CS62 Class 20: Graphs (intro, BFS/DFS)

Undirected graph G(V,E) Directed graph G(V,E)

adjacency matrix

Agenda

» Last time: .equals()
» Undirected graphs

* Depth-first search

+ Breadth-first search
» Directed graphs

* Depth-first search

* Breadth-first search

If 2 objects are “equal”, they should have the same
hashCode

» Requirement: If x.equals(y) then it should be
X .hashCode()==y.hashCode().

+ |deally (but not necessarily): If Ix.equals(y) then it should be
X .hashCode()!=y.hashCode().

* Need to override both equals() and hashCode() for custom types.

 Already done for us for Integer, Double, etc.

Bottom line: If your class override equals, you should also override
hashCode Iin a consistent manner.

Equality test in Java

* |f you don't override it, the default implementation of .equals() checks whether x
and y refer to the same object in memory. i.e. == (== checks references, i.e. memory location)

» Equality requirements: For any objects X, y, and z.
+ Reflexive: x.equals(x) is true.
« Symmetric: X.equals(y) iffy.equals(x).
 Transitive: if x.equals(y) andy.equals(z) then x.equals(z).

« Non-null: if x.equals(null) is false.

General equality test recipe in Java: x.equals(y)

» Optimization for reference equality.
+ 1f (y == this) {return true;}
* Check against null.
+ 1f (y == null) {return false;}
« Check that two objects are of the same type.
« 1f (y.getClass() != this.getClass()) {return false;}
» Cast them.
» Date that = (Date) vy;
» Compare each significant field (i.e. instance variable).
return (this.day == that.day && this.month == that.month && this.year == that.year);
- If a field is a primitive type, use ==.
* |If a field is an object, use equals().
» If field is an array of primitives, use Arrays.equals().

» |If field is an area of objects, use Arrays.deepEquals().

~ But make sure the objects are immutable!

Overriding equals() for user-defined types

public class Date {
private int month;
private int day;
private int year; signature: public boolean equals(Object objToCompare)
public boolean equals(Object y) {
1f (y == this){ return true;} same memory location
1f (y == null){ return false;} non-null requirement
1f (y.getClass() !'= this.getClass()){ return false;} same class
Date that = (Date) y; castthe objtobe compared asthe same class
return (this.day == that.day &&
this.month == that.month & & and compare specific attributes
this.year == that.year); (of primitive types)

Why study graphs?

» Thousands of practical applications.
* Hundreds of graph algorithms known.
* Interesting and broadly useful abstraction.

» Challenging branch of theoretical computer science.

Undirected graphs

Undirected Graphs

» Graph: A set of vertices connected pairwise by edges.

» Undirected graph: The edges do not point in a specific direction

Palidde METRCLINK REGIONAL RAIL SYSTEM

i

ent Orade/Acten I

‘Asta Canyon O . O Falere SN

Via Princessa i

Santa Clarita
I
-

VENTURA
CO.

LOS ANGELES SAN BERNARDINCO
CO. Co.

Syivar/
28 Famarco

.\# & ."'\“'
A+

"f ’»é\:; Do

0@ o j ! o N f
‘\‘Sﬁb \’3} «ﬁs f AUR Q&
\iiz:x:;:f_?\gy & o f@*f@% P e fﬁ f@i e

 Chatsnerth oy L A O & [o &if@
) &‘& e @
—(.\ ‘ @ Riserside: Hunter Park f UCR

iy // ke I

@' \\>\\~°_x_zi Riverside- ® Meen) Valley J Narch Fisld

PACIFIC CCEAN @ Redondc Bsan q&”@ o\m lnSuc
; RIVERSIDE

Alighire/Western D

0. I Fernis - Dyantewn
QUL ® Ferris - Sauth

e taekge vy Line l:' ms-ucu
EEOIN vlasd Lmghe Jrongs Uousty lise

Bl Drersz Caury line uem mmm
BN Fwnside L e Metre Ralde o [us
= Wit Bs

Lo Vesdws Ceurty Line W UM Conmect Shattie s ,-"':SAN DIEGO

5 Tebre Stdtn e e aido o £ Dl co.
el unwimnx — — 3’.':3,:., B -. \} “«.s
~ é‘}« o

M ETR C Ll N K mstrolinktrainacem

o

Protein-protein interaction graph

lﬁiﬁk. /-
RV,
< Wy

£
%
Y 17

%
it

w4

‘.

