CS62 Class 21: Hash Tables (pt 1)

(Jack Williams)

(_ Sandra Miller) Jack Williams 779-64-52 |
Sandra Miller 254-63-56
Andrew Wilson 576-31-87 |

Andrew Wilson

Open addressing hash table main idea: If there's a collision,
just go to the next available bucket. No linked lists

Agenda

* Separate chaining review & analysis
* Open Addressing (linear & quadratic probing)
* More about equals and hashcodes

* Hashtables in Java

Last time: separate
chaining hashtables

Separate Chaining Hash Table: review

A separate chaining hash table has M buckets which contain linked lists that store N data.

* Data is converted by a hash function into an integer representation called a hash code.
» The hash code is then reduced to a valid index, and data is stored in that bucket at that index.
* Resize when load factor N/M exceeds some constant.

* |f items are spread out nicely, ©(1) average runtime.

data hash function

* englishToInt L hash code
2234

cat

OO ~NOUT S~ WNEOS

A hash table!

Hash Table Runtime with No Resizing

Suppose we have:
" » An fixed number of buckets M.
. {] » An increasing number of items N.

N =19 M=5 N/M=3.38 Average list is around N/M items

= W N PR O
YV V Vv VvV vV

Even if items are spread out evenly, lists are of length Q = N/M.

® For M =5, that means Q = O(N). Results in linear time operations.

Resizing Hash Table Runtime

Suppose we have:

0 — .

1 > - - » An increasing number of buckets M.
2 — .

3 . . , .D An increasing number of items N.

4 . .

N=19 M=5 N/M=3.8 As long as M = O(N), then O(N/M) = O(1).

Assuming items are evenly distributed (as above), lists will be approximately N/M items long,
resulting in ©(N/M) runtimes.

* By doubling every time N gets too big, we ensure that N/M = O(1).
* Thus, worst case runtime for all operations is O(N/M) = O(1).

° ...unless that operation causes a resize.
O(N)

N . . ’ : i1fi . ?
If it causes a resize, what's the runtime of that specific operation: but O+(1) amortized!

* ...and again, we're assuming even distribution of items.

Regarding Even Distribution

Even distribution of item is critical for good hash table performance.
+ Both tables below have load factor of N/M = 1.
» Left table is much worse!

« Contains is O(N) for x.

How do we ensure an even distribution? A good scrambly hash function.

Uniform hashing assumption

» Uniform hashing assumption: Each key is equally likely to hash to an
integer between 0 and m — 1.

» Mathematical model: balls & bins. Toss n balls uniformly at random
iINnto m bins.

+ Bad news: Expect two balls in the same bin after ~/(zm/2) tosses.

» Birthday problem: In a random group of 23 or more people, more
likely than not that two people will share the same birthday.

» Good news: load balancing

* When n > m, the number of balls in each bin is “likely close” to n/m.

Going from hash code to hash value (index): avoiding
negatives

- an int between =231 and 23! — 1

:an int between 0 and m — 1, where m is the hash table size (typically a prime number/power of 2).

* The class that implements the dictionary of size m should implement a hash function. Examples:

private int hash (Key key){
return key.hashCode() % m;

¥
- Bug! Might map to negative number (e.g.,-1 % 16 =-1).

private int hash (Key key){
return Math.abs(key.hashCode()) % m;

¥

- Very unlikely bug. For a hash code of —2°!, Math. abs will return a negative number!

private 1nt hash (Key key){
return (key.hashCode() & Ox7fffffff) % m;

¥

> Correct.

