
CS62 Class 5: Algorithmic Analysis
Basic Data Structures

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Lecture 5 agenda
• (from last time) Finishing up ArrayLists

• Mathematical models of running time

• Order of growth classification

• Big O (worst case), theta (average case), omega (best case)

• Amortized Analysis (via ArrayLists)

Removing (and returning) the last element

Checking pre-condition

Remember our invariant that the last element is going to be at size - 1

Q: Why size == data.length / 4? Why not size <=
data.length / 4?

A: Because we can only remove one element at a
time, so it’s guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArrayList

Iterate through the underlying Array and set
everything to null - prevent “loitering”

Update size

Note that we don’t need to call remove()
many times - let’s avoid unnecessary
computation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayLists vs Vectors

• Honestly, in the real world, not many people use ArrayLists. They prefer Vectors
(e.g., most Leetcode problems in Java will use Vectors as “lists”)

• Vectors are slower, but synchronized, so they are memory safe.

• .push(), .pop() methods…we won’t learn them in this class, but telling you so
you’re familiar in case they show up!

ArrayList in Java Collections

 https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Resizable list that increases by 50% when full and does NOT shrink.

• Not thread-safe (more in CS105).
java.util.ArrayList;

public class ArrayList<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Vector in Java Collections

 https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

• Java has one more class for resizable arrays.

• Doubles when full.

• Is synchronized (more in CS105).
java.util.Vector;

public class Vector<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Mathematical models of
running time

Code efficiency
• Efficiency comes in two flavors:

• Programming cost.

• How long does it take to develop your programs?

• How easy is it to read, modify, and maintain your code?

• More important than you might think!

• Majority of cost is in maintenance, not development!

• Execution cost (today).

• How much time does your program take to execute?

• How much memory does your program require?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

What affects execution cost?
• System independent effects: Algorithm + input data

• System dependent effects: Hardware (e.g., CPU, memory, cache) + Software (e.g.,
compiler, garbage collector) + System (E.g., operating system, network, etc).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Popularized by Donald Knuth in the 60s in the four volumes
of “The Art of Computer Programming”.

• Knuth won the Turing Award (The “Nobel” in CS) in 1974.
(Read more in this week’s textbook chapter! https://cs.pomona.edu/classes/cs62/
history/bigO)

• In principle, accurate mathematical models for performance of algorithms are available.

• Total running time = sum of cost x frequency for all operations.

• Need to analyze program to determine the basic set of operations.

• Exact cost depends on the machine & compiler.

• Frequency depends on the algorithm & input data.

Total Running Time

https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Add < integer multiply < integer divide < floating-point add < floating-point
multiply < floating-point divide.

Operation Example Nanoseconds

Variable declaration int a

Assignment statement a = b

Integer comparison a < b

Array element access a[i]

Array length a.length

Array allocation new int[n]

string concatenation s+t

c1

c2

c3
c4

c5

c6n
c7n

Cost of Basic Operations

Constant time

Linear time

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 0) {
 count++;
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than

Equal to

Array access

Increment ton 2n
n
n

n + 1
2
2

Example: 1-SUM (# of 0s in array)

count & i
count & i
+1 is for loop exit
each element
a[i]
i++ and count++

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 if (a[i] + a[j] == 0) {
 count++;
 }
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton(n + 1)/2 n2

n(n − 1)
n(n − 1)/2

(n + 1)(n + 2)/2
n + 2
n + 2

Becoming too tedious to calculate!
(equal to, array access, increment:
exercise to the reader (answers next slide))

Example: 2-SUM

1 + 2 + 3 + . . . + n = n(n + 1)/2

2 -> count & i; n -> j
2 -> count & i; n -> j

Inner loop operations
when i=0, we do n comparisons with j
when i=1, we do n-1 comparisons with j
when i=2, we do n-2 comparisons with j
…
when i=n-1, we do 1 comparison with j

outer: n+1 (from i<n)
inner: n(n+1)/2 (from j<n)
adding these and doing factoring,
 we get (n+1)(n+2)/2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 if (a[i] + a[j] == 0) {
 count++;
 }
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton(n + 1)/2 n2

n(n − 1)
n(n − 1)/2

(n + 1)(n + 2)/2
n + 2
n + 2

Example: 2-SUM

0 + 1 + . . . + (n − 1) = (n − 1)(n − 1 + 1)/2 = n(n − 1)/2

Equals operations
when i=0, we do n-1 operations
when i=1, we do n-2
when i=2, we do n-3
…
when i=n-1, we do 0

