
CS62 Class 20: Graphs (intro, BFS/DFS)
Graphs

adjacency matrix

Agenda
• Last time: .equals()

• Undirected graphs

• Depth-first search

• Breadth-first search

• Directed graphs

• Depth-first search

• Breadth-first search

.equals()

If 2 objects are “equal”, they should have the same
hashCode

• Requirement: If x.equals(y) then it should be
x.hashCode()==y.hashCode().

• Ideally (but not necessarily): If !x.equals(y) then it should be
x.hashCode()!=y.hashCode().

• Need to override both equals() and hashCode() for custom types.

• Already done for us for Integer, Double, etc.

Bottom line: If your class override equals, you should also override
hashCode in a consistent manner.

Equality test in Java
• If you don’t override it, the default implementation of .equals() checks whether x

and y refer to the same object in memory.

• Equality requirements: For any objects x, y, and z.

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z) then x.equals(z).

• Non-null: if x.equals(null) is false.

i.e. == (== checks references, i.e. memory location)

General equality test recipe in Java: x.equals(y)
• Optimization for reference equality.

• if (y == this) {return true;}

• Check against null.

• if (y == null) {return false;}

• Check that two objects are of the same type.

• if (y.getClass() != this.getClass()) {return false;}

• Cast them.

• Date that = (Date) y;

• Compare each significant field (i.e. instance variable).

• return (this.day == that.day && this.month == that.month && this.year == that.year);

• If a field is a primitive type, use ==.

• If a field is an object, use equals().

• If field is an array of primitives, use Arrays.equals().

• If field is an area of objects, use Arrays.deepEquals().

‣ But make sure the objects are immutable!

Overriding equals() for user-defined types
public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public boolean equals(Object y) {  
 if (y == this){ return true;}  
 if (y == null){ return false;}  
 if (y.getClass() != this.getClass()){ return false;}  
 Date that = (Date) y;  
 return (this.day == that.day &&  
 this.month == that.month &&  
 this.year == that.year);  
 }  
}

signature: public boolean equals(Object objToCompare)

same memory location
non-null requirement

same class
cast the obj to be compared as the same class

and compare specific attributes
(of primitive types)

Graphs

Why study graphs?
• Thousands of practical applications.

• Hundreds of graph algorithms known.

• Interesting and broadly useful abstraction.

• Challenging branch of theoretical computer science.

Undirected graphs

Undirected Graphs
• Graph: A set of vertices connected pairwise by edges.

• Undirected graph: The edges do not point in a specific direction

Protein-protein interaction graph

https://www.researchgate.net/figure/Network-graph-of-the-protein-protein-interactions-Green-color-represents-proteins_fig4_272297002

The Internet

https://www.opte.org/the-internet

Social media

https://www.databentobox.com/2019/07/28/facebook-friend-graph/

Graph terminology
• Path: Sequence of vertices connected

by edges

• Cycle: Path whose first and last vertices
are the same

• Two vertices are connected if there is a
path between them

Examples of graph-processing problems
• Is there a path between vertex s and t?

• What is the shortest path between s and t?

• Is there a cycle in the graph?

• Euler Tour: Is there a cycle that uses each edge exactly once?

• Hamilton Tour: Is there a cycle that uses each vertex exactly once?

• Is there a way to connect all vertices?

• What is the shortest way to connect all vertices?

• Is there a vertex whose removal disconnects the graph?

Graph representation
• Vertex representation: integers between 0 and V-1 (but can be generalized to any

type, e.g., custom Nodes).

0 5 means there’s an
edge between vertices
0 and 5

Basic Graph API
public class Graph

• Graph(int V): create an empty graph with V vertices.

• void addEdge(int v, int w): add an edge v-w.

• Iterable<Integer> adj(int v): return vertices adjacent to v.

• int V(): number of vertices.

• int E(): number of edges.

Example of how to use the Graph API to process the graph

public static int degree(Graph g, int v){  
 int count = 0;  
 for(int w : g.adj(v))  
 count++;  
 return count;  
}

The degree of a vertex v is the number of vertices connected to v (i.e., the number of edges.)

Graph density
• In a simple graph (no parallel edges or loops), if , then:

• minimum number of edges is 0 and

• maximum number of edges is .

• Dense graph -> edges closer to maximum.

• Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2

|V| = number of vertices

O(n^2) - all vertices are connected to each other

Graph representation: adjacency matrix
• Maintain a -by- boolean array;

for each edge v-w:

• adj[v][w] = adj[w][v] = true;

• Good for dense graphs (edges close to).

• Constant time for lookup of an edge.

