CS62 Class 4: Interfaces, Generics, ArraylLists

Basic Data Structures

0 1 2 3 4 S 6 7 8 9

After Adding 7th element a new
ArraylList is created with capacity 20

DR || []

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

from https://www.janbasktraining.com/blog/java-print-arraylist/

https://www.janbasktraining.com/blog/java-print-arraylist/

Lecture 4 agenda

» Data structures in general
* What are abstract data types?
* Interfaces
* Why do we care + history
* Generics
* ArrayLists behavior

* ArraylLists implementation

Data structures in general

Abstract data type

» Sometimes, you'll hear specific data structures be
referred to as “abstract data types”. This is a

conceptual model where users know the behavior
of a data structure, but not exactly how it's
implemented.

» How it's implemented means where in memory
things are, what algorithms are used...

BY STR/FFPING
DOV AN IMAGE
TO ITS ESSENTIAL

MEANING,” AN ARTIST
CAN AATFL/IFEY THAT
MEANING IN A WAY
THAT REALISTIC

ART CAN'T.

WHEN WE
AESTRACT AN IMAGE
THROLGH CARJOON/NG,
WE'RE NOT SO MUCH
ELIVNINVATING DETAILS
AS WE ARE FOCLSING
ON $PECIFIC
DPETAILS

» For example, the idea of a “list” is an abstract data
type. We know we can add, remove, resize a list,
but how exactly that happens is not important.

» Arraylists, Singly Linked Lists, Doubly Linked
Lists are not abstract: we have to implement
them.

» Basically, an abstract data type is the same thing
as an interface or AP|

Interfaces

Interfaces: managing abstraction

An interface is a form of abstraction that is a contract of what a class must do.
As an abstraction, it does not say how a class should do it.

In Java, an interface is a reference type (like a class), that contains abstract
methods and default methods.

A class that implements an interface is obliged to implement its abstract
methods.

Interfaces cannot be instantiated (no new keyword). They can only be implemented
by classes or extended by other interfaces.

Example

All students (Pomona, Scripps, etc) should be able to enroll in classes.

Pomona students have a different registration system than Scripps ones, so an interface helps
us specify what should happen, not how it happens—not the implementation detail.

Methods in an interface are considered “abstract”. An

1 public interface Enrollable { interface only includes method signatures. Classes
2 void enrollInCourse(String course); that implement the interface fill out the signatures.
3 void withdrawFromCourse(String course);

4 void viewCourseSchedule(); note syntax—just; no {}

>

6 default int getMaxCredits(){ default method: need “default” keyword in beginning. A

7 return 4: default method has a body. Everything that implements

8) this interface can use this method.

Different from default (vs public/private) data access
modifier!

All methods are implicitly public in an interface - no
need for “public” data access modifier

Use the “implements” keyword to implement an interface from
Example Us™

class PomonaStudent implements Enrollable{ class ScrippsStudent implements Enrollable{

public void enrollInCourse(String course) { public void enrollInCourse(String course) {
// 1mplementation // 1mplementation

5 5

public void withdrawFromCourse(String course) { public void withdrawFromCourse(String course) {
// 1implementation // 1implementation

3 3

public void viewCourseSchedule() { public void viewCourseSchedule() {
// 1mplementation // 1mplementation

¥ ¥

Example

class FourthYearPomonaStudent extends PomonaStudent{

public int getMaxCredits(){

return 6; can override default methods of interfaces

¥

A: FourthYearPomonaStudent extends
PomonaStudent, which already implements
Enrollable

Q: Why don’t we need “implements

Enrollable” for FourthYearPomonaStudent?

Interface rules

A class can implement multiple interfaces.

 classA implements Interfacel, Interface2{..}

* PomonaStudent implements Enrollable, Extracurriculars
» An interface can extend multiple interfaces.

* public interface GroupedInterface extends
Interfacel,Interface2..}

* public 1interface Extracurriculars extends AcademicClubs,
ClubSports

Remember: a class can only extend one class

Worksheet time!

