring prac-
tices in several important ways: (1) TAs tended to guide
students through their own solution to the problem, instead of
adapting their guidance to the individual student’s approach;
(2) TAs tended to provide very direct and explicit guidance;
and (3) TAs rarely made specific types of utterances that are
likely to build student understanding

1) Guiding students through TA’s own implementation: We
found that when guiding students, the TAs in our study relied
heavily on stepping students through their own solution to the
homework problem. Each of the TAs in the study had taken the
same course either the previous semester or the year before,
and they retained the code they had written when they took
the course.

Thus, it was easy and convenient for the TAs to pull up
their own solution to the current problem and use it to guide
the student. Notably, although there were a handful of cases
where TAs tried to debug the student’s existing code by
comparing it to their own (93 total utterances across 35 distinct



sessions), most of the time the TA simply read off the detailed
algorithm that their code implemented, regardless of whether
this matched the student’s approach, for example:

TA: “...so then I used mlet, and for the list for mlet
I passed in a list with x and e1 and y and e2, and
then for the expression to my mlet I check...”

TAs tended to offer this type of guidance without trying to
understand or address the student’s existing approach to the
problem. The participants did discuss the student’s approach
in 72 out of 98 sessions, but in 50 of those cases, the student
was the first to bring up their approach. In one example, the
student had to insist on explaining their approach twice before
the TA realized it was a better way of doing things:

Student: “Yeah, I was thinking because it’s sorted,
[explanation of student’s algorithm]”
TA: “Yeah, the way I approached is, [longer expla-
nation of different algorithm]”
Student: “Okay, I was thinking if you have like the
list 4,5,6,7 and you’re looking for five, [explanation
of algorithm using concrete example]”
TA: “Yeah, that’s true. That is more effective.”

After this exchange, the TA focused on helping the student
interpret the error message, and together they were able to
correct the issue while sticking with the student’s original
intent.

Interestingly, in the very next session with the same TA
and the same student, a similar exchange happened when the
student asked for help diagnosing an error message. The error
was actually caused by a minor bug where the student did not
update a function signature when they changed the function’s
behavior.

Student: I’m getting this error that says [student
describes the error message and hypothesizes where
the problem may be]
TA: Yeah, maybe I suggest just making that func-
tion a helper function and [TA suggests a way of
completely restructuring the code to make it closer
to the way TA solved the problem]

In this case, the student seemed less sure about their
approach, and did not insist on explaining their rationale. So,
the student spent the next 10-15 minutes rewriting their entire
function under the direction of the TA. Because the student
and the TA were thinking about the problem differently, and
because the TA did not clearly explain the high-level overview
of their approach, the process took several iterations and
was longer than it needed to be. The student and TA never
identified the original bug, instead completely changing the
buggy line in the process of restructuring the code.

2) TAs provide direct and explicit guidance: As we de-
scribed in the related work session, research on practices of
effective tutors suggests that giving indirect guidance helps
students learn better. But when TAs focused on describing
their own solution to the student, they frequently did this in
the form of very direct and explicit guidance.

In our coding scheme, the labels “Guidance 4: Explicit al-
gorithm or solution” or “Guidance 5: Explicit answer” capture
guidance which gives the student direct and explicit answers
about the code they should be writing. TAs resorted to this
kind of explicit guidance in about 75% of the sessions (74 out
of 98).

The TA would sometimes give this type of explicit answer
even when the student was asking a more general and indirect
question, for example:

Student: “In the unit test, it’s- it’s expecting it to be
curried?”
TA: “Exactly. So this is what you want it to look
like. [Pastes code] It’s a simple mistake.”

TAs gave a response that was more explicit than the stu-
dent’s question in 11.5% of the cases. They gave a less explicit
response in 7.5% of the cases. The rest of the time, when TAs
responded to direct requests for guidance, the guidance they
provided matched the student’s requested level of guidance.
However, only 23% of TAs’ guidance utterances were in direct
response to student request for guidance - the rest of the time,
TAs offered explanations and guidance without the student
making a specific request.