Separate Chaining implementation

O 00 ~J O U1 B W N =

N R R R R R R R R R
© WO ~NOoOOU P WNROS

public class SeparateChainingLiteHashST<Key, Value> {
private static final int INIT_CAPACITY = 128;

private static final int LOAD_FACTOR_THRESHOLD = 4;

private int m; // number of buckets
private int n; // number of key-value pairs
private Node[] table; // array of linked-1list chains - the table itself
private class Node { 21 public SeparateChainingLiteHashST() {
Key key: 22 this(INIT_CAPACITY);
Value val; ii ;
Node next; 25 public SeparateChainingLiteHashST(int capacity) {
26 m = capacity;
public Node(Key key, Value val, Node next) { 27 table = (Node[]) new SeparateChainingLiteHashST.Node [m];
this.key = key; 28 n=0;
this.val = val; iz r
this.next = next; 31 private int hash(Key key) {
h 32 return (key.hashCode() & Ox7fffffff) % m;
b 33 }

Linear probing also has code, but we won’t go over it in lecture (see code on website)

Worksheet time!

Fill in the blanks to implement get() in a separate chaining hash table. You can assume
you have access to the hash() method, and an instance variable called table which is

an array of Nodes, where Nodes contain a key, value, and next pointer (they are
Nodes in a SLL).

public Value get(Key key) {

int 1 = » //hash the key
for () { //g90 through linked list
if () { //if the keys match
return » //return the value
I3
I3

return null;

}

Worksheet solution

public Value get(Key key) {
int i = hash(key);
for (Node x = table[i]l; x !'= null; x = x.next) {
if (key.equals(x.key)) {
return x.val;

b remember we use .equals() to compare keys!

}

return null;

Parting thoughts about separate-chaining

. Easy! Hash key, find its chain, search for a node that contains it and
remove it.

. not supported. Instead, look into (balanced) BSTSs.

+ Fastest and most widely used dictionary implementation for applications where
key order is not important.

Open addressing

Open Addressing: An Alternate Strategy

Instead of using linked lists, an alternate strategy is “open addressing”.

» Map/set is stored as an array of items. Index tells you where to put the item.

If target location is already occupied, use a different location, e.g.

 Linear probing: Use next address, and if already occupied, just keep scanning
one by one.

- Quadratic probing: Use next address, and if already occupied, try looking 4
ahead, then 9 ahead, then 16 ahead, ...

A l g() Il th M S ROBERT SEDGEWICK | KEVIN WAYNE

3.4 LINEAR PROBING DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

Linear Probing Example

key hash 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
« Hash: Map key to integer i S 6 >
between 0 and m — 1. £ 10 [T T -
ENniries In rea 1 _
Are New' . eniries in ,'i".':'.'f.'.
« |Insert: Put atindex i if free. If A4 3 - are untouched
not, tryi+ 1,i + 2, etc. R 14 ;
° .) y e Bkl C
+ Search: Search table index i. If - Kysiybiak |51 s
occupied but no match, try H o 4 AR
1+ 1,1+ 2, etc E 10 g
. X
- If you find a gap then you o 7
know that it does not exist. A4 0
M .
. M 1 Prope sequence
» Table size m must be greater : ' wraps 1o 0
P R X °
than the number of key-value oo 10
S H L

pairs n. L 6
E - keys|]
E 10 E :iz' ‘ "'d{ 5 [—]

Trace of linear-probing ST implementation for standard indexing client

primary clustering

Primary clustering

. @ contiguous block of keys.

: new keys likely to hash in middle of big clusters.

* mtoo large -> too many empty array entries.
» m too small -> search time becomes too long.

- Typical choice for load factor: a = n/m~1/2 -> constant time per operation.

Worksheet time!

» Assume a map implemented using hashing and linear probing for handling
collisions.

* Letm =7 be the hash table size.

 For simplicity, we will assume that keys are integers and that the hash value for
each key k is calculated as (k) = k % m.

* Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), (47,5) and show the
resulting map.

47

5

Key Hash Value

0

3

28

14

9

47

Keys

Values

Indices

Ul IN IO O (W

ol |~ [N (=

Worksheet answers

collision

updates value

28

14

47

Resizing in a linear probing hash table

* Goal: Load factor n/m < 1/2.
* Double hash table size when n/m > 1/2.
« Halve hash table size when n/m < 1/8.

» Just like in separate chaining, need to rehash all keys when resizing (hash code
does not change, but hash value changes as it depends on table size).

