
CS62 Class 4: Interfaces, Generics, ArrayLists
Basic Data Structures

from https://www.janbasktraining.com/blog/java-print-arraylist/

https://www.janbasktraining.com/blog/java-print-arraylist/

Lecture 4 agenda
• Data structures in general

• What are abstract data types?

• Interfaces

• Why do we care + history

• Generics

• ArrayLists behavior

• ArrayLists implementation

Data structures in general

Abstract data type
• Sometimes, you’ll hear specific data structures be

referred to as “abstract data types”. This is a
conceptual model where users know the behavior
of a data structure, but not exactly how it’s
implemented.

• How it’s implemented means where in memory
things are, what algorithms are used…

• For example, the idea of a “list” is an abstract data
type. We know we can add, remove, resize a list,
but how exactly that happens is not important.

• ArrayLists, Singly Linked Lists, Doubly Linked
Lists are not abstract: we have to implement
them.

• Basically, an abstract data type is the same thing
as an interface or API

Interfaces

Interfaces: managing abstraction
• An interface is a form of abstraction that is a contract of what a class must do.

As an abstraction, it does not say how a class should do it.

• In Java, an interface is a reference type (like a class), that contains abstract
methods and default methods.

• A class that implements an interface is obliged to implement its abstract
methods.

• Interfaces cannot be instantiated (no new keyword). They can only be implemented
by classes or extended by other interfaces.

Example

Methods in an interface are considered “abstract”. An
interface only includes method signatures. Classes
that implement the interface fill out the signatures.

note syntax—just ; no {}

All methods are implicitly public in an interface - no
need for “public” data access modifier

default method: need “default” keyword in beginning. A
default method has a body. Everything that implements
this interface can use this method.

Different from default (vs public/private) data access
modifier!

All students (Pomona, Scripps, etc) should be able to enroll in classes.

Pomona students have a different registration system than Scripps ones, so an interface helps
us specify what should happen, not how it happens—not the implementation detail.

Example

class PomonaStudent implements Enrollable{

…
 public void enrollInCourse(String course) {
 // implementation
 }

 public void withdrawFromCourse(String course) {
 // implementation
 }

 public void viewCourseSchedule() {
 // implementation
 }

class ScrippsStudent implements Enrollable{

…
 public void enrollInCourse(String course) {
 // implementation
 }

 public void withdrawFromCourse(String course) {
 // implementation
 }

 public void viewCourseSchedule() {
 // implementation
 }

Use the “implements” keyword to implement an interface from
a class.

Example
class FourthYearPomonaStudent extends PomonaStudent{

…
 public int getMaxCredits(){
 return 6;
 }
}

can override default methods of interfaces

Q: Why don’t we need “implements
Enrollable” for FourthYearPomonaStudent?

A: FourthYearPomonaStudent extends
PomonaStudent, which already implements
Enrollable

Interface rules
• A class can implement multiple interfaces.

• classA implements Interface1, Interface2{…}

• PomonaStudent implements Enrollable, Extracurriculars

• An interface can extend multiple interfaces.

• public interface GroupedInterface extends
Interface1,Interface2{…}

• public interface Extracurriculars extends AcademicClubs,
ClubSports

Remember: a class can only extend one class

Worksheet time!
• Do problem 1 a & b on your worksheet.

Worksheet answers
• Do problem 1 a & b on your worksheet.

Data structures history

Data structures history
• Lots of concepts in CS came

from math (trees, graphs)
and have been around for a
while

• The invention of many data
structures coinciding with
World War II is no
coincidence

• ArrayLists are not one of
these: they are a relatively
modern implementation
(1998), even though arrays
have been around since the
1940s

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

The Java Collections Framework

• Built in data structure classes that you may import
• We used it in the Silver Dollar lab. Today, we’ll write our own ArrayList

implementation.

https://www.geeksforgeeks.org/collections-in-java-2/

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.geeksforgeeks.org/collections-in-java-2/

Joshua Bloch: main Java Collections Framework
architect
• The person who made

ArrayLists isn’t some long
dead historic figure; he was an
engineer at Sun Microsystems
(the company that made Java)
but now teaches at CMU

• He’s currently pretty politically
active on BlueSky

My (liberal arts-y) wish for you: know history
• It’s one thing to know how data structures work

(most data structures courses)

• But it’s another to know when to appropriately and
ethically how to use them and understand their
history

• STS (science technology society) scholar Bruno
Latour calls this “opening the black box of science” -
a real person had to create everything we use in
this class to solve real problems, and understanding
this history gives you a deeper insight into how
technology is used by society (and how it can
encode bias, etc.)