3) TAs rarely build understanding: In addition to catego-
rizing direct guidance provided by TAs along an explicitness
spectrum, our coding scheme captures several other types
of utterances that could be indicative of good tutoring prac-
tices: asking leading questions, generalizing or reflecting, and
diagnosing misconceptions. These types of utterances were
extremely rare in the dataset. Out of the 8203 total utterances,
TAs in the study asked leading questions around 16 times;
tried to generalize or reflect on lessons learned 37 times; and
attempted to diagnose student misconceptions 3 times.

Each of these types of utterances focus on student under-
standing of the underlying material, rather than the correctness
of their current code. The fact that they are exceedingly rare
indicates that TAs tended to focus on the goal of making the
student’s code work, rather than building an understanding of
why it works.

B. Student Behavior

Students who come to office hours seem to be content
with the TAs’ strategies of focusing on code and providing
explicit guidance which gets their homework to pass unit tests.
Students often come into office hours expecting to be walked
through a solution to a homework problem, and they seem
to adapt their questions to individual TAs’ guidance style,
asking more explicit questions of TAs who tend to provide
more explicit guidance.

1) Students expect to be walked through an implementation:
In 49 out of 98 sessions, student directly asked for and received
help implementing part of their homework assignment. And in
39 out of 98 sessions, students came in looking for help on a
problem without having written any code beforehand. In these
situations, students often did not have any specific questions
beyond “I would like your help writing code for this problem”.



Figure 2. Instances where students came into office hours with code written
vs. with no code written

TAs tried to probe the student about their approach to the
problem in 22 of 98 total sessions. But it was sometimes
difficult to get the student to engage:

TA: “So for brackets, what are you thinking so far?
Like what’s your approach?”
Student: “To be honest, I have no clue.”
TA: “So what - do you know what brackets is trying
to do, like, what the goal of the method is?”
Student: “Not clearly, no.”

This kind of interaction may further discourage TAs from
taking the initiative and asking students to articulate their
approach or thought process.

At the same time, having the experience of being walked
through a solution step-by-step in past office hour sessions
may encourage students to ask for help before attempting to
solve the problem themselves. Figure 2 shows how many times
each student came into office hours with and without code
written. We can see that students who came to office hours
regularly were much more likely to come in without any code
prepared than those who only came in occasionally.

Given that students come in with the apparent expectation
that the TA will guide them through the entire implementation
process, and they don’t easily engage in talking conceptually
about their approach to the problem, it can be hard for TAs
to go against those expectations and keep the conversation
focused on building conceptual understanding rather than
creating code which passes the unit tests.

2) Students ask more explicit questions of TAs who provide
more explicit guidance: Both of the TAs for whom we have
full data, TA1 and TA2, fit the behavior patterns described
in the previous section. But TA2 consistently provided more
explicit guidance, and was more likely to provide answers that
were more explicit than the question they were answering.

As we can see from Figure 3, students seemed to adapt to
individual TAs’ guidance level: For each of the six students
who attended office hours of both TAs, the same student asked
more explicit questions of TA2 than they did of TA1. So, the
choices that the TA makes when providing guidance can not
only have an effect on the outcome of the immediate problem
the student is facing, but also set the tone for future interactions
between that student and that TA.

Figure 3. Explicitness level of questions asked of two different TAs by the
same set of students

C. Barriers to using good tutoring practices

We observed several patterns which could be indicative of
barriers to TAs using good tutoring practices: (1) The difficulty
of the class may have limited TAs’ comfort level with the
content and their ability to adapt their guidance to individual
student needs; (2) both TAs and students tended to view the
focus of office hours as helping students fix their code, rather
than helping them learn; and (3) the office hour sessions tended
to be conducted under a lot of time pressure.

1) The difficulty of the content makes less effective tutor-
ing practices more enticing: The Programming Languages
class we observed for this study introduces many unfamiliar
paradigms and programming languages at a rapid pace. Be-
cause of this, even experienced students and TAs can find the
class more challenging than they are used to.

In 26 out of 98 sessions in our dataset, the TA was unable
to resolve the issue that the student needed help with. This
means that TAs were able to help the student about 73% of
the time.

