CS62 Class 5: Algorithmic Analysis

Big-O Complexity Chart

Basic Data Structures

Fareiote) e

Operations

Elements

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Lecture 5 agenda

» (from last time) Finishing up ArrayLists
* Mathematical models of running time
» Order of growth classification
» Big O (worst case), theta (average case), omega (best case)

* Amortized Analysis (via ArrayLists)

Removing (and returning) the last element

/ k%
* Removes and returns the element from the elementnd of the ArraylList.
X
* @return the removed E
*x @pre size>0
x/
public E remove() { Checking pre-condition
if (isEmpty()){
throw new NoSuchElementException("The list is empty");

}.

size——; Remember our invariant that the last element is going to be at size - 1
E element = datalsizel;

datalsize] null;

// Shrink to save space if possible
if (size > 0 && size == data.length / 4){ Q: Why size == data.length / 4? Why not size <=

resize(data.length / 2); data.length / 47
}
A: Because we can only remove one element at a
return element; time, so it's guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArraylList

/ X%k
* Clears the ArraylList of all elements.

*/ | . Note that we don’t need to call remove()
public void clear() { many times - let’s avoid unnecessary
computation.

// Help garbage collector.
for (int i = 0; i < size; i++){

datali] = null; lterate through the underlying Array and set
I everything to null - prevent “loitering”

size = 0; Update size

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArraylLists vs Vectors

Collection Interface

<<interface>>

Collection

<<interface>> <<interface>>
Set ' Queue

LinkedHashSet <<|n-t erface>> .
Navigable S et | — * 1IN |p|e| nents
A

— ., extends

* Honestly, in the real world, not many people use ArraylLists. They prefer Vectors
(e.g., most Leetcode problems in Java will use Vectors as “lists")

» Vectors are slower, but synchronized, so they are memory safe.

.push(), .pop() methods...we won't learn them in this class, but telling you so
you're familiar in case they show up!

ArraylList in Java Collections

» Resizable list that increases by 50% when full and does NOT shrink.

* Not thread-safe (more in CS5105).
java.util.ArraylList;

public class ArraylList<E> extends AbstractlList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Vector in Java Collections

* Java has one more class for resizable arrays.
* Doubles when full.

* |s synchronized (more in CS105).
java.util.Vector;

public class Vector<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Mathematical models of
running time

Code efficiency

* Efficiency comes in two flavors:
* Programming cost.
* How long does it take to develop your programs?
* How easy is it to read, modify, and maintain your code?
* More important than you might think!
* Majority of cost is in maintenance, not development!
* Execution cost (today).
* How much time does your program take to execute?

* How much memory does your program require?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

What affects execution cost?

* System independent effects: Algorithm + input data

* System dependent effects: Hardware (e.g., CPU, memory, cache) + Software (e.g.,
compiler, garbage collector) + System (E.g., operating system, network, etc).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

e

D ONALD E. KNUTH

e ——
s Ty .
Z ‘h((_{_ ter _— COomns-
n.t‘ll?.(’[lll \]k‘ﬂ‘.',[lu_‘ i 2 A A } J | -
= % . Dy
= }t‘l.nn‘(& 1 1()()1': < 2
% N gy 8rammjn,

Popularized by Donald Knuth in the 60s in the four volumes
of “The Art of Computer Programming”.

* Knuth won the Turing Award (The “Nobel” in CS) in 1974.
(Read more in this week’s textbook chapter! https://cs.pomona.edu/classes/cs62/
history/bigQ)

In principle, accurate mathematical models for performance of algorithms are available.

Total running time = sum of cost x frequency for all operations.
Need to analyze program to determine the basic set of operations.
Exact cost depends on the machine & compiler.

Frequency depends on the algorithm & input data.

https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://cs.pomona.edu/classes/cs62/history/bigO
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Cost of Basic Operations

* Add < integer multiply < integer divide < floating-point add < floating-point
multiply < floating-point divide.

Operation Example Nanoseconds
Variable declaration int a €l o
Assignment statement a = b €2
Integer comparison a < b C1 Constant time
Array element access ali] Cy
Array length a.length C5 o
Array allocation new int[n] Cell - | |
Linear time
string concatenation s+t c-n _

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Example: 1-SUM (# of Os in array)

* How many operations as a function of »n?