7/ |

\)
W

\ 1 s > |
-z
A" 3 "‘ ‘\ ~
i 4

O

N o Ny

https://www.researchgate.net/figure/Network-graph-of-the-protein-protein-interactions-Green-color-represents-proteins_figd_ 272297002

The Internet

https.//www.opte.org/the-internet

f; . 5 . “.d X Yo
) -4 \ . ’ - ..

SR :
“ B s .. -

N\ BN &r&f.m.ﬂ. N
- B e . v\ 2
o 0 g f : u...

4 - f ~ o ’ N
. 4 N : . .
N N - - -~
e A > v X
L A ‘) - .]
.) . . X

\

Social media

//www.databentobox.com/2019/07/28/facebook-friend-graph/

https

Graph terminology

VETIEX

+ Path: Sequence of vertices connected mr; _
IENGIN O ™\
by edges

wadde nd
;-uf”)

» Cycle: Path whose first and last vertices
are the same

) P Ny
- .Lo’..k;!'l ‘t

» Two vertices are connected if there is a vertex of
path between them

) connected
components

Anatomy of a graph

Examples of graph-processing problems

s there a path between vertex s and t?

» What is the shortest path between s and t?

s there a cycle in the graph?

. . Is there a cycle that uses each edge exactly once?

. . Is there a cycle that uses each vertex exactly once?
s there a way to connect all vertices?

» What is the shortest way to connect all vertices?

s there a vertex whose removal disconnects the graph?

Graph representation

» Vertex representation: integers between 0 and V-1 (but can be generalized to any
type, e.g., custom Nodes).

0 5 means there's an 05

edge between vertices 4 3

0and 5 0 1
9 12
L 4
5 4
D 2
11 1.2
9 10
0 0
/7 B
9 11
5> 3

Basic Graph API

public class Graph
« Graph(int V): create an empty graph with V vertices.

» voi1d addEdge(int v, int w):add an edge v-w.
+ Iterable<Integer> adj(int v):return vertices adjacent to v.
- 1nt V(): number of vertices.

« 1nt EC): number of edges.

Example of how to use the Graph API to process the graph

The degree of a vertex v is the number of vertices connected to v (i.e., the number of edges.)

public static int degree(Graph g, int v){
1nt count = 0;
for(int w : g.adj(v))
count++;
return count;

Graph density

In a simple graph (no parallel edges or loops), if | V| = n, then:
minimum number of edges is 0 and
maximum number of edges is n(n — 1)/2.

Dense graph -> edges closer to maximum.

Sparse graph -> edges closer to minimum.

Graph representation: adjacency matrix

For undirected graphs, adjacency matrices are

Maintain a | V| 'by' | V| boolean array, always symmetric along the diagonal

for each edge v-w:

. adj[vl[w] = adj[w][v] = true; g ? : :’
A
Good for dense graphs (edges close to | V|?). 5 : 0 0 :
Constant time for lookup of an edge. C 1 0 0 0
1 1 0 0
Constant time for adding an edge. i

| V| time for iterating over vertices adjacent to v.

» Symmetric, therefore wastes space in
undirected graphs (| V|?).

(A)
(©) D

Not widely used in practice.

Graph representation: adjacency list

» Good for sparse graphs (edges

—~[1—5]

O S
- Maintain vertex-indexed array of DG O “i—'z
ists. The list stores vertices adjacent © oY0 il
o v. ’o / \\i"
© ORD / -

proportional to | V|) which are much g__/' ~[s {6
more common in the real world. '

”:/' RElgtl
» Space efficient (|E| + | V]). J'_}"“* ~[0f—~14]
+ Constant time for adding an edge. L ~L8

» Lookup of an edge or iterating over 1
vertices adjacent to v is degree(v).

7
4|
T
i
|

/
=L
ol |l
|
=

Adjacency-list graph representation in Java

9 public class Graph {

10
11
12
13
14
15
16
17
138
19
20
21
22
23

private final int V;

private int E;

private final List<Integer>[] adj;

//init empty graph with V vertices and @ edges

@SuppressWarnings ("unchecked")
public Graph(int V) {

this.V = V;
this.E = 0:

adj = (List<Integer>[]) new List[V];

for (int v
adj[v]

0;: v < V: vi++) {
new ArrayList<>();

// number of vertices
// number of edges
// adjacency lists

24

25
26
27
28
29
30
31
32
33

Q: What if we want to add another
vertex? Can we still use a List<Integer>?