» Do problem 1 a & b on your worksheet.

interface Vehicle {

public void revEngine();

interface Noisemaker {

public void makeNoise();

+

public class CatBuS oo o o o e e {
@0verride
____________________________________ { /* CatBus revs engine, code not shown */ }
@0verride

____________________________________ { /* CatBus makes noise, code not shown */ }
/*%* Allows CatBus to make noise at other CatBuses. */
public void conversation(CatBus target) {
makeNoise() ;
target.makeNoise();

Worksheet answers

* Do problem 1 a & b on your worksheet.

interface Vehicle {

public void revEngine();
} We can change the method signature so that the type of the parameter target is Noisemaker (both CatBus

and Goose implement Noisemaker:

interface Noisemaker < /*¥¥ Allows CatBus to make noise at other both CatBuses and Gooses. */
public void makeNoise(); public void conversation(Noisemaker target) {
} makeNoise ()
target.makeNoise();
public class CatBus implements Vehicle, Noisemaker { }
@O0verride

public void revEngine() {
// CatBus revs its engine, implementation not shown

@0verride
public void makeNoise() {

// CatBus makes noise, implementation not shown

/*% Allows CatBus to make noise at other CatBuses. */

public void conversation(CatBus target) {
makeNoise () ;

target .makeNoise();

Data structures history

Data structures history

BRIEF & INCOMPLETE HISTORY OF DATA STRUCTURES

Hash table
Stack operations (IBM) Binary Search Trees
Alan M. Turing I
Linked List Heapsort Computer aided proof of

(Rand Corporation) gr aph pr oblem

More array i ;
sorting research Bubble Sort” becomes

mainstream

Arrays implemented by Computers, Array sorting

Mergesort algorithm invented algorithms published
(John von Neumann, 1945)

(link)
g (link)

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

» Lots of concepts in CS came

from math (trees, graphs)
and have been around for a
while

The invention of many data
structures coinciding with
World War Il is no

coincidence

» Arraylists are not one of

these: they are a relatively
modern implementation
(1998), even though arrays
have been around since the
1940s

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

The Java Collections Framework

LLinkcdHashSct pescssess

* Built in data structure classes that you may import

Set

l

Collection

I

[HashSet
ArraylList
Vector
List —
Stack A
LinkedList }--

Queue

--====1 ArrayDeque

EnumMap

HashMap

AbstractMap

- Sorted Set -{ Tree Set

}

Map

«---= PriorityQueue

|

SortedMap

NavigableMap

|

Class

Interface
TreeMap

--==+ Interface

----- Extends

* We used it in the Silver Dollar lab. Today, we'll write our own ArrayList

implementation.

1 import java.util.ArraylList;

https.//www.geeksforgeeks.org/collections-in-java-2/

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.geeksforgeeks.org/collections-in-java-2/

Joshua Bloch: main Java Collections Framework
architect

n Joshua Bloch @joshbloch.bsky.social - 2d

* The pPerson who made fbr Disqusting. | would never work for a company whose leaders engaged
ArrayLists isn't some long LIS Sreln ey e L
dead historic figure; he was an P
engineer at Sun Microsystems \

(the company that made Java)
but now teaches at CMU

» He's currently pretty politically
active on BlueSky

-
A

Tech CEOs Take Turns Praising Trump at White House Dinner

Mark Zuckerberg, Sundar Pichai and Sam Altman saluted the president’s
leadership on innovation at an event that underscored the industry's desire f...

WWW.WSj.com

2 — 4

My (liberal arts-y) wish for you: know history

* |It's one thing to know how data structures work
(most data structures courses)

But it's another to know when to appropriately and
ethically how to use them and understand their
history

STS (science technology society) scholar Bruno
Latour calls this “opening the black box of science” -
a real person had to create everything we use in
this class to solve real problems, and understanding
this history gives you a deeper insight into how
technology is used by society (and how it can
encode bhias, etc.)

Hopefully, this knowledge will equip you for your
final project

To evaluate an affordance according to its effects on social
systems and institutions [2, 7, 9, |32], consider Ferreira et al.

History and Context When examining a specific technology, what
are the historical and cultural circumstances in which it emerged?
When was 1t developed? For what purpose? How has its usage
and function changed from then to today?