1ht count = 0;
for (int 1 =0; 1 < n; 1++) {

1f Cali] == 0) {

¥

count++;
Operation Frequency
Variable declaration 2
Assignment 2
Less than n+ 1
Equal to n
Array access n

Increment

n to 2n

count &I
count &I

+1 is for loop exit
each element

all]

I++ and count++

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Example: 2-SUM

* How many operations as a function of »n?

1nht count = 0Q;

Inner loop operations
when i=0, we do n comparisons with |

when i=1, we do n-1 comparisons with |
when i=2, we do n-2 comparisons with |

when i=n-1, we do 1 comparison with |

l14+24+3+...+n=nn+1)/2

for (int 1 =0; 1 < n; 1++) {
for (int 7 = 1+1; J < n; J++) {
it (ali] + alj] == 0) {
CoUNTH+; Becoming too tedious to calculate!
} (equal to, array access, increment: |
1 exercise to the reader (answers next slide))
} Operation Frequency
outer: n+1 (from i<n) Variable declaration n-+ 2 2->count &i; n-> |
inner: n(n+1)/2 (from j<n) Assignment) 2 > count &i; n ->]
adding these and doing factoring,
B » (n+ D(n +2)/2
Equal to nn—1)/2
Array access n(n — 1)

Increment

nn+1)/2 t p?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Equals operations
when i1=0, we do n-1 operations
when i=1, we do n-2
when i=2, we do n-3

Example: 2-SUM

* How many operations as a function of »n?

when i=n-1, we do 0

int count = @; O+1+...+n—-1D)=m—-1)n-1+1/2=nn-1)/2

for (int 1 = Q; L . < I, .1++> 1 . Array access operations
for (1nt] = 'I.+1;] < n, j++) { when i=0, we do 2(n-1) operations
1f (a[-i_] + Cl[]] —— @) { when i=1, we do 2(n-2)
. when i=2, we do 2(n-3)
count++;
} when i=n-1, we do 0
¥ 20+ 1+...4+(n—1) =n(n-1)
Operation Frequency .
. . Increment operations
Variable declaration n+2 outer loop -> n increments for |
Assignment n+?2 inner loop -> n(n-1)/2 for |
Less than nm+ DH(n+2)/2 count -> min: 0, max: n(n-1)/2
for the max count case,
Equal to nn—1)/2

nn—1) n(n+ 1)/2+nn - 1)/2 =n?.

Array access
Increment nm+1)/2 tw 52

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Tilde Notation

* Estimate running time (or memory) as a function of input size n.

Recall: you learned this in 51P

* lgnore lower order terms.

* Whennis large, lower order terms become negligible.

1
. Example 1: En3 + 10n + 100 ~n’
1 3 2 3
- Example 2: " + 100n~ + 47 ~n
1 1/2
. Example 3: gn3 + 10077 A ~ 13
n

Simplification

* Cost model: Use some basic operation as proxy for running time. E.g., array
accesses, which is the most expensive operation

* Combine it with tilde notation.

* ~n?is the dominant (largest) term for the 2-SUM problem

Operation Frequency Tilde notation
Variable declaration n+2 ~Nn
Assignment n+ 2 ~ N
Less than (n+1Dn+2)/2 - n?
Equal to nin—1)/2 ~ 12
Array access nn—1) ~ n;

Increment nn+1)/2 +to n’ ~Nn

Simplification Summary

* lgnore lower order terms.
* lgnore any coefficients.

* Convert dominant term in tilde notation table to worst case run-time.

Average-case Runtime € O(NA2)

Operation Frequency Tilde notation
Variable declaration n+2 ~Nn
Assignment n+ 2 ~ N
Less than (n+1Dn+2)/2 - n?
Equal to nin—1)/2 ~ 12
Array access nn—1) ~ n;

Increment nn+1)/2 +to n’ ~Nn

Order of growth
classification

Types of analysis

. . lower bound on cost (Omega, Q)
» What the goal of all inputs should be.
» Often not realistic, only applies to “easiest” input.
. . upper bound on cost (Big O, O)
* GQuarantee on all inputs.
 Calculated based on the “hardest” input.
. . expected cost for random input (Theta, O)
* A way to predict performance.
» The “tightest” bound.

» Not straightforward how we model random input.

Worst case analysis

* Definition: If f(n) ~ cg(n) for some constant ¢ > 0, then the order of growth of f(n) is
g(n).

* Ignore leading coefficients.

* Ignore lower-order terms.