However, that success rate improved dramatically when the
student came in without any code prepared - 35 out of 39
such sessions resulted in successfully resolving the student’s
issues. Similarly, the success rate was quite high for sessions
where the student explicitly asked for help implementing
part of their homework - 44 out of 49 such sessions had a
successful outcome. Together, these two types of sessions have
a success rate of 87.5% (49/56). In both of these types of
sessions, the TA could usually resolve the issue by simply
walking the student through the TA’s old solution to the
relevant problem.

By contrast, when students came in with already-written
code and wanted help with debugging or conceptualizing, the
TAs were only able to help the student in 57% (24/42) of the
cases.

For example, in several instances, the TA thought the logic
of the student’s code looked right, and could not understand
why the tests weren’t passing:

TA: Yeah, logically, like map looks good. That’s
always the problem. It looks good. It doesn’t work.



Other times, even falling back on the strategy of comparing
the student’s code to the TA’s own solution did not help them
find the issue:

TA: It’s so weird that it doesn’t work. I mean, it
looks exactly like mine. If you want to post on
Piazza and maybe [the professor] has some clue as
to why it’s not working.
Student: Yeah, I feel like it might be just some like
crazy, weird like quirk or something.
TA: Yeah. SML can be like that sometimes.

TAs also sometimes struggled with providing conceptual
explanations when students asked questions about their own
code. For example, one student came into office hours with
already-working code, but wanted to understand how and
where a specific operation happened within an intricate se-
quence of currying and recursion. The student and TA dis-
cussed the code for about 10 minutes. Although the TA seemed
confident about their understanding of the code, they were
unable to pinpoint the specific operation the student was
looking for or articulate why it’s actually working the way
it’s working. Eventually, the student gave up and decided to
refer back to the lecture videos:

Student: “So, since f1 doesn’t take any parameters,
how is that possible?..”
TA: “Let me- I have some notes...”
Student: “If it’s hard to find I can, like, rewatch the
videos.”
TA: “Yeah, I think in the videos they explain it. Also
in the hints and gotchas. I think that might give you-
I’ll post the link”

Given these kinds of difficulties, it makes sense that both
students and TAs gravitated toward strategies like asking
for help before getting started on the implementation, and
providing such help by stepping through an existing work-
ing solution. These strategies feel safer and more rewarding
because they make a successful outcome more likely.

2) Perception of the goal of office hours: Both TAs and
students seemed to view the goal of office hours as helping
the student submit a correct solution to the homework prob-
lem, rather than ensuring that the student has the conceptual
understanding necessary to solve the problem.

As described above, students often came in with the ex-
pectation of being walked through an implementation of a
particular function or programming problem. And TAs tended
to conform to those expectations by stepping through their
own solution from previous semesters.

Most student questions focused on code over concepts: out
of the 98 help sessions in our study, only 10 were about
purely conceptual questions. In addition, in 17 sessions, some
conceptual questions came up in the process of resolving other
issues.

When students did ask for help in understanding concepts,
TAs often redirected the student to reviewing class material or
talking to the professor. This may be because TAs did not view
providing conceptual guidance as part of their responsibilities.

For example, in one session, a student tried to get a more
conceptual understanding of what was going on after the TA
walked them through creating a working implementation:

Student: “I’m really struggling with, like, what it
means for like... returning functions and this whole
lambda stuff.”
TA: “Yeah, kind of like currying in Racket?”
Student: “Yeah. Not really clicking right now, but
hopefully it will.”
TA: “ If you want to ask [the professor] to meet,
then he’s pretty good at explaining it.”

3) Time pressure: Helping students in real time puts pres-
sure on the TA to understand and resolve the issues quickly.
Moreover, in the office hour sessions in this study, there
were frequently multiple students present in the Zoom call
waiting their turn while the TA helped the current student.
These pressures likely increased TAs’ cognitive load, and
incentivized them to take the most expedient, simplest path
to addressing the student’s issues. Students also seemed to
feel this time pressure: many unresolved sessions ended when
the student yielded their time to allow the TA to help someone
else or because the TA’s office hours were close to being over,
for example: “I don’t wanna hold you for too long” or “Oh,
your hours are so done. Um, alright, well, I will just like go
another TA’s hours later”

The median session duration was 8 minutes 5 seconds, and
the average duration was 10 minutes and 20 seconds. But
debugging is a very time-consuming process, and trying to
debug complex code in a few minutes can be daunting.