Array access operations
when i=0, we do 2(n-1) operations
when i=1, we do 2(n-2)
when i=2, we do 2(n-3)
…
when i=n-1, we do 0

2(0 + 1 + . . . + (n − 1)) = n(n − 1)

Increment operations
outer loop -> n increments for i
inner loop -> n(n-1)/2 for j
count -> min: 0, max: n(n-1)/2
for the max count case,

n(n + 1)/2 + n(n − 1)/2 = n2 .

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Estimate running time (or memory) as a function of input size .

• Ignore lower order terms.

• When is large, lower order terms become negligible.

• Example 1: ~

• Example 2: ~

• Example 3: ~

n

n

1
6

n3 + 10n + 100 n3

1
6

n3 + 100n2 + 47 n3

1
6

n3 + 100n
2
3 +

1/2
n

n3

Tilde Notation Recall: you learned this in 51P

• Cost model: Use some basic operation as proxy for running time. E.g., array
accesses, which is the most expensive operation

• Combine it with tilde notation.

• ~ is the dominant (largest) term for the 2-SUM problemn2

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~

Equal to ~

Array access ~

Increment to ~
n(n − 1)

n + 2
n + 2

n2
n2
n2
n2
n
n

n2

Simplification

n(n + 1)/2

n(n − 1)/2
(n + 1)(n + 2)/2

• Ignore lower order terms.

• Ignore any coefficients.

• Convert dominant term in tilde notation table to worst case run-time.

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~

Equal to ~

Array access ~

Increment to ~
n(n − 1)

n + 2
n + 2

n2
n2
n2
n2
n
n

n2

Simplification Summary

n(n + 1)/2

n(n − 1)/2
(n + 1)(n + 2)/2

Average-case Runtime ∈ Θ(N^2)

Order of growth
classification

Types of analysis
• Best case: lower bound on cost (Omega, Ω)

• What the goal of all inputs should be.

• Often not realistic, only applies to “easiest” input.

• Worst case: upper bound on cost (Big O, O)

• Guarantee on all inputs.

• Calculated based on the “hardest” input.

• Average case: expected cost for random input (Theta, Θ)

• A way to predict performance.

• The “tightest” bound.

• Not straightforward how we model random input.

• Definition: If ~ for some constant , then the order of growth of is
.

• Ignore leading coefficients.

• Ignore lower-order terms.

• We will be using the big-O (O) notation. For example:

•

•

•

• Yes, , but that’s a rather useless bound.

f(n) cg(n) c > 0 f(n)
g(n)

3n3 + 2n + 7 = O(n3)

2n + n2 = O(2n)

1000 = O(1)

3n3 + 2n + 7 = O(n6)

Worst case analysis

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Use the Big O notation to simplify the following quantities:

• a.

• b.

• c.

• d.

• e.

• f.

n + 1

1 +
1
n

(1 +
1
n

)(1 +
2
n

)

2n3 − 15n2 + n

log(2n)
log(n)

log(n2 + 1)
log(n)

Need an algebra refresher? Check out the cheat
sheet on the class homepage

From 1.4.5 of our recommended textbook

https://algs4.cs.princeton.edu/14analysis/

Worksheet time!

https://algs4.cs.princeton.edu/14analysis/

• Use the Big O notation to simplify the following quantities:

• a. ~

• b. ~

• c. ~ O(1)

• d. ~

• e. ~ ~ O(1)

• f. ~ ~ ~ 2 ~ O(1)

n + 1 O(n)

1 +
1
n

O(1)

(1 +
1
n

)(1 +
2
n

)