Power Dynamics and Hegemony Who benefits from this technol-
ogy? At the expense of whose labor? How is this technology
sold and marketed? What are the economic and political interests
for the proliferation of this technology?

Developing Effective Long-Term Solutions What solutions are cur-
rently being implemented to address this labor/benefit asymme-
try? In what ways do they reinforce or challenge the status quo?
What are the long- and short-term implications of these solutions
and who will benefit from them?

See

https://kevinl.info/do-abstractions-have-politics/

Thus, we have a history textbook!

CS62

Overview
Schedule
Course Staff
Grading

Course Policies
Calendar
History

History of ArrayLists

Canvas Gradescope

History of Data Structures

Data structures are fundamental tools in computer science, serving both to organize and manage
data efficiently and to optimize algorithmic performance across various applications. From
developing everyday functions to groundbreaking innovations, programmers increasingly rely on data
structures. Recognizing the history of data structures provides us insight into how they've shaped
our current society, while also exploring their potential to address emerging technological and ethical
challenges. Consequently, it is important to understand not only their technical applications, but also
their historical origins and evolution.

This component of the course will expand our understanding of the historical significance of the data
structures covered in this course by answering these questions:

Where do these data structures originate?

Who developed them, and what potential biases might they reflect?
How have data structures been used historically?

What are their contemporary applications?

In what ways can data structures be used to transform society?

Credits
This history supplemental “textbook” is written by Jing O'Brien (PO '25) under guidance from Jingyi
Li and is generously supported by a Pomona College Wig Grant. Thank you Jing!

TABLE OF CONTENTS

History of ArrayLists

https://cs.pomona.edu/classes/cs62/history/

» Last year, my RA Jing O'Brien
researched the history of data
structures. Read the pages to
supplement learning purely
“technical” material!

https://cs.pomona.edu/classes/cs62/history/

Why do we need data structures?

To organize and store data so that we can perform efficient operations on them
based on our needs: imagine walking to an unorganized library and trying to find
your favorite title or books from your favorite author.

We can define efficiency in different ways.
» Time: How fast can we perform certain operations on a data structure?
» Space: How much memory do we need to organize our data in a data structure?

» Affordances: How does this data structure bake in assumptions for how we should
think about the problem? What can we and can we not do with it?

There is no data structure that fits all needs.
+ That's why we're spending a semester looking at different data structures.
 So far, the only data structure we have encountered is arrays.

The goal of this class is for you to understand trade offs between data structures, to
choose the appropriate data structure for the appropriate problem

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Types of operations on data structures

: adding a new element in a data structure.
: Removing (and possibly returning) an element.
. Searching for a specific data element.

. Replacing an existing element with a new one (and possibly returning old).
. Going through all the elements.
. Sorting all elements in a specific way.
. Check if data structure contains any elements.

* Not a single data structure does all these things efficiently.

* You need to know both the kind of data you have, the different operations you will need
to perform on them, and any technical limitations to pick an appropriate data structure.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Linear vs non-linear data structures

. . elements arranged in a linear sequence based on a specific order.
 E.g., Arrays, ArraylLists, linked lists, stacks, queues.

» Linear memory allocation: all elements are placed in a contiguous block of
memory. E.g., arrays and ArrayLists.

» Use of pointers/links: elements don't need to be placed in contiguous blocks.
The linear relationship is formed through pointers. E.g., singly and doubly
linked lists.

. . elements arranged in non-linear, mostly hierarchical relationship.

- E.g., trees and graphs.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Towards building our own linear data structures...

» Arrays in Java are OK, but they're not resizable. Let's define our own data
structure that supports adding elements, getting them at an index, removing
them, etc...

+ As such, we will build an interface List that forces any data structure that
implements it to implement these operations.

» But what about types? We want our List interface to be able to hold objects of any
type.