• Hopefully, this knowledge will equip you for your
final project

See https://kevinl.info/do-abstractions-have-politics/

https://kevinl.info/do-abstractions-have-politics/

Thus, we have a history textbook!

https://cs.pomona.edu/classes/cs62/history/

• Last year, my RA Jing O’Brien
researched the history of data
structures. Read the pages to
supplement learning purely
“technical” material!

https://cs.pomona.edu/classes/cs62/history/

Why do we need data structures?
• To organize and store data so that we can perform efficient operations on them

based on our needs: imagine walking to an unorganized library and trying to find
your favorite title or books from your favorite author.

• We can define efficiency in different ways.

• Time: How fast can we perform certain operations on a data structure?

• Space: How much memory do we need to organize our data in a data structure?

• Affordances: How does this data structure bake in assumptions for how we should
think about the problem? What can we and can we not do with it?

• There is no data structure that fits all needs.

• That’s why we’re spending a semester looking at different data structures.

• So far, the only data structure we have encountered is arrays.

• The goal of this class is for you to understand trade offs between data structures, to
choose the appropriate data structure for the appropriate problem

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Types of operations on data structures
• Insertion: adding a new element in a data structure.
• Deletion: Removing (and possibly returning) an element.
• Searching: Searching for a specific data element.

• Replacement: Replacing an existing element with a new one (and possibly returning old).
• Traversal: Going through all the elements.
• Sorting: Sorting all elements in a specific way.
• Check if empty: Check if data structure contains any elements.

• Not a single data structure does all these things efficiently.
• You need to know both the kind of data you have, the different operations you will need

to perform on them, and any technical limitations to pick an appropriate data structure.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Linear vs non-linear data structures
• Linear: elements arranged in a linear sequence based on a specific order.

• E.g., Arrays, ArrayLists, linked lists, stacks, queues.

• Linear memory allocation: all elements are placed in a contiguous block of
memory. E.g., arrays and ArrayLists.

• Use of pointers/links: elements don’t need to be placed in contiguous blocks.
The linear relationship is formed through pointers. E.g., singly and doubly
linked lists.

• Non-linear: elements arranged in non-linear, mostly hierarchical relationship.

• E.g., trees and graphs.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Towards building our own linear data structures…

• Arrays in Java are OK, but they’re not resizable. Let’s define our own data
structure that supports adding elements, getting them at an index, removing
them, etc…

• As such, we will build an interface List that forces any data structure that
implements it to implement these operations.

• But what about types? We want our List interface to be able to hold objects of any
type.

Generics

Lists should support any type of element
• We want our data structure to support any type of elements, as long as they are

of the same type. We could use the class Object but this requires casting to the
desired type:

casting objects[0] to String, since it’s type
Object

but we might accidentally mix types! that’s not OK! but
you won’t get a compiler error

results in runtime error: ClassCastException

Why generics help
• Generics are type parameters which stand in for any possible type.

• Let’s say we want to create an interface that defines a new List data structure, but we
don’t know yet what type of object should be in the List. That’s where we can us a
generic type.

• Benefits:

• Type safety (can’t mix types in a list anymore)

• No explicit casting needed anymore

• Errors are caught at compile time instead of run time

public interface List <E> {
 void add(E element);
 void add(int index, E element);
 E get(int index);
 boolean isEmpty();
}

We use “<>” to denote generics in an interface
or class declaration

By convention, generics are E (element) or T
(type)

E stands in for int, String, PomonaStudent,
etc… it can be any type when you actually
create a new List object.

Generics example

public class ArrayList<E> implements List<E>{…}
• In the invocation, all occurrences of the formal type parameters are replaced by

the actual type argument
• ArrayList<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

ArrayLists Intro

2 big limitations of Arrays

• Fixed-size.