* We will be using the big-O (O) notation. For example:
* 30’ +2n+7=00n)
* 2"+ n*=0Q2"
* 1000 = O(1)

* Yes, 3n® + 2n + 7 = O(n®), but that's a rather useless bound.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

» Use the Big O notation to simplify the following quantities:

 a.n+1

1
o b.1+_

n

1 2
 CC.(I+—)(T+—)
n n

» d.2n° —15n°+n
log(2n)
log(n)
lc)g(n2 + 1)
log(n)

Need an algebra refresher? Check out the cheat
sheet on the class homepage

. €.

From 1.4.5 of our recommended textbook

. T.

https://algs4.cs.princeton.edu/14analysis/

https://algs4.cs.princeton.edu/14analysis/

Worksheet answers

» Use the Big O notation to simplify the following quantities:

c a.n+1 ~ 0(n)
1

. Db. 14— ~ 0(1)
n
1 2

. C.(14+—)1+—) ~ O(1)
n n

» d.2n’ = 15n% +n ~ 0(n°)

e log(2n) N log(n) - 0(1)

log(n) log(n)
log(n*+1) log(n®) 2log(n)

log(n) log(n) log(n)

. T.

~ 2~ 0O(1)

From slowest growing to fastest growing

1 <logn<n<nlogn<n?<n’<2"<p
Big-O Complexity Chart

Forrioe] e o | o] ERGTIERE

Operations

Elements

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Common order of growth classifications

Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.
1. constant
* Doubling the input size won't affect the running time. Holy-grail.
log n: logarithmic
* Doubling the input size will increase the running time by a constant.
n:linear
* Doubling the input size will result to double the running time.
nlogn : linearithmic
* Doubling the input size will result to a bit longer than double the running time.

n*: quadratic

* Doubling the input size will result to four times as much running time.
n>: cubic
* Doubling the input size will result to eight times as much running time.
2" exponential
* When you increase the input by some constant amount, the running time doubles.
n!: factorial
* When you increase the input, the running time grows proportional to the factorial of the input size.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Common order of growth classifications

This column is the doubling hypothesis:
we'll explore more in a future lab

Order-of-growth Name Example code T(n)/T(n/2)
1 : 1
Constant al[1]=b+c
logn Logarithmic while(n>1){n=n/2;..} ~ 1
n Linear for(int 1=0; 1<n; 1++) 2

for (1 = 1; i <= n; i++){
int X = n;

nlogn Linearithmic while (x > 0 ~ 2
} - b)
for(int 1=0; i<n; i++) { 4

, :
- Quadratic 'FOI"C'i.nt J=®a j<n; j++)'{

for(int 1=0; 1<n; 1++) {
n Cubic for(int j=0; j<n; j++){ 8
for(int k=0; k<n; k++){

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Useful approximations

* Harmonicsum: 1+ 1/2+1/3+ ...+ 1/n ~ Inn
* Infinite geometricseriesin+n/2+n/4+...+1=2n-1 ~ n
* Geometricsum: 14+24+4+8+...+n=2n-1 ~ n(n needs to be a power of 2)
* Triangular sum:1+2+3+...+n ~ n?
k
. Binomial coefficients: (k) ~ F when k is a small constant.

* You don’t need to memorize approximations; it's fine to Google them or use a tool
like Wolfram alpha.

* Look at our math review handout!

Big-Theta: Formal Definition (Visualization)
R(N) € ©(f(N))

means there exist positive constants k; and k, such that:
k- [(N) < R(N) < ky- f(N)

for all values of N greater than some NO.

<4 .
——— j.e.verylarge N

Example: 4N2+N e O(N2)

R(N) = 4N2+N
f(N) = N2

k1 =3

k2 =5

http://datastructur.es/sp18/materials/demos/asymptotics.html?rN=4*N%5E2+40*sin(N)&fN=N%5E2&k1=3&k2=5&maxN=15&maxY=1000

Big O and Big Omega and Big Theta

Whereas Big Theta can informally be thought of as something like “equals”,
Big O can be thought of as “less than or equal” and Big Omega can be
thought of as "greater than or equal”

The following are all true:
* N3+ 3N4e O(N4)

* N3+ 3N4e O(N4)

* N3+ 3N4 e O(N®)

* N3+ 3N4e O(NN)

* N3+ 3N4e Q(N4)

* N3+ 3N4e Q(N2)

* N3+ 3N4e Q1)

Big-Theta: Formal Definition
R(N) € ©(f(N))

means there exist positive constants k; and k, such that:

ki f(N) < R(N) < ky- f(IV)

for all values of N greater than some Nq,.