» Deletion not straightforward.
>~ Option 1: Delete but then re-insert everything in the cluster to close the gap

~ Option 2: Keep it in the table but flag it so it doesn't get searched for, and can
be inserted over

Quadratic Probing

Another open addressing technique that aims to reduce primary clustering by

taking the original hash index and adding successive values of an arbitrary
guadratic polynomial until an open slot is found.

Modify the probe sequence so that ik, i) = (h(k) + ¢,i + ¢,i*) % m, c, # 0, where i is
the i-th time we have had a collision for the given index.

* Cisjust some constants. When ¢, = 0, then quadratic probing degrades to linear
probing. In practice, we use c1 =0, c2 =1, so the formula becomes h(k) + i*2.

* |l.e., at first collision, go to the next (122 = 1) slot in the array. If that's still a
collision, go to the slot that's 222 = 4 away. If that's still a collision, go to the slot
that's 322 = 9 away. If that's still a collision, go to the slot that's 422 = 16 away.

» 1,4,9, 16, 25... away from the original hashed bucket

Quadratic probing - Example

» h(k) = k% m and h(k, i) = (h(k) + i%) % m.

» Assume m = 13, and key-value pairs to insert: (17,0), (33,1), (18,2), (20,3), (44,4),
(11,5), (19,06), (7,7).

(17,0) 17

(33,1) 17 33

(18,2) 17 | 18 33

(20,3) 17 | 18 33 | 20 Collision! 20 inserted 1 away
(44 4) 17 | 18 | 44 | 33 | 20 Collision! 44 inserted 1 away
(11,5) 17 | 18 | 44 | 33 | 20 11

(19.6) 17 | 18 | 44 | 33 | 20 19 | 11 Collision! 19 inserted 4 away
(7,7) 17 | 18 | 44 | 33 | 20 19 | 11 Collision! 7 inserted 9 away

Worksheet time!

» Assuming m=9, insert keys 3, 9, 18, 0, 4, 36 in a quadratic probing hash table.
« Assume h(k) = key % m and h(k, i) = (h(k) + i*2) % m.
* What is the load factor?

Worksheet answers

® 0 @ O @ O O

load factor 0.67 36 is inserted 16 away!

(it wraps around)

Summary for dictionary operations

Worst case Average case
Search Insert Delete Search Insert Delete
. n n n log n logn \/5
balanced BST ~ 10Z A log n logn logn logn logn
chaining n n n 1 1 1
Open addressing n n n] 1 1

Worst case when resizing hash table All other operations

More about hashcode
equality

ColoredNumbers

Let's say we're inserting ColoredNumber objects into a HashTable. Each has 2
attributes:

private int num;

private Color color;

Let's see what happens when we insert ColoredNumbers 0 through 19 into a hash
table with 6 buckets.

Desighing a Hash Function

o0

What hash function will result in the distribution to the right?

private int num;

private Color color;

A8 D

A: Just num % size of table (6)

The default hash code

We mentioned that the goal of a hash function is to try to
spread items out evenly. E.g., for an integer’s .nashCode():

No spread: Returning O.
Bad spread: Returning sum of its digits.
» Good spread: Returning the number itself.

What do you think about the spread of the default hashCode,
which returns the memory address?

A. No spread.

5. Bad spread. The memory address is effectively random, so items
C. Good spread. should be evenly distributed.

If the default hashCode achieves good spread, why do we
even bother to create custom hash functions?

BB D

The .equals() Method for a ColoredNumber

Suppose the .equals() method for ColoredNumber is as below, i.e. two
ColoredNumbers are equal if they have the same num.