• Constant time for adding an edge.

• time for iterating over vertices adjacent to .

• Symmetric, therefore wastes space in
undirected graphs ().

• Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

DC

For undirected graphs, adjacency matrices are
always symmetric along the diagonal

Graph representation: adjacency list
• Maintain vertex-indexed array of

lists. The list stores vertices adjacent
to .

• Good for sparse graphs (edges
proportional to) which are much
more common in the real world.

• Space efficient ().

• Constant time for adding an edge.

• Lookup of an edge or iterating over
vertices adjacent to is .

v

|V |

|E | + |V |

v degree(v)

Adjacency-list graph representation in Java

Q: What if we want to add another
vertex? Can we still use a List<Integer>?

A: No, lists aren’t resizable, so we can
use an ArrayList instead (or make a
brand new list with size V+1…)

Depth-first search

Mazes as graphs
• Vertex = intersection; edge = passage

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

How to survive a maze: a lesson from a Greek myth

• Theseus escaped from the labyrinth
after killing the Minotaur with the
following strategy instructed by
Ariadne:

• Unroll a ball of string behind you.

• Mark each newly discovered
intersection and passage.

• Retrace steps when no unmarked
options.

• Also known as the Trémaux
algorithm.

Depth-first search
• Basic idea: Go deep in a graph until you can’t anymore, visiting all vertices. Then retrace

your steps.

• Goal: Systematically traverse a graph.

• DFS (to visit a vertex v)

• Mark vertex v.

• Recursively visit all unmarked vertices w adjacent to v.

• Typical applications:

• Find all vertices connected to a given vertex.

• Find a path between two vertices.

Order visited: 0, 6, 4, 5, 3, 2, 1

Depth-first search
• Goal: Find all vertices connected to s (and a corresponding path).

• Idea: Mimic maze exploration.

• Algorithm:

• Use recursion (ball of string).

• Mark each visited vertex (and keep track of edge taken to visit it).

• Return (retrace steps) when no unvisited options.

• When started at vertex s, DFS marks all vertices connected to s (and no other).

Worksheet time!
• Run DFS on the following graph starting at vertex 0 and return the vertices in the order

of being marked. Assume that the adjacent vertices are returned in increasing numerical
order (i.e. visit smaller ones first, opposite of the demo).

Worksheet answers
• Vertices marked as visited: 0, 2, 3, 4, 1, 5

V marked edgeTo
0 T -
1 T 4
2 T 0
3 T 2
4 T 2
5 T 1

Implementation of depth-first search in Java

for each adjacent vertex, mark it and call DFS on it

Depth-first search analysis
• DFS marks all vertices connected to s in time proportional to in the worst case.

• Initializing arrays marked and edgeTo takes time proportional to .

• Each adjacency-list entry is examined exactly once and there are such entries (two
for each edge in an undirected graph).

• Once we run DFS, we can check if vertex v is connected to s in constant time (look into
the marked array). We can also find the v-s path (if it exists) in time proportional to its
length (follow the edgeTo array).

|V | + |E |

|V |

2 |E |

Breadth-first search

Breadth-first search
• Basic idea: BFS traverses vertices in order of distance from s. (All of s’s adjacent vertices

get seen first, then the ones 2 away, then the ones 3 away…)

• BFS (from source vertex s)

• Put s on a queue and mark it as visited.

• Repeat until the queue is empty:

‣ Dequeue vertex v.

‣ Enqueue each of v’s unmarked neighbors and mark them.

• When we enqueue a vertex is when we mark it as visited/

Order visited: 0, 2, 1, 5, 3, 4

Worksheet time!
• Run the BFS on the following graph starting at vertex 0 and return the vertices in the

order of being marked. Assume the adjacent vertices are returned in increasing
numerical order (i.e. you visit smaller numbers first).

Vertices marked as visited: 0, 2, 4, 5, 3, 1

Worksheet answers

V marked edgeTo distTo

0 T - 0
1 T 4 2
2 T 0 1
3 T 2 2
4 T 0 1
5 T 0 1

Breadth-first search in Java

enqueue s

dequeue v

enqueue adjacent vertices, w

Worksheet time!
• Run DFS and BFS on the following graph starting at vertex s. Assume the adjacent vertices

are returned in lexicographic (i.e., alphabetical) order.

https://11011110.github.io/blog/2013/12/17/stack-based-graph-traversal.html

Worksheet answer
• Run DFS and BFS on the following graph starting at vertex s. Assume that the adj method

returns back the adjacent vertices in lexicographic order.