Generics

Lists should support any type of element

» We want our data structure to support any type of elements, as long as they are
of the same type. We could use the class Object but this requires casting to the
desired type:

Object[] objects = new Object[2];

objects[0] = "hello"; casting objects[0] to String, since it's type

| A | | Object
String message = (String) objects[0];

System.out.println(message);

but we might accidentally mix types! that's not OK! but

, ou won't get a compiler error
objects[1] = 40; J 5 P

String wrongCast = (String) objects[1]; resultsinruntime error: ClassCastException
System.out.println(wrongCast);

Why generics help

* Generics are type parameters which stand in for any possible type.

+ Let's say we want to create an interface that defines a new List data structure, but we
don’t know yet what type of object should be in the List. That's where we can us a

generic type.
We use “<>" to denote generics in an interface

public interface List <E> { or class declaration

void add(E element);
void add(int index, element); By convention, generics are E (element) or T

get(int index); (type)
boolean isEmpty();
} E stands in for int, String, PomonaStudent,
etc... it can be any type when you actually
- Benefits: create a new List object.

+ Type safety (can't mix types in a list anymore)
* No explicit casting needed anymore

* Errors are caught at compile time instead of run time

Generics example

interface List<E> {
void add(E element);
void add(int index, E element):
void clear();
E get(int index);
boolean isEmpty();
E removel();
E remove(int index);
E set(int index, E element);
int size();

}
public class ArrayList<E> implements List<E>{..}

* |In the invocation, all occurrences of the formal type parameters are replaced by
the

* ArrayL1ist<String> list
list.add("hello");
String s = list.get(@); // no cast

new ArrayList<String>();

ArraylLists Intro

2 big limitations of Arrays
* Fixed-size.

* Do not work well with generics (would have to cast every time).
* E[] myArray = (E[]) new Object[capacity];

* We want resizable arrays that support any type of object.
* We just fixed the any type problem with generics.
* Now we'll see how to implement resizable arrays.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList (or dynamic/growable/resizable/mutable array)

* Dynamic linear data structure that is zero-indexed.

* Sequential data structure that requires consecutive memory cells (ArrayList[0] is
next to ArrayList[1] in memory)

* Implemented with an underlying array of a specific capacity.

* But the user does not see that!
0 1 2 J 4 5 6 7

For example, an ArraylList of size 3 with elements {"C562", “ROCKS”, “1"}, is actually an
Array of size 8 with {"CS62", “ROCKS”, “I”, null, null, null, null, null}.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList behavior demo

ArrayLists

Remember, an ArraylList is implemented using Arrays

0 1 2 3 4 5 6 7

Capacity =38

Size =3

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayLi1st(): Constructs an ArrayList

— e W
l
ArrayLlst<Str1ng> al = new ArrayLlst<Str1ng>())

— ——

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArraylL1ist(): Constructs an ArrayList

When we first make an Arraylist, it is with a size 2 Array.

ArraylList<String> al = new ArraylList<String>();

.‘ What should happen?}

Capacity = 2

Size=0

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

al.add(“CS062”);

.' What should hapen?

Capacity = 2

Cive = 1 al.add(“ROCKS™); |

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

al .add(“ROCKS”);

.' What should happen?

Capacity = 2

Size =2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

- Double capacity since it's full
and then add new element

0 1 2 3

,' What should happen? |

Capacity =4

Size =3 - o

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int 1ndex, E element) :Adds element at the specified
index

- Shift elements to the right

0 1 2 3

.' What should happen?}

Capacity =4

e 4 al.add(3, “?”); |

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int 1ndex, E element) :Adds element at the specified
index

- Double capacity since full
- Shift elements to the right

0 1 2 3 4 5 6 7
Capacity= 3 CI]..CICICI(3, cc?”);
Size =5

. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and Return last element

0 1 2 3 4 5 6 7

Capacity =38

al.remove();

Size =4
. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and Return last element

0 1 2 3 4 5 6 7

Capacity =38

al.remove();

Size =3
. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and return last element
- Halve capacity when 1/4 full

.... o

0 1 2 3

Capacity =4

Size = 2
What should happn

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove(1nt 1ndex):Removes and returns element from
specified index

- Remove element from index

- Shift elements to the left
- Halve capacity when 1/4th full

0 1

al.remove(0);

Capacity = 2

Size =1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Reminder: Interface List

interface List<E> { List is an abstract data type.
void add(E element) ; ArraylLists (along with

void add(int index, E element); SinglyLinkedLists,
void clear!() - DoublyLinkedLists) need to

: . implement these following
E get(int index); nethods.
boolean isEmpty();
E remove();
E remove(int index);

O 00O O U1 B W NN =

-
> S

-

E set(int index, E element);
int size():

Standard Operations of ArraylLi1st<E> class

ArrayList () : Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

* ArraylList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

» isEmpty () : Returns true if the ArrayList contains no elements.

size(): Returnsthe number of elements in the ArrayList.