* General principle: if two things are equal, they should act as if they are the same
thing to outside observers

@Override
public boolean equals(Object o) {
if (o.getClass() == this.getClass()) {

return this.num == otherCn.num;

}

return false;

Finding an Item Using the Default HashCode

Suppose we are using the default hash function (uses memory O
address), which yields the table to the right.

int N = 20; 13“

HashSet<ColoredNumber> hs = new HashSet<>();
for (int i = 0; i < N; 1 += 1) {

hs.add (new ColoredNumber (i)); 2: n n
}

ColoredNumber twelve = new ColoredNumber (12);

hs.contains (twelve); // returns ?2?
A HED

Suppose equals returns true if two ColoredNumbers have the

same num (as on the previous slide). 4

What does the contains operation return? (Note: contains() calls .. ﬂ
equals()) |

Finding an Item Using the Default HashCode

hashCode: Based on memory address. O:

equals: Based on num.

ColoredNumber twelve = new 1. n
-l B

* One of them is in the HashSet.

» One of them was created by the code above. 3:

Each memory address is random.

» Only 1/6th chance they hash to the same bucket. 4:

Example: If object created by code above is in memory location
6000000, its hashCode % 6 is O.

- HashSet looks in bucket zero, doesn't find 12 (in bucket 1). 3 H

ColoredNumber(12);
hs.contains (twelve); // returns ??

There are two ColoredNumber objects with num = 12.

Consistency between equals and hashCode

-F B
If the default hashCode achieves good spread, why do we

even bother to create custom hash functions?
. B B m 0
* Necessary to have consistency between equals and
hashCode for basic operations to function.
g0l
Basic rule: If two objects are equal, they'd better have
the same hashCode so the hash table can find it. 3:
-
. 380

Worksheet time!

Suppose we have the same equals method (comparing num), but we

- 3
do not override hashCode.
-0 B B EE
public boolean equals(Object o) {
... Yreturn this.num == otherCn.num; ...
2080
. @ E 0
What can happen when we call add (zero)?

A. We add another 0 to bin zero. 4:
B. We ac

d another O to bin one.
C. We add another 0 to some other bin.

D. We do not get a duplicate zero. 5: n

}

ColoredNumber zero = new ColoredNumber (0);
hs.add(zero); // does another zero appear?

Worksheet answer

@QOverride

public boolean equals(Object o) {

if (o.getClass() == this.getClass()) {
return this.num == otherCn.num; 1: n
}
- [l & B

return false;

What can happen when we call add (zero)?

A. We add another 0 to bin zero.

B. We add another O to bin one. 3
C. We add another 0 to some other bin.

D. We do not get a duplicate zero.

The new zero ends up in a random bin.

» 5/6ths chance: In bin 0, 2, 3, 4, or 5. Duplicate! 5. n

* 1/6 chance: In bin 1, no duplicate! (equals blocks it)

Takeaway: Equals and hashCode

Bottom line: If your class override equals, you should also override hashCode in a
consistent manner.

» |f two objects are equals, they must always have the same hashCode.

If you don't everything breaks:

» Contains can't find objects (unless it gets lucky).
» Add results in duplicates.

Hash Tables in Java

The Ubiquity of Hash Tables

In Java, implemented as java.util.HashMap and java.util.HashSet.
» How does a HashMap know how to compute each object’'s hash code?
* Good news: It's not “implements Hashable”.

* |Instead, all objects in Java must implement a .hashCode () method.

Object Methods

All classes are subclasses (hyponyms) of Object.
 String toString()

* boolean equals(0Object obj)

e 1nt hashCode()

Default implementation of hashCode for an Object returns its memory address.

.hashCode()

Hash Codes in Java: More specific types

Java’'s actual hashCode function for Strings below (code cleaned up slightly):

» "M E)" and “+EreWn” map to 839,611,422.

public int hashCode(String s) {
int intRep = 0;
for (int 1 = 0; 1 < s.length(); 1 += 1) {
intRep = 1intRep * 31;
intRep = intRep + s.charAt(1i);
}

return intRep;

}

That is, the two calls below both return 839,611,422.

- “fa N E]".hashCode()
« “+EreWn".hashCode()

Note: for integers, the hashcode is just the integer value.

For booleans, true’'s hashcode is 1231 and false’s is 1237. Why? They're
both large prime numbers (primes = better to avoid collisions.)