In addition, a lot of this time was taken up by interactions
meant to convey factual information about the student’s code
state to the TA: 11.4% of total on-topic(non-“Social Glue”)
speaking time was taken up by utterances establishing context
(e.g. what function the student is working on, whether the
code is pushed to the repository) and describing symptoms
of the issue (e.g. reading or pasting the error message the
student saw). This accounted for 43% of all speaking time
in the “Student to TA” category of utterances. Spending this
much time on logistics took away from the time and attention
that the participants could have spent on analyzing the actual
underlying issues.

V. LIMITATIONS

This is a small qualitative study limited to the behavior
of three TAs and 11 students in one advanced Programming
Languages class.

Because of the small scale of the study, the findings might
not generalize to be broadly applicable to Computer Science
teaching assistants at large.

In particular, it is possible that some of the TA-student dy-
namics we observed are specific to advanced classes, and that
TA-student relationships work differently in more introductory
courses. For example, some prior research noted that students
in introductory classes can be hard to engage in a discussion,
and instead “are often passively listening and nodding”[22].
But in our observations, students were actively involved in



the conversation, and generally seemed to have a friendly,
peer-like relationship with the TAs: TAs and students had
comparable amounts of speaking time, and the participants felt
free to spend a large portion of the time on off-topic (social
glue) interactions.

VI. FUTURE WORK

There are two major avenues for future research: more
thorough investigations of TA-student interactions, and design
and analysis of potential interventions to address the barriers
that make it harder for TAs to use good tutoring practices.

A. Investigating TA-student interactions

Larger-scale studies are needed to investigate whether our
qualitative findings can be replicated, and whether they gen-
eralize to other contexts, such as introductory courses and
courses at different institutions.

Additionally, future work could investigate how various
factors affect student-TA interactions. Do external factors such
as the number of students seeking help, or the difficulty of the
current problem, affect TA behavior? How does TA behavior
affect student behavior and expectations?

Finally, our study did not attempt to directly measure how
TA-student interactions affected student outcomes in the class.
In particular, future work could investigate how a student’s
solution to a particular problem changes after they get help
with it in office hours; and how coming to TA office hours
affects students’ ability to solve similar problems in the future.

B. Designing interventions to address barriers

Our study suggests that there are several barriers that make
it harder for TAs to engage in effective tutoring during office
hours: the difficulty of the underlying concepts and tasks; the
TAs’ expectations about the goal or purpose of office hours;
and the additional difficulty imposed by the time pressure of
trying to understand the issue and debug and write code in
real time, with people watching.

These barriers could potentially be alleviated by tools and
interventions that assist TAs in their tasks. For example,
tools that automatically analyze student code and present
actionable information to the TA could both alleviate the
difficulty of debugging and save time spent on establishing
context. And interventions that scaffold the flow of the TA-
student interactions may help establish and reinforce better
expectations about the goal of office hours.

VII. CONCLUSION

In this study, we found that TAs do not always follow good
tutoring practices when assisting students during office hours.
Instead, they offer overly-explicit guidance which doesn’t
adapt to the student’s approach, and focus on ensuring the
student’s code works over building the student’s understand-
ing of underlying concepts. Students are content with this
approach, and often come to office hours seeking help without
first attempting the problem.

We identified three specific barriers that may make it harder
for TAs to use good tutoring practices. These barriers may

prevent students from thoroughly understanding the material
that is taught in the class. In particular, the TAs’ focus
on correctness of submitted code over comprehension may
artificially inflate some students’ grades in the course without
ensuring they understand course material. We recommended
a direction for future work that could address these barriers,
and therefore may help significantly improve student learning
in these classes.

Although this is a small-scale qualitative study conducted
in a single advanced CS course, it is a first step in under-
standing how moment-to-moment interactions between TAs
and students affect student learning.
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