» get(int index) : Returns the element at the specified index.

add(E element) : Appends the element to the end of the ArrayList.

add(int index, E element) : Inserts the element at the specified index and shifts the element
currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

- E remove () : Removes and returns the element at the end of the ArrayList.

E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

- E set(int index, E element): Replacesthe element at the specified index with the specified

element and returns the olde element.

« clear (): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList Implementation

Our own implementation of ArrayLists

* We will implement the List interface.

* We will work with generics because we want ArrayLists to hold objects of any
singular type.

* We will use an underlying array and we will keep track of how many elements we
have in our ArrayList.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Instance variables & constructors

public class ArrayList<E> implements List<E> {

private E[] data; // underlying array of Es
private int size; // number of Es in arraylist. We have 2 instance variables: our data (in an

Array) and size (number of elements present)

/*x
* Constructs an ArrayList with an initial capacity of 2.
*/
@SuppressWarnings ("unchecked")
public ArrayList() { With a no argument constructor, the default
data = (E[]) new Object[2]; capacity is 2. Our underlying implementation is
: size = 0; an Array of Objects.
/ **
 Constructs an ArrayList with the specified capacity.
*/

@SuppressWarnings ("unchecked") | | |
bublic ArrayList(int capacity) { With an argument, we just set the capacity to

data = (E[]) new Object[capacity]; the number passed in.
size = 0;

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

iIsEmpty(), size()

/ ¥*k

* Returns true 1if the ArraylList contains no Es.

%

* @return true 1if the ArraylList does not contain any E
%/

public boolean isEmpty() A

return size == 0;
}
/ k%
* Returns the number of Es in the ArraylList.
X

* @return the number of Es in the ArraylList
*/

VNN

return size:

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Getting an element at index |

JES
*x Returns the element at the specified index.
%
* @param index the index of the element to return
x @return the element at the specified index @pre means preconditions that need to be
x @pre: O<=index<size true for the method to work
*/
public E get(int index) {
if (index >= size || index < 8){
throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
! Otherwise, we'll thrown an exception.
return datalindex]:
I

Remember, data is just a plain old Java Array,
SO we access elements by indexing into it.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Setting an element at index I, return replaced element

/%X
* Replaces the element at the specified index with the specified E.
K
* @param index the index of the element to replace
* @param element element to be stored at specified index
* @return the old element that was replaced
* @pre: @<=index< size
*/
//che&k \\\\ if index 1s in range
if (index >= size || index < 0){
throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
}
//retreivew old element at index
E old = datalindex];
//update index with new element
datalindex] = element;
//return old element
return old;

Adding to the end of the ArrayList

Where does the element go into the underlying Array? There's no Array.append()...

What's the relationship between where we should add and the variable size?

0 0 0 0 0 0 0 0 0 0 initial array size=0

% 1 2 3 4 5 6 7 8

6 0 0 0 0 0 0 0 0 0 add(6) Size = 1

6 9 0 0 0 0 0 0 0 0 add(9) Size = 2

e [alololololololo]| adan sie-3

% 1 2 3 4 5 6 7 8

A: The next item we want to add will go into position “size”.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList invariants

* The position of the next item to be inserted is always size.
* size is always the number of items in the ArrayList.

* The last item in the list is always in position size - 1.