A: No, lists aren't resizable, so we can
use an ArraylList instead (or make a
brand new list with size V+1...)

//adds undirected edge v—-w to graph. parallel edges and
self-loops allowed
public void addEdge(int v, int w) {
E++;
adj [v].add(w);
adj [w].add(v);
s
//returns vertices adjacent to vertex v
public Iterable<Integer> adj(int v) {
return adjlv];

Depth-first search

Mazes as graphs

+ Vertex = intersection; edge = passage

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

How to survive a maze: a lesson from a Greek myth

» Theseus escaped from the labyrinth ~— \ T~ ’\ = “\
after killing the Minotaur with the yé % %
following strategy instructed by
Ariadne: ‘ = , = = S

Unroll a ball of string behind you. %\ % %

Mark each newly discovered
intersection and passage.

Retrace steps when no unmarked
options.

» Also known as the Trémaux
algorithm.

Depth-first search

» Basicidea: Go deep in a graph until you can't anymore, visiting all vertices. Then retrace
your steps.

» Goal: Systematically traverse a graph.

« DFES (to visit a vertex V)
« Mark vertex v.

» Recursively visit all unmarked vertices w adjacent to v.

» Typical applications:
» Find all vertices connected to a given vertex.

» Find a path between two vertices.

. e. | : AOeOaBaE
A l go Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE o\
&l
~s 4]
e
G0

~of+{4]
~

@ \ representations
" of the same edge
\IZJ »
~[11j—~10~12]
aD
~o 2]
\ E]

[
[T R - B R P N N L™
&

[
NP -

4.1 DEPTH-FIRST SEARCH DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

Order visited: 0, 6,4, 5, 3, 2, 1

Depth-first search

Goal: Find all vertices connected to s (and a corresponding path).

l[dea: Mimic maze exploration.

Algorithm:
» Use recursion (ball of string).
» Mark each visited vertex (and keep track of edge taken to visit it).

» Return (retrace steps) when no unvisited options.

When started at vertex s, DFS marks all vertices connected to s (and no other).

Worksheet time!

» Run DFS on the following graph starting at vertex 0 and return the vertices in the order
of being marked. Assume that the adjacent vertices are returned in increasing numerical
order (i.e. visit smaller ones first, opposite of the demo).

Worksheet answers

« Vertices marked as visited: 0, 2,3,4, 1,5

marked edqgeTo

<

SN PN ==
— | |= [| |
= NN o |

Implementation of depth-first search in Java

public void dfs(int s) {
boolean[] marked = new boolean[V]; //marked|[v] - is there an s-v path?
int[] edgeTo = new int[V]; //edgeTolv] = previous vertex on path from s to v
int[] distTo = new int[V]; //distTo[v] - distance from s to v

for (int i =0; i < V; i++) {
distTo[i] = -1; // initialize distances to -1

}

marked[s] = true;
distTols] = 0;
dfsHelper(s, marked, edgeTo, distTo);

private void dfsHelper(int v, boolean[] marked, int[] edgeTo, int[] distTo) {
for (int w : adjlv]) {
if (!'marked[w]) {

marked [w] = true; for each adjacent vertex, mark it and call DFS on it
edgeTolw] = v;
distTo[w] = distTolv] + 1;

dfsHelper(w, marked, edgeTo, distTo);

Depth-first search analysis

DFS marks all vertices connected to s in time proportional to |V| + | E| in the worst case.
» |Initializing arrays marked and edgeTo takes time proportional to | V]|.

» Each adjacency-list entry is examined exactly once and there are 2| E| such entries (two
for each edge in an undirected graph).

Once we run DFS, we can check if vertex v is connected to s in constant time (look into
the marked array). We can also find the v-s path (if it exists) in time proportional to its
length (follow the edgeTo array).

Breadth-first search

Breadth-first search

» Basic idea: BFS traverses vertices in order of distance from s. (All of s's adjacent vertices
get seen first, then the ones 2 away, then the ones 3 away...)

« BFS (from source vertex s)
» Puts onaqueue and mark it as visited.

» Repeat until the queue is empty:

» Dequeue vertex v.
>~ Enqueue each of v's unmarked neighbors and mark them.