• Do not work well with generics (would have to cast every time).
• E[] myArray = (E[]) new Object[capacity];

• We want resizable arrays that support any type of object.
• We just fixed the any type problem with generics.
• Now we’ll see how to implement resizable arrays.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList (or dynamic/growable/resizable/mutable array)

• Dynamic linear data structure that is zero-indexed.

• Sequential data structure that requires consecutive memory cells (ArrayList[0] is
next to ArrayList[1] in memory)

• Implemented with an underlying array of a specific capacity.

• But the user does not see that!

CS062 ROCKS !

0 1 2 3 4 5 6 7

For example, an ArrayList of size 3 with elements {“CS62”, “ROCKS”, “!”}, is actually an
Array of size 8 with {“CS62”, “ROCKS”, “!”, null, null, null, null, null}.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList behavior demo

ArrayLists

CS062 ROCKS !

0 1 2 3 4 5 6 7

Capacity = 8

Size = 3

Remember, an ArrayList is implemented using Arrays

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

What should happen?

ArrayList<String> al = new ArrayList<String>();

ArrayList(): Constructs an ArrayList

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList(): Constructs an ArrayList

0 1

Capacity = 2

Size = 0

ArrayList<String> al = new ArrayList<String>();

What should happen?

al.add(“CS062”);

When we first make an ArrayList, it is with a size 2 Array.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062

0 1

Capacity = 2

Size = 1

al.add(“CS062”);

What should happen?

al.add(“ROCKS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062 ROCKS

0 1

Capacity = 2

Size = 2

al.add(“ROCKS”);

What should happen?

al.add(“!”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062 ROCKS

0 1

Capacity = 4

Size = 3

!

2 3

al.add(“!”);

- Double capacity since it’s full
and then add new element

What should happen?

al.add(1, “THROWS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int index, E element):Adds element at the specified
index

CS062 THRO
WS

0 1

Capacity = 4

Size = 4

ROCKS !

2 3

al.add(1, “THROWS”);

- Shift elements to the right

What should happen?

al.add(3, “?”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int index, E element):Adds element at the specified
index

CS062 THRO
WS

0 1

Capacity = 8

Size = 5

ROCKS ?

2 3

al.add(3, “?”);

!

4 5 6 7

- Double capacity since full
- Shift elements to the right

What should happen?

al.remove();

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

CS062 THRO
WS

0 1

Capacity = 8

Size = 4

ROCKS ?

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Removes and returns element from the end of
ArrayList

- Remove and Return last element

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

CS062 THRO
WS

0 1

Capacity = 8

Size = 3

ROCKS

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Removes and returns element from the end of
ArrayList

- Remove and Return last element

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove():Removes and returns element from the end of
ArrayList

CS062 THRO
WS

0 1

Capacity = 4

Size = 2

2 3

al.remove();

- Remove and return last element
- Halve capacity when 1/4 full

What should happen?

al.remove(0);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove(int index):Removes and returns element from
specified index

THRO
WS

0 1

Capacity = 2

Size = 1

al.remove(0);

- Remove element from index
- Shift elements to the left
- Halve capacity when 1/4th full

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Reminder: Interface List
List is an abstract data type.

ArrayLists (along with
SinglyLinkedLists,
DoublyLinkedLists) need to
implement these following
methods.

Standard Operations of ArrayList<E> class

• ArrayList(): Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

• ArrayList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

• isEmpty(): Returns true if the ArrayList contains no elements.

• size(): Returns the number of elements in the ArrayList.

• get(int index): Returns the element at the specified index.

• add(E element): Appends the element to the end of the ArrayList.

• add(int index, E element): Inserts the element at the specified index and shifts the element
currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

• E remove(): Removes and returns the element at the end of the ArrayList.

• E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

• E set(int index, E element): Replaces the element at the specified index with the specified
element and returns the olde element.

• clear(): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList Implementation

Our own implementation of ArrayLists

• We will implement the List interface.

• We will work with generics because we want ArrayLists to hold objects of any
singular type.