Adding an element to the ArrayList

/ 3k
*x Appends the element to the end of the ArraylList. Doubles its capacity 1if
X necessary.
>

x @param element the element to be inserted
*/ What are we missing?

public void add(E element) { Resizing if it gets too big.

datal[size] = element; Assign element to index “size” (we know that
Size++; size will always be the last empty index)

Increment size

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizing ArraylList

* Resizing algorithm (plain text): If the Array gets full, create a new Array that's
double the size. Copy all old elements into this new Array.

public void add(E element) {
if (size == data.length){
E[] temp = (E[]) new Object[data.lengthx2];
for (int i = 0: i < size; i++){
o temp[i] = datalil;
) Resizing is really its own method.

data = temp; _et's move it out of add.

What could be better about how we've
organized our code?

Should it take any arguments?

If so, what?
datal[size] = element;

size++;

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizing ArraylList

Takes 1 argument - the new capacity

/ kk

* Resizes the ArraylList's capacity to the specified capacity.

*/ : L
@SuppressWarnings{“uncheckead") Calling resize in apld means we should
private void resize(int capacity) < double the capauty

//reserve a new temporary array of Es with the provided capacity

E[] temp = (E[]) new Object[capacity];
public void add(E element) {

//copy all elements from old array (data) to temp array if (size == data.length)-
for (int i = 0; 1 < size; i++){ resize(2 *x data.length);
temp[i] = datalil; +
h
datalsize] = element;
//point data to the new temp array size++:
data = temp; 1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

» Try writing adding an element at a specific index.

* void add(int 1, E element) // 1nserting element at specific
index

/ %k

* Inserts the element at the specified index. Shifts existing elements to the
*x right and doubles its capacity if necessary.
*
O
* @param index the index to insert the element WorkSheet answer.
* @param element the element to be inserted ° °
x @pre: @ <= index <= size dd th d
y a wi inaex

public void add(int index, E element) {
//check whether index is in range
if (index > size || index < @)1
throw new IndexOutOfBoundsException("Index " + index + " out of bounds");

}

//1if full double in size
if (size == data.length){
resize(2 x data.length);

// shift elements to the right
for (int i = size; i > index; 1i—){
datali] = datali - 1];
+
//1increase number of elements
size++;
//put the element at the right index in data
datalindex] = element;

Removing (and returning) the last element

/ k%
* Removes and returns the element from the elementnd of the ArraylList.
X
* @return the removed E
*x @pre size>0
x/
public E remove() { Checking pre-condition
if (isEmpty()){
throw new NoSuchElementException("The list is empty");

}.

size——; Remember our invariant that the last element is going to be at size - 1
E element = datalsizel;

datalsize] null;

// Shrink to save space if possible
if (size > 0 && size == data.length / 4){ Q: Why size == data.length / 4? Why not size <=

resize(data.length / 2); data.length / 47
}
A: Because we can only remove one element at a
return element; time, so it's guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArraylList

/ X%k
* Clears the ArraylList of all elements.

*/ | . Note that we don’t need to call remove()
public void clear() { many times - let’s avoid unnecessary
computation.

// Help garbage collector.
for (int i = 0; i < size; i++){

datali] = null; lterate through the underlying Array and set
I everything to null - prevent “loitering”

size = 0; Update size

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Lecture 4 wrap-up

» Abstract data types, often specified as interfaces, tell us what should happen but not how.

* An Arraylist is a re-sizable Array and implements the List<E> interface. “<E>" means it is a List of
generic E types.

*» HW2: Flippycard due Tues 11:59pm
 Lab this week isn't coding based, but on learning Git

* We may ditch Github classroom if problems persist

Resources

» Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

* Arraylists: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.ntml

» Resizable arrays in our textbook: https://algs4.cs.princeton.edu/13stacks/

» History of ArrayLists (made just for you all!) https://cs.pomona.edu/classes/cs62/history/arraylists/

* More practice problems behind this slide

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://cs.pomona.edu/classes/cs62/history/arraylists/

Review: polymorphism

1 class Parent {

2 int num = 10;

3

4 public void show() { « What's printed? Why?

5 System.out.println("Parent show() method");

i\ ! * Why does .show() behave

] differently from num?

9 class Child extends Parent {

10 int num = 20; - What keyword can be used to

11 | access the value of num in the

12 @Override :

3 sublic void show() { parent class from the child class?
14 System.out.println("Child show() method"); :

.) * How can we modifty the code so we
16} can print out 20 for num in main(),
17 . . .