» When we enqueue a vertex is when we mark it as visited/

Algorithms

Algorithms

URTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

el
O W m N R WO
[

[
~N

4.1 BREADTH-FIRST SEARCH DEMO

Order visited: 0,2, 1,5, 3,4

representations
" of the same edge

\[z]‘

~[11f—~{20~12]

=[]

G

\@

Worksheet time!

* Run the BFS on the following graph starting at vertex 0 and return the vertices in the
order of being marked. Assume the adjacent vertices are returned in increasing
numerical order (i.e. you visit smaller numbers first).

Worksheet answers

Vertices marked as visited: 0, 2,4, 5, 3, 1

marked edgeTo distTo

oA w N f=lo] <
— | |- [| |
O IOIN O |H& |
=N =N o

Breadth-first search in Java

public void bfs(int s) {
boolean[] marked = new boolean[V];
int[] edgeTo = new int[V];
int[] distTo = new int[V];

Queue<Integer> queue = new LinkedList<>();
marked[s] = true;

distTol[s] = 0;

queue.add(s); engueue s

while (!queue.isEmpty()) {
int v = queue.remove(); dequeue v

for (int w : adjlv]) {
if (!'marked[w]) {

marked [w] true;
edgeTo[w] = v;
distTo[w] = distTol[v] + 1;

ueue.add(w) ; : :
\ enqueue adjacent vertices, w

Worksheet time!

» Run DFS and BFS on the following graph starting at vertex s. Assume the adjacent vertices
are returned in lexicographic (i.e., alphabetical) order.

input

https://11011110.github.io/blog/2013/12/17/stack-based-graph-traversal.html

Worksheet answer

» Run DFS and BFS on the following graph starting at vertex s. Assume that the adj method
returns back the adjacent vertices in lexicographic order.

* DFS: s-=>a->b->e->d->c->f->g->h

» BFS: s->a->c->b->d->f->e->g->h

Summary

» DFS: Uses recursion.

» BFS: Put unvisited vertices on a queue.

 Shortest path problem: Find path from s to t that uses the fewest number of edges.
» E.g., calculate the fewest numbers of hops in a communication network.
 E.g., calculate the Kevin Bacon number or Erdos number.

- BFS computes shortest paths from s to all vertices in a graph in time proportional to
[E|+|V]

» The queue always consists of zero or more vertices of distance k from s, followed by
zero or more vertices of k+1.

» DFS, on the other hand, will find a path, but it's not guaranteed to be the shortest one.

Directed graphs

Directed Graph Terminology

Directed Graph (digraph) : a set of vertices V connected
pairwise by a set of directed edges E.

Directed path: a sequence of vertices in which there is a
directed edge pointing from each vertex in the
seguence to its successor in the sequence, with no
repeated edges. (Basically just a path in the graph.)

« Asimple directed path is a directed path with no
repeated vertices.

Directed cycle: Directed path with at least one edge
whose first and last vertices are the same.

» Asimple directed cycle is a directed cycle with no
repeated vertices (other than the first and last).

The length of a cycle or a path is its number of edges.

directed
w10
Ld,_u

directed
cycie of

length3

.

directed

= path of

vertexof length 4
ndegree 3 and l

outdegree 2
C

Anatomy of a digraph

Directed Graph Terminology selfloop

» Self-loop: an edge that connects a vertex to itself. ® (D=
» Two edges are parallel if they connect the same pair of é (9)

vertices. \::
oz ®

CACIC

» The outdegree of a vertex is the number of edges pointing

from it. v _

+ The indegree of a vertex is the number of edges pointing 19,1,2,3,4,5,6,7,8,9,10,11,12
to it. }

« Avertex Wis reachable from a vertex v if there is a E = {{0,0}, {0,1}, {0,5},

12,0, 12,3},13,2},13,5},
14,2},14,3},15,4},16,0;},

» Two vertices v and w are strongly connected if they are 16,45,16,95,17,0517,8},18, 7},

18,91,19,10},19,11},110,12},
mutually reachable. (11,4} {11,12}. {12,911

directed path from v to w.

Directed Graph Terminology Wj@

+ Adigraph is strongly connected if there is a ?{\é ©
directed path from every vertex to every other Gr— \@9

vertex.