< .
——— i.e.verylarge N

Big-0: Formal Definition
R(N) € O(f(N))
means there exist positive constants k; and k, such that:

R(N) < ky- f(N)

for all values of N greater than some Nq,.

< .
——— j.e.verylarge N

Big-Omega: Formal Definition
R(N) € Q(f(N))
means there exist positive constants k; and k, such that:
ki - [(N) < R(N)

for all values of N greater than some Nq,.

< .
——— j.e.verylarge N

Summary

Informal meaning: Family Family Members

Big Theta Order of growth is O(N2) N2/2
2

O(f(N)) FN) RN
Big O Order of growth is O(N2) N2/2
O(f(N)) less than or equal 2N-2
to f(N). g(N)
Big Omega Order of growth is Q(N2) N2/2
Q(f(N)) greater than or 2N
equal to f(N). NN

Worksheet time!

Give the order of growth of the running time for the following code fragments as a function
of n:

1nt count = @3
for (int 1. = 0; 1 < n; i++) {
for (int 7 = 1+1; J < n; j++) {

for Cint k = j+1; k < nj k++) { int sum = 0;

if Ca[i] + a[i] + a[k] == @) { for (int k=n; k>0: k/=2){
} count+s; for (int i=0; i<k; i++){
} SUM++;
I }

Worksheet answers

Give the order of growth of the running time for the following code fragments as a function

of n:

1nt count = @
for (int 1 = 0; 1 < n; i++) {

for (int j =Mi+1; 7 < n; J++) {
for (int k = J+1; k < n; k++) {
1f (a[i] + a[j] + a[k] == @) {

count++,
¥
}

} * O(nA3)

* three nested loops, constant time
work in inner most loop

* outer loop: n times
* 2nd loop: n-i times
* 3rd loop: n-j times

int sum = 0;
for (int k=n; k>0; k/=2){
for (int i=0; i<k; i++){
Sum++;

}
} ¢ G)(n)

* inner loop runs for n+n/
2+n/4+..+1~ 2n ~ O(N)
(geometric series)

Amortized Analysis (via
ArraylLists)

Recall: add()

/ k3%

*x Appends the element to the end of the ArrayList. Doubles its capacity if
X necessary.

X

* @param element the element to be inserted

x/

public void add(E element) {

VAAAAANAN

ol

if (size == data.length){ Constanttime operation (checking equality of 2 variables)
resize(2 x data.length); 2777

Constant time operations (variable
assignment, accessing array, incrementing)

datalsize] = element;
size++:

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Recall: resize()

/ Kk
* Resizes the ArrayList's capacity to the specified capacity.
*/
@SuppressWarnings("unchecked")
private void resize(int capacity) {
//reserve a new temporary array of Es with the provided
capacity
E[] temp = (E[]) new Objectlcapacityl; O(n)run time to create a new empty Array

//copy all elements from old array (data) to temp array
for (int i = 0; 1 < size; i++){

AAAAAAA
W NN

temp[i] = datalil; O(n) iterating through the array

//point data to the new temp array

data = temp; O(1) assigning a pointer

Worst-case performance of add() is O(n)

‘ . 1 for insertion, n for copying n items to a new array.

y . If ArrayList is full, add() will need to call resize to create a new
array of double the size, copy all items, insert new one.

* Add is usually a constant time operation, unless we call resize, which takes O(n).

* Total cost: n+1 = 0O®0n).
resize() Insertion

* Realistically, this won't be happening often and worst-case analysis can be too
strict. We will use instead.

Amortized analysis

. for a sequence of n operations, it is the total cost
of operations divided by n.

Think of withdrawing money from your bank account, but then slowly spending
the money bit by bit...even though you took out $100 at once, maybe you on

average only spent $1 a day

Same thing with add(): We do a very expensive operation one time (resize),
which opens up more space in the Array so we may subsequently do a bunch

of cheap constant time operations

Amortized analysis for n add() operations

0 1 2 3 4 5 6 7/ 8 9 10 11 12 13 14 15 16
I ti
Cost
Copying
Total
Cost 1 5 1 1 1 9 1 1 1 1 1 1 1 17

° As the ArrayList increases, doubling happens half as often but costs twice as much.