Implementating of hashCode() for user-defined types

public class Date {
private int month;
private int day;
private int year;

public int hashCode() {
int hash = 1;
hash = 31*hash + ((Integer) month).hashCode();
hash = 31*hash + ((Integer) day).hashCode();
hash = 31*hash + ((Integer) year).hashCode();
return hash;
//could be also written as
//return Objects.hash(month, day, year);

Why 317 It's a small prime to ensure all bits of all the fields play a role in creating the hash code.

General hash code recipe in Java

» Combine each significant field using the 31x+y rule.

» Shortcut 1: use Objects.hash() for all fields (except arrays).
» Shortcut 2: use Arrays . hashCode() for primitive arrays.
» Shortcut 3: use Arrays.deepHashCode() for object arrays.

» But make sure the objects are immutable!

Avoid items getting lost

Warning #1: Never store objects that can change in a HashSet or HashMap!
» Such objects are also called “mutable” objects, e.g. they can change.
- Example: You'd never want to make a HashSet<List<Integer>>.

* If an object’s variables changes, then its hashCode changes. May result in
items getting lost.

Warning #2:. Never override equals without also overriding hashCode.

» Can also lead to items getting lost and generally weird behavior.
» HashMaps and HashSets use equals() to determine if an item exists in a
particular bucket. (Not recalling .nashCode()!) (We just did this example.)

More on warning #2: if 2 objects are “equal”, they should
have the same hashCode

» Requirement: If x.equals(y) then it should be
X .hashCode()==y.hashCode().

+ |deally (but not necessarily): If Ix.equals(y) then it should be
X .hashCode()!=y.hashCode().

* Need to override both equals() and hashCode() for custom types.

+ Already done for us for Integer, Double, etc.

Equality test in Java

» Requirement: For any objects X, y, and z.
+ Reflexive: x.equals(x) is true.
» Symmetric: X.equals(y) iffy.equals(x).
 Transitive: if x.equals(y) andy.equals(z) then x.equals(z).
« Non-null: if x.equals(null) is false.

* If you don't override it, the default implementation of .equals() checks whether X
and y refer to the same object in memory.

General equality test recipe in Java: x.equals(y)

» Optimization for reference equality.
+ 1f (y == this) {return true;}
* Check against null.
+ 1f (y == null) {return false;}
« Check that two objects are of the same type.
« 1f (y.getClass() != this.getClass()) {return false;}
» Cast them.
» Date that = (Date) vy;
» Compare each significant field (i.e. instance variable).
return (this.day == that.day && this.month == that.month && this.year == that.year);
- If a field is a primitive type, use ==.
* |If a field is an object, use equals().
» If field is an array of primitives, use Arrays.equals().

» |If field is an area of objects, use Arrays.deepEquals().

~ But make sure the objects are immutable!

Overriding equals() for user-defined types

public class Date {
private int month;
private int day;
private int year; signature: public boolean equals(Object objToCompare)
public boolean equals(Object y) {
1f (y == this){ return true;} same memory location
1f (y == null){ return false;} non-null requirement
1f (y.getClass() !'= this.getClass()){ return false;} same class
Date that = (Date) y; castthe objtobe compared asthe same class
return (this.day == that.day &&
this.month == that.month & & and compare specific attributes
this.year == that.year); (of primitive types)

Lecture 19 wrap-up

* Checkpoint 2 regrades due Thurs 11:59pm.
» HWO9: Text generator due Tues 11:59pm
* No lab this week! Use the time to work on your final projects!

» No HW due this week (after text generator!) Use the time to work on your final projects!

» Last HW (HW 10: Graphs) released soon

Resources

* Hashtable history:

* Reading from textbook: Chapter 3.4 (Pages 458-477);

* Hashtable visualization:

https://cs.pomona.edu/classes/cs62/history/hashtables/
https://algs4.cs.princeton.edu/34hash/
https://visualgo.net/en/hashtable?slide=1