« A digraph that is not strongly connected consists

o
of a set of strongly connected components, Q{

which are maximal strongly connected
subgraphs. Oz

A digraph and its strong components

» Adirected acyclic graph (DAG) is a digraph with
no directed cycles. 0

<5
<5
-
4"
i
7

P
° l“‘e
N N
N\ N\
-
N\ N\

Digraph Applications

Digraph Vertex Edge
Web Web page Link
Cell phone Person Placed call
Financial Bank Transaction

Transportation

Intersection

One-way street

Game Board Legal move
Citation Article Citation
Infectious Diseases Person Infection

Food web

Species

Predator-prey relationship

Popular digraph problems

Problem Description

s->t path Is there a path from s to t?

Shortest s->t path What is the shortest path from s to t?

Directed cycle Is there a directed cycle in the digraph?

Can vertices be sorted so all edges point from earlier to later

Topological sort .
pofog vertices?

Strong connectivity Is there a directed path between every pair of vertices?

Basic Graph API

public class Digraph
Digraph(int V): create an empty digraph with V vertices.
vold addEdge(int v, int w):add an edge v->w.
Iterable<Integer> adj(int v):return vertices adjacent fromv.
1nt V(): number of vertices.
int EC): number of edges.

Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list

» Maintain vertex-indexed array of lists.
: - A
ood for sparse graphs (edges proportional to
| V]) which are much more common in the ;f\é) @’@
real world. Grm O \®>®

» Algorithms based on iterating over vertices il
adjacent from v.

o W N O

/NN

» Space efficient (|E| + | V]).

» Constant time for adding a directed edge.

* New difference: Lookup of a directed edge or)

10

iterating over vertices adjacent from v is -

12

outdegree(v).

Adjacency-list digraph representation in Java

9 public class DirectedGraph {

10 private final int V;

11 private int E;

12 private final List<Integer>[] adj;

13

14 @SuppressWarnings ("unchecked")

15 public DirectedGraph(int V) {

16 this.V = V;

17 this.E = 0;

18 adj = (List<Integer>[]) new List[V];

19 for (int v = 0; v < V; v++) A

20 adj [v]l = new ArraylList<>();

21 }

22 s

23

24 public void addEdge(int v, int w) { Very similar to undirected graph implementation,
2> A | main change is adding directed edges (1 edge,

26 adj[v].add(w); // Directed edge from v to w

27 } not 2) //adds undirected edge v-w to graph. parallel edges and
28 self-loops allowed

29 public Iterable<Integer> adj(int v) { public void addEdge(int v, int w) {

30 return adj[v]; E++;

31 } adj[v].add(w);

32 adjlwl.add(v); yndirected implementation

DFS in Directed graphs

Problem Description

Reachability

s->t path Is there a path from s to t?
* Find all vertices reachable from s along a directed path.

® »>® >0« 0« 0« 9=« 9 >0

A | A | | W
¥ ¥ .9 y _ y Fo-
® >0« @ >0 >0« O« ’ -9
A A A A |
Y Y | | | Y
® »0=« @ »P0=« PO« O= ’ - @
A | 4 i |
Y Y Y | Y
’4-——04—’ —»’-—»’—»%-»’-—-»Q
Y | Y Y Y
® >0« O« 0=« O »’4-— -
| 4 A
Y Y Y | | Y
P9 >0 >0« 9 >0 >0 0
A A A | A
Y Y ‘ Y | Y
o »9 »0=« @& »0 0=« 0=« 9
'Y Y Y | | Y
® >0 >0« @& 0=« 0 »0< 9

Is w reachable from v in this digraph?

https://apprize.info/science/algorithms_2/2.html

https://apprize.info/science/algorithms_2/2.html

Depth-first search in digraphs

 Same method as for undirected graphs.
Every undirected graph is a digraph with edges in both directions.
Maximum number of edges in a simple digraph is n(n — 1).

(to visit a vertex v)
Mark vertex v.

Recursively visit all unmarked vertices w adjacent from v.

Find a directed path from source vertex s to a given target vertex v.

Topological sort (sort so dependencies are ordered, e.g. for fulfilling course pre-reqs).

Directed cycle detection.

Algorithms

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED DFS DEMO

~
o

LTI I Il

~—

VAN

ity

~o(3]

pEltl

pElntl

~[4]

a8 0]

~e 9]

~e]

~m—m

"l

~la e

~]

Worksheet time!

 Given the following adjacency list, visualize the resulting digraph and run DFS on it
starting at vertex 0. In what order did you visit the vertices?