O(total cost)= Z("cost of insertions”) + 2("cost of copying”)

' Z("cost of insertions”) = . We'll see this more in

. uture lab
¥ Z("cost of copying”) = 1+2+2°+... 42" 1 <2p, J

M M 3n i1 1]
O(total cost) < 3n, therefore amortized costis <— =3 =07%(1), but “lumpy”.
n

Lecture 5 wrap-up

* Today is the last day to make up Quiz 1. Come to OH right after class!! (You have 1
dropped quiz)

» Part | of Darwin (Species & World) released; more in lab

* Please read lab before coming to lab (Git)

Resources

* Analysis of Algorithms:
» History of Algorithmic Analysis:
* More practice problems on class website

* More practice problems behind this slide (do the first one to prepare for the quiz
tonight 1))

» Exercise to the reader: what is the run time of other methods in ArrayList?

https://algs4.cs.princeton.edu/14analysis/
https://cs.pomona.edu/classes/cs62/history/bigO/

Last time review

* Interfaces are blueprints that say what methods a class that implements the
interface should specity.

* Generics are “type placeholders” for when we want to ensure all the objects
are of the same type, but we don't know what that type is until run time.

* Arraylists are a special data structure that are resizable arrays. We implement
them using arrays, but doubling their size when full, or halving their size when

1/4 tull.

O 00O JNOO U & WIN =

= =
W N R e

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

import java.util.ArraylList;

interface Storable {
String getNamel();

double getPricel();

}

Last week review problem

This new syntax <E extends Storable> means the generic <E>

has to implement Storable (so we know we can call getName)

class Product implements Storable {

private String name;

private double price;

public Product(String name, double price){
this.name = name;
this.price = price;

}

public String getName(){return name;}
public double getPrice(){return pri

e;}

class Inventory<E extends Storable> {
private ArraylList<E> items = new ArraylList<>();

public void addItem(E item) {
items.add(item);

}

public void removeltem(E item) {
items.remove(item);

}

public void showInventory() {
System.out.println("Inventory contains:");
for (E item : items) {

}

System.out.println("- " + item.getName());

36 public class ReviewProblem {

37
38
39
40
41
42
43
44
45
46
47
48

}

Run main | Debug main | Run | Debug
public static void main(String[] args) {

Inventory<Product> warehouse = new Inventory<>();
Product laptop = new Product("laptop", 1999.99);
warehouse.addItem(laptop);

warehouse.addItem(new Product("shirt", 24.99));
warehouse.showInventory();

warehouse.addItem(new Product("headphones", 50.00));
warehouse.showInventory();

warehouse. removeItem(laptop);
warehouse.showInventory();

Step 0: Do you understand the code?

Step 1: Please draw the underlying ArrayList every time
showlnventory() is called.

Last week review problem answers

36 public class ReviewProblem { / ‘ \

Run main | Debug main | Run | Debug / \
37 public static void main(String[] args) {
38 Inventory<Product> warehouse = new Inventory<>();
39 Product laptop = new Product('"laptop", 1999.99); Product Product
40 warehouse.addItem(laptop); name: laptop name: shirt
41 warehouse.addItem(new Product("shirt", 24.99)); R orice: 1999.99 orice: 24.99
42 warehouse.showInventory();
43 warehouse.addItem(new Product("headphones", 50.00));
44 warehouse.showInventory();
45 warehouse.removeItem(1apt0p;:\\\‘\\\‘\“““--~\“\§*
46 warehouse. showInventory(); ‘ ‘ ‘
47 } ' / \ AN
48 } ‘ ‘ / \ \
/ \
/ \ Product Product Product
name: laptop name: shirt name: headphones
Product Product price: 1999.99 price: 24.99 price: 50.00
name: shirt name: headphones

price: 24.99 orice: 50.00

Order of Growth Exercise

Consider the functions below.

* Informally, what is the “shape” of each function for very large N?
* In other words, what is the order of growth of each function?

function order of growth

N3+ 3N4

1/N + N3

1/N + 5

NeN+ N

40 sin(N) + 4Nz2

* Informally, what is the “shape” of each function for very large N?
* In other words, what is the order of growth of each function?

* |In “Big-Theta” notation we write this as

R(N) € O(f(N)).
» Examples:

N3+ 3N4 € O(N4)

1/N + N3 € O(N3)
1/N+5¢e0(1)

NeN+ N e O(NeN)

40 sin(N) + 4N2 € O(N?)

Order of Growth Exercise

Consider the functions below.

function order of growth
N3 + 3N4 N4

1/N + N3 N3

1/N+ 5 1

NeN+ N NeN

40 sin(N) + 4N2

N2