18 public class PolymorphismReview { Whlle keeplng the type Of ObJ ds

Run main | Debug main | Run | Debug Pa e nt?

19 public static void main(String[] args) {
20 Parent obj = new Child();
21 System.out.println(obj.num);
22 obj.show();
23 }

24 }

O 00 ~N OO U 6 W N =

R N T = Y S Sy S Gy B
O ~N O WL B WNRE

19
20
21
22
23
24

Review: polymorphism

class Parent {
int num = 10;

public void show() {
System.out.println("Parent show() method");
r
ks

class Child extends Parent {
int num = 20;

@verride
public void show() {
System.out.println("Child show() method");

}
}

public class PolymorphismReview <{
Run main | Debug main | Run | Debug
public static void main(String[] args) {
Parent obj = new Child();
System.out.println(obj.num);
obj.show();

What's printed? Why?
« 20, Child show() method

Why does .show() behave differently from
num?

« .show() is overridden in the child class,
while num hides the parent value

What keyword can be used to access the
value of num in the parent class from the
child class?

* super

How can we modify the code so we can print
out 20 for num in main(), while keeping the
type of obj as Parent?

* Create a getter (getNum()) so overriding
happens

SUMMARY: instance methods get overridden,
but variables (and static methods) are hidden

Bonus problem

* Create an interface called Adoptab Le that contains four abstract methods: a
void requestAdoption(), boolean isAdopted(), void
completeAdoption(), and String makeHappyNoise().

» Have the class Animal implement the interface. You can provide some very

minimal implementation of the methods so that you don't receive a compile-time
error.

» Override the makeHappyNoise() inthe Cat and Dog subclasses.

Bonus answers

public interface Adoptable { public class Animal implements Adoptable {

void requestAdoption(); boolean adopted;

boolean isAdopted(); // Implementation for an animal's adoption request

void completeAdoption(); }
String makeHappyNoise();
1 public boolean isAdopted() {
return adopféaf“mwhm
'

public void completeAdoption() {

// Implementation to finalize the adoption for an animal
adopted = true;

public String makeHappyNoise(){
return "I was adopted hooray!";

s

Bonus answers

public class Cat extends Animal{
public class Dog extends Animal{
private String fur;
private static int catCounter; private String breed;

R A ettt

private static int dogCounter;
public Cat(String name, int age, int daysInRescue, String fur){ S

super(name, age, daysInRescue);
this.fur = fur;
catCounter++;

public Dog(String name, int age, int daysInRescue, String breed){
super(name, age, daysInRescue);
this.breed = breed;

' dogCounter++;

public String getFur(){
return fur;

¥
protected void setFur(String fur){ public String toString(){

this.fur = fur: return super.toString()+ "Dog breed: " + breed + "\n";
s }
public String toString()<{ public String makeHappyNoise(){

return supéf:fégiFing() + "Cat fur: " + fur + "\n"; return "I am a happy dog!";
} }

}

public String makeHappyNoise(){
return "I am a happy cat!";

¥

Bonus problem

» Try writing removing an element at a specific index instead of the last element.
Pay attention to how it resembles the remove last element method, or add at a
specific index method.

* E remove(int 1) // remove and return element at specific i1ndex

/ %%k
*x Removes and returns the element at the specified index.
e
* @param index the index of the element to be removed
* @return the removed element
¥ @re: @<=index<size
x/
public E remove(int index) A
//check if index is in range
if (index >= size || index < 0){

throw new IndexOutOfBoundsException("Index

Bonus answer: remove with index

+ index + " out of bounds");

¥
//retrieve element at index
E element = datal[index];
//reduce number of elements by 1
size——;
//shift all elements from the index until the end left 1
for (int i = index; i < size; i++){
datali] = datali + 1]; main difference from add at index - shift left instead of right
¥
//set last element to null (since they've been shifted)
datalsize] = null;

// shrink to save space if necessary

if (size > 0 && size == data.length / 4){
resize(data. length / 2);

¥

//return removed element

return element;