• We will use an underlying array and we will keep track of how many elements we
have in our ArrayList.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Instance variables & constructors

We have 2 instance variables: our data (in an
Array) and size (number of elements present)

With a no argument constructor, the default
capacity is 2. Our underlying implementation is
an Array of Objects.

With an argument, we just set the capacity to
the number passed in.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

isEmpty(), size()

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Getting an element at index i

@pre means preconditions that need to be
true for the method to work

Otherwise, we’ll thrown an exception.

Remember, data is just a plain old Java Array,
so we access elements by indexing into it.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Setting an element at index i, return replaced element

Adding to the end of the ArrayList

Where does the element go into the underlying Array? There’s no Array.append()…

initial array

What’s the relationship between where we should add and the variable size?

size = 0

add(6) size = 1

add(9) size = 2

add(-1) size = 3

A: The next item we want to add will go into position “size”.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList invariants

• The position of the next item to be inserted is always size.

• size is always the number of items in the ArrayList.

• The last item in the list is always in position size - 1.

Adding an element to the ArrayList

Assign element to index “size” (we know that
size will always be the last empty index)

Increment size

What are we missing?

Resizing if it gets too big.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizing ArrayList

• Resizing algorithm (plain text): If the Array gets full, create a new Array that’s
double the size. Copy all old elements into this new Array.

What could be better about how we’ve
organized our code?

Resizing is really its own method.
Let’s move it out of add.

Should it take any arguments?
If so, what?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizing ArrayList

Takes 1 argument - the new capacity

Calling resize in add means we should
double the capacity

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!
• Try writing adding an element at a specific index.

• void add(int i, E element) // inserting element at specific
index

Worksheet answer:
add with index

Removing (and returning) the last element

Checking pre-condition

Remember our invariant that the last element is going to be at size - 1

Q: Why size == data.length / 4? Why not size <=
data.length / 4?

A: Because we can only remove one element at a
time, so it’s guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArrayList

Iterate through the underlying Array and set
everything to null - prevent “loitering”

Update size

Note that we don’t need to call remove()
many times - let’s avoid unnecessary
computation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Lecture 4 wrap-up
• Abstract data types, often specified as interfaces, tell us what should happen but not how.

• An ArrayList is a re-sizable Array and implements the List<E> interface. “<E>” means it is a List of
generic E types.

• HW2: Flippycard due Tues 11:59pm

• Lab this week isn’t coding based, but on learning Git

• We may ditch Github classroom if problems persist

Resources
• Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

• ArrayLists: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Resizable arrays in our textbook: https://algs4.cs.princeton.edu/13stacks/

• History of ArrayLists (made just for you all!) https://cs.pomona.edu/classes/cs62/history/arraylists/

• More practice problems behind this slide

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://cs.pomona.edu/classes/cs62/history/arraylists/

Review: polymorphism

• What’s printed? Why?

• Why does .show() behave
differently from num?

• What keyword can be used to
access the value of num in the
parent class from the child class?

• How can we modify the code so we
can print out 20 for num in main(),
while keeping the type of obj as
Parent?

Review: polymorphism
• What’s printed? Why?

• 20, Child show() method

• Why does .show() behave differently from
num?

• .show() is overridden in the child class,
while num hides the parent value

• What keyword can be used to access the
value of num in the parent class from the
child class?

• super

• How can we modify the code so we can print
out 20 for num in main(), while keeping the
type of obj as Parent?

• create a getter (getNum()) so overriding
happens

• SUMMARY: instance methods get overridden,
but variables (and static methods) are hidden

Bonus problem
• Create an interface called Adoptable that contains four abstract methods: a
void requestAdoption(), boolean isAdopted(), void
completeAdoption(), and String makeHappyNoise().

• Have the class Animal implement the interface. You can provide some very
minimal implementation of the methods so that you don’t receive a compile-time
error.

• Override the makeHappyNoise() in the Cat and Dog subclasses.

Bonus answers

Bonus answers

Bonus problem
• Try writing removing an element at a specific index instead of the last element.

Pay attention to how it resembles the remove last element method, or add at a
specific index method.

• E remove(int i) // remove and return element at specific index

Bonus answer: remove with index

main difference from add at index - shift left instead of right