• DFS: s->a->b->e->d->c->f->g->h

• BFS: s->a->c->b->d->f->e->g->h

Summary
• DFS: Uses recursion.

• BFS: Put unvisited vertices on a queue.

• Shortest path problem: Find path from s to t that uses the fewest number of edges.

• E.g., calculate the fewest numbers of hops in a communication network.

• E.g., calculate the Kevin Bacon number or Erdös number.

• BFS computes shortest paths from s to all vertices in a graph in time proportional to

• The queue always consists of zero or more vertices of distance k from s, followed by
zero or more vertices of k+1.

• DFS, on the other hand, will find a path, but it’s not guaranteed to be the shortest one.

|E | + |V |

Directed graphs

Directed Graph Terminology
• Directed Graph (digraph) : a set of vertices V connected

pairwise by a set of directed edges E.

• Directed path: a sequence of vertices in which there is a
directed edge pointing from each vertex in the
sequence to its successor in the sequence, with no
repeated edges. (Basically just a path in the graph.)

• A simple directed path is a directed path with no
repeated vertices.

• Directed cycle: Directed path with at least one edge
whose first and last vertices are the same.

• A simple directed cycle is a directed cycle with no
repeated vertices (other than the first and last).

• The length of a cycle or a path is its number of edges.

Directed Graph Terminology
• Self-loop: an edge that connects a vertex to itself.

• Two edges are parallel if they connect the same pair of
vertices.

• The outdegree of a vertex is the number of edges pointing
from it.

• The indegree of a vertex is the number of edges pointing
to it.

• A vertex w is reachable from a vertex v if there is a
directed path from v to w.

• Two vertices v and w are strongly connected if they are
mutually reachable.

self loop

V =
{0,1,2,3,4,5,6,7,8,9,10,11,12
}  
  
E = {{0,0}, {0,1}, {0,5},
{2,0}, {2,3},{3,2},{3,5},
{4,2},{4,3},{5,4},{6,0},
{6,4},{6,9},{7,6}{7,8},{8,7},
{8,9},{9,10},{9,11},{10,12},
{11,4},{11,12},{12,9}}.

Directed Graph Terminology
• A digraph is strongly connected if there is a

directed path from every vertex to every other
vertex.

• A digraph that is not strongly connected consists
of a set of strongly connected components,
which are maximal strongly connected
subgraphs.

• A directed acyclic graph (DAG) is a digraph with
no directed cycles.

Digraph Applications

Digraph Vertex Edge

Web Web page Link

Cell phone Person Placed call

Financial Bank Transaction

Transportation Intersection One-way street

Game Board Legal move

Citation Article Citation

Infectious Diseases Person Infection

Food web Species Predator-prey relationship

Popular digraph problems

Problem Description

s->t path Is there a path from s to t?

Shortest s->t path What is the shortest path from s to t?

Directed cycle Is there a directed cycle in the digraph?

Topological sort Can vertices be sorted so all edges point from earlier to later
vertices?

Strong connectivity Is there a directed path between every pair of vertices?

Basic Graph API
public class Digraph

Digraph(int V): create an empty digraph with V vertices.

void addEdge(int v, int w): add an edge v->w.

Iterable<Integer> adj(int v): return vertices adjacent from v.

int V(): number of vertices.

int E(): number of edges.

Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list
• Maintain vertex-indexed array of lists.

• Good for sparse graphs (edges proportional to
) which are much more common in the

real world.

• Algorithms based on iterating over vertices
adjacent from .

• Space efficient ().

• Constant time for adding a directed edge.

• New difference: Lookup of a directed edge or
iterating over vertices adjacent from is

.

|V |

v

|E | + |V |

v
outdegree(v)

Adjacency-list digraph representation in Java

Very similar to undirected graph implementation,
main change is adding directed edges (1 edge,
not 2)

undirected implementation

DFS in Directed graphs

Reachability
• Find all vertices reachable from s along a directed path.

https://apprize.info/science/algorithms_2/2.html

https://apprize.info/science/algorithms_2/2.html

Depth-first search in digraphs
• Same method as for undirected graphs.

• Every undirected graph is a digraph with edges in both directions.

• Maximum number of edges in a simple digraph is .

• DFS (to visit a vertex v)

• Mark vertex v.

• Recursively visit all unmarked vertices w adjacent from v.

• Typical applications:

• Find a directed path from source vertex s to a given target vertex v.

• Topological sort (sort so dependencies are ordered, e.g. for fulfilling course pre-reqs).

• Directed cycle detection.

n(n − 1)

Worksheet time!
• Given the following adjacency list, visualize the resulting digraph and run DFS on it

starting at vertex 0. In what order did you visit the vertices?