* |s every vertex reachable from 07

0 e 3|1 k
Note: Ignore the “1” value

1 —b6l§

—[
Worksheet answer m i\
ml)
» Given the following adjacency list, visualize the resulting [H ,‘\
digraph and run DFS on it starting at vertex 0. e [1\
—p -r 711 \
Order:0,3,1,6,2,4,7,5 _l +7 ,\
Yes, every vertex reachable from O >
marked edgeTo

N |([oju AW NI O

Al WINIO|O|W|.

Depth-first search analysis

» DFS marks all vertices reachable from s in time proportional to |V| + | E| in the worst case.
» Initializing arrays marked takes time proportional to | V]|.

» Each adjacency-list entry is examined exactly once and there are E such edges (different
than undirected graphs, which have 2 |E| edges).

« Once we run DFS, we can check if vertex v is reachable from s in constant time (look into
the marked array). We can also find the s->v path (if it exists) in time proportional to its
length.

+ Basically, same as DFS analysis on undirected graphs, but E instead of 2E edges

BFS In Directed graphs

Breadth-first search

 Same method as for undirected graphs.
Every undirected graph is a digraph with edges in both directions.
BFS (from source vertex s)
Put s on queue and mark s as visited.
Repeat until the queue is empty:
Dequeue vertex v.
Enqueue all unmarked vertices adjacent from v, and mark them.

Typical applications:

Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to
|E|+|V].

A l g OrI1l th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Order visited: 0, 2,1, 4, 3,5

Worksheet time!

 Given the following adjacency list, visualize the resulting digraph and run BFS on it
starting at vertex 0. In what order did you visit the vertices? Is every vertex reachable
from 07

0 —521-}41&

1 —)21-{»51-{»61'\

Worksheet answer *

 Given the following adjacency list, visualize the
resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

« 0,2,4,5,7,6 No, we never reach 1 or 3 from O

Vv marked edgeTo distTo
0 T 0
°) 1 F
2 T 0 1
3 F
o o 4 0 1
5 2 2
6 7 3
. / 4 2

Summary

» Single-source reachability in a digraph: DFS/BFS.
» Shortest path in a digraph: BFS.

Lecture 20 wrap-up
* No lab tonight

» Checkpoint corrections due Thu 11:59pm
* Final proj part 1 due next Fri 11/21

» HW10: Graphs due Tues 11/25 (day before Thanksgiving break) 11:59pm,; released by end
of week

Resources

Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)

« Website: ,

* Visualization:

* Practice problems (3!) behind this slide

https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/42digraph/
https://visualgo.net/en/dfsbfs

Problem 1

What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

What is the maximum number of edges in a digraph with V vertices and no parallel edges?

What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

Problem 2

Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency
list in this order:

- 84
¢ 2-3

» 11-8
« 1-11

2.

. 0-6 > 0
. 3.6 y 6-2
« 10-3 » 5-2
« /-11 » 5-10
AL » 5-0

» 8-1

Problem 3

Run DFS and BFS on the following digraph starting at vertex 0.

Answer 1

What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?
* n(n—1)/2, wheren=|V]|.

» Whatis the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

* n-—1.
» What is the maximum number of edges in a digraph with V vertices and no parallel edges?
* n(n—1),wheren=|V]|.
» What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

c n-—1.

Answer 2

» Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency
list in this order:

. 84
« 2-3
. 1_11 > 11_8 » 0 ->5>2->6
» 1 ->4->8->11
° 0-6 g 2-0 » 2 ->5>6->0->3
. 3'6 > 6'2 y 3 >10->6->2
» 4 ->1->8
¢ 10-3 2 5-2 » 5>0->10->2
o« /11 . 5.10 b6 ->2->3->0
. 7-8 » 7 ->8->11
» 5-0) 8 >1->11->7->4
, 8-1 » 9 >
» 10 ->5->3

y 4-1 » 11 >8->7->1

Answer 3

DFS - Order of visit: 0, 1, 3, 2,4, 5, 7, 6

marked edgeTo
T

N ool INI=(OILZ
— | |||
iN|ID|lw|lm|lwl|o

Answer 3

BFS - Order of visit: 0, 1, 3,24,5, 7, 6

\' marked edgeTo distTo
0 T - 0
1 T 1 1
2 T 3 2
3 T 1 2
4 T 3 3
5 T 4 4
6 T 7 6
7 T 5 S