2n3 − 15n2 + n O(n3)
log(2n)
log(n)

log(n)
log(n)

log(n2 + 1)
log(n)

log(n2)
log(n)

2 log(n)
log(n)

Worksheet answers

https://www.bigocheatsheet.com/

From slowest growing to fastest growing
 < < < < < < < 1 log n n n log n n2 n3 2n n!

https://www.bigocheatsheet.com/
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.
• : constant

• Doubling the input size won’t affect the running time. Holy-grail.
• : logarithmic

• Doubling the input size will increase the running time by a constant.
• : linear

• Doubling the input size will result to double the running time.
• : linearithmic

• Doubling the input size will result to a bit longer than double the running time.
• : quadratic

• Doubling the input size will result to four times as much running time.
• : cubic

• Doubling the input size will result to eight times as much running time.
• : exponential

• When you increase the input by some constant amount, the running time doubles.
• : factorial

• When you increase the input, the running time grows proportional to the factorial of the input size.

1

log n

n

n log n

n2

n3

2n

n!

Common order of growth classifications

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Order-of-growth Name Example code

Constant a[i]=b+c

Logarithmic while(n>1){n=n/2;…} ~

Linear for(int i=0; i<n; i++)

Linearithmic

for (i = 1; i <= n; i++){
int x = n;

 while (x > 0)
 x -= i;

 }

~

Quadratic
for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){

Cubic
for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){  
 for(int k=0; k<n; k++){

T(n)/T(n/2)

1

log n

n

n log n

n2

n3

1

1

2

2

4

8

Common order of growth classifications
This column is the doubling hypothesis:
we’ll explore more in a future lab

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Harmonic sum: ~

• Infinite geometric series: ~

• Geometric sum: ~ (n needs to be a power of 2)

• Triangular sum: ~

• Binomial coefficients: ~ when k is a small constant.

• You don’t need to memorize approximations; it’s fine to Google them or use a tool
like Wolfram alpha.

• Look at our math review handout!

1 + 1/2 + 1/3 + . . . + 1/n ln n

n + n/2 + n/4 + . . . + 1 = 2n − 1 n

1 + 2 + 4 + 8 + . . . + n = 2n − 1 n

1 + 2 + 3 + . . . + n n2

(n
k) nk

k!

Useful approximations

Big-Theta: Formal Definition (Visualization)

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.

i.e. very large N
Example: 4N2+N ∈ Θ(N2)

● R(N) = 4N2+N
● f(N) = N2

● k1 = 3
● k2 = 5

http://datastructur.es/sp18/materials/demos/asymptotics.html?rN=4*N%5E2+40*sin(N)&fN=N%5E2&k1=3&k2=5&maxN=15&maxY=1000

Big O and Big Omega and Big Theta
Whereas Big Theta can informally be thought of as something like “equals”,
Big O can be thought of as “less than or equal” and Big Omega can be
thought of as "greater than or equal"

The following are all true:

• N3 + 3N4 ∈ Θ(N4)

• N3 + 3N4 ∈ O(N4)

• N3 + 3N4 ∈ O(N6)

• N3 + 3N4 ∈ O(NN!)

• N3 + 3N4 ∈ Ω(N4)

• N3 + 3N4 ∈ Ω(N2)

• N3 + 3N4 ∈ Ω(1)

Big-Theta: Formal Definition

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.

i.e. very large N

Big-O: Formal Definition

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.

i.e. very large N

Big-Omega: Formal Definition

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.

i.e. very large N

Summary
Informal meaning: Family Family Members

Big Theta

Θ(f(N))
Order of growth is

f(N).
Θ(N2) N2/2

2N2

N2 + 38N + N

Big O

O(f(N))
Order of growth is
less than or equal

to f(N).

O(N2) N2/2
2N2
lg(N)

Big Omega

Ω(f(N))
Order of growth is

greater than or
equal to f(N).

Ω(N2) N2/2
2N2
NN!

Worksheet time!