• Is every vertex reachable from 0?

Note: Ignore the “1” value

Worksheet answer
• Given the following adjacency list, visualize the resulting

digraph and run DFS on it starting at vertex 0.

V marked edgeTo

0 T -

1 T 3

2 T 6

3 T 0

4 T 2

5 T 3

6 T 1

7 T 4

Order: 0, 3, 1, 6, 2, 4, 7, 5

Yes, every vertex reachable from 0

Depth-first search analysis
• DFS marks all vertices reachable from s in time proportional to in the worst case.

• Initializing arrays marked takes time proportional to .

• Each adjacency-list entry is examined exactly once and there are such edges (different
than undirected graphs, which have 2|E| edges).

• Once we run DFS, we can check if vertex v is reachable from s in constant time (look into
the marked array). We can also find the s->v path (if it exists) in time proportional to its
length.

• Basically, same as DFS analysis on undirected graphs, but E instead of 2E edges

|V | + |E |

|V |

E

BFS in Directed graphs

Breadth-first search
• Same method as for undirected graphs.

• Every undirected graph is a digraph with edges in both directions.

• BFS (from source vertex s)

• Put s on queue and mark s as visited.

• Repeat until the queue is empty:

‣ Dequeue vertex v.

‣ Enqueue all unmarked vertices adjacent from v, and mark them.

• Typical applications:

• Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to
.|E | + |V |

Order visited: 0, 2, 1, 4, 3, 5

Worksheet time!
• Given the following adjacency list, visualize the resulting digraph and run BFS on it

starting at vertex 0. In what order did you visit the vertices? Is every vertex reachable
from 0?

Worksheet answer
• Given the following adjacency list, visualize the

resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

• 0, 2, 4, 5, 7, 6

V marked edgeTo distTo

0 T - 0

1 F

2 T 0 1

3 F

4 T 0 1

5 T 2 2

6 T 7 3

7 T 4 2

No, we never reach 1 or 3 from 0

Summary
• Single-source reachability in a digraph: DFS/BFS.

• Shortest path in a digraph: BFS.

Lecture 20 wrap-up
• No lab tonight

• Checkpoint corrections due Thu 11:59pm

• Final proj part 1 due next Fri 11/21

• HW10: Graphs due Tues 11/25 (day before Thanksgiving break) 11:59pm; released by end
of week

Resources
• Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)

• Website: https://algs4.cs.princeton.edu/41graph/, https://algs4.cs.princeton.edu/
42digraph/

• Visualization: https://visualgo.net/en/dfsbfs

• Practice problems (3!) behind this slide

https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/42digraph/
https://visualgo.net/en/dfsbfs

Problem 1
• What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

• What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

• What is the maximum number of edges in a digraph with V vertices and no parallel edges?

• What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

Problem 2
• Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

list in this order:

• 8-4

• 2-3

• 1-11

• 0-6

• 3-6

• 10-3

• 7-11

• 7-8

• ...

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

Problem 3
• Run DFS and BFS on the following digraph starting at vertex 0.

Answer 1
• What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

• , where .

• What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

• .

• What is the maximum number of edges in a digraph with V vertices and no parallel edges?

• , where .

• What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

• .

n(n − 1)/2 n = |V |

n − 1

n(n − 1) n = |V |

n − 1

Answer 2
• Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

list in this order:

• 8-4

• 2-3

• 1-11

• 0-6

• 3-6

• 10-3

• 7-11

• 7-8

• ...

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

▸ 0 -> 5 -> 2 -> 6

▸ 1 -> 4 -> 8 -> 11

▸ 2 -> 5 -> 6 -> 0 -> 3

▸ 3 -> 10 -> 6 -> 2

▸ 4 -> 1 -> 8

▸ 5 -> 0 -> 10 -> 2

▸ 6 -> 2 -> 3 -> 0

▸ 7 -> 8 -> 11

▸ 8 -> 1 -> 11 -> 7 -> 4

▸ 9 ->

▸ 10 -> 5 -> 3

▸ 11 -> 8 -> 7 -> 1

Answer 3
• DFS - Order of visit: 0, 1, 3, 2, 4, 5, 7, 6

V marked edgeTo
0 T -
1 T 0
2 T 3
3 T 1
4 T 3
5 T 4
6 T 7
7 T 5

Answer 3
• BFS - Order of visit: 0, 1, 3, 2 4, 5, 7, 6

V marked edgeTo distTo

0 T - 0

1 T 1 1

2 T 3 2

3 T 1 2

4 T 3 3

5 T 4 4

6 T 7 6

7 T 5 5