Worksheet answers

• Θ(n)

• inner loop runs for n+n/
2+n/4+...+1~ 2n ~ Θ(n)
(geometric series)

• Θ(n^3)
• three nested loops, constant time

work in inner most loop
• outer loop: n times
• 2nd loop: n-i times
• 3rd loop: n-j times

Amortized Analysis (via
ArrayLists)

Recall: add()

Constant time operation (checking equality of 2 variables)

Constant time operations (variable
assignment, accessing array, incrementing)

????

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Recall: resize()

O(n) iterating through the array

O(n) run time to create a new empty Array

O(1) assigning a pointer

Worst-case performance of add() is O(n)
• Cost model: 1 for insertion, for copying items to a new array.

• Worst-case: If ArrayList is full, add() will need to call resize to create a new
array of double the size, copy all items, insert new one.

• Add is usually a constant time operation, unless we call resize, which takes O(n).

• Total cost: .

• Realistically, this won’t be happening often and worst-case analysis can be too
strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)
resize() insertion

Amortized analysis
• Amortized cost per operation: for a sequence of operations, it is the total cost

of operations divided by .

• Think of withdrawing money from your bank account, but then slowly spending
the money bit by bit…even though you took out $100 at once, maybe you on
average only spent $1 a day

• Same thing with add(): We do a very expensive operation one time (resize),
which opens up more space in the Array so we may subsequently do a bunch
of cheap constant time operations

n
n

Amortized analysis for add() operationsn

• As the ArrayList increases, doubling happens half as often but costs twice as much.

• total cost)= (“cost of insertions”) + (“cost of copying”)

• (“cost of insertions”) .

• (“cost of copying”) = .

• total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . . + 2log2 n−1 ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O+(1)

We’ll see this more in a
future lab

Lecture 5 wrap-up
• Today is the last day to make up Quiz 1. Come to OH right after class!! (You have 1

dropped quiz)

• Part I of Darwin (Species & World) released; more in lab

• Please read lab before coming to lab (Git)

Resources
• Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

• History of Algorithmic Analysis: https://cs.pomona.edu/classes/cs62/history/bigO/

• More practice problems on class website

• More practice problems behind this slide (do the first one to prepare for the quiz
tonight :))

• Exercise to the reader: what is the run time of other methods in ArrayList?

https://algs4.cs.princeton.edu/14analysis/
https://cs.pomona.edu/classes/cs62/history/bigO/

Last time review
• Interfaces are blueprints that say what methods a class that implements the

interface should specify.

• Generics are “type placeholders” for when we want to ensure all the objects
are of the same type, but we don’t know what that type is until run time.

• ArrayLists are a special data structure that are resizable arrays. We implement
them using arrays, but doubling their size when full, or halving their size when
1/4 full.

Last week review problem

Step 0: Do you understand the code?

Step 1: Please draw the underlying ArrayList every time
showInventory() is called.

This new syntax <E extends Storable> means the generic <E>
has to implement Storable (so we know we can call getName)

Last week review problem answers

Product
name: laptop
price: 1999.99

Product
name: shirt
price: 24.99

Product
name: laptop
price: 1999.99

Product
name: shirt
price: 24.99

Product
name: headphones
price: 50.00Product

name: shirt
price: 24.99

Product
name: headphones
price: 50.00

Order of Growth Exercise
Consider the functions below.

• Informally, what is the “shape” of each function for very large N?
• In other words, what is the order of growth of each function?

function order of growth

N3 + 3N4

1/N + N3

1/N + 5

NeN + N

40 sin(N) + 4N2

Order of Growth Exercise
Consider the functions below.

• Informally, what is the “shape” of each function for very large N?
• In other words, what is the order of growth of each function?

function order of growth

N3 + 3N4 N4

1/N + N3 N3

1/N + 5 1

NeN + N NeN

40 sin(N) + 4N2 N2

• In “Big-Theta” notation we write this as
R(N) ∈ Θ(f(N)).

• Examples:
• N3 + 3N4 ∈ Θ(N4)
• 1/N + N3 ∈ Θ(N3)
• 1/N + 5 ∈ Θ(1)
• NeN + N ∈ Θ(NeN)
• 40 sin(N) + 4N2 ∈ Θ(N2)

