
Insertion Sort

Joseph C Osborn

April 1, 2025



Outline

Sorting Algorithms

Insertion Sort

Proving Sortedness



Sorted Lists

▶ Next semester, you'll take CS62

▶ You'll talk a lot about algorithms and data structures
▶ Including sorting lists

▶ Today we'll get a preview in the functional setting

▶ So what's a sorted list?



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order

▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order
2. It is a permutation of the input list



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order
▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order
2. It is a permutation of the input list



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order
▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order
2. It is a permutation of the input list



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order
▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order
2. It is a permutation of the input list



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order
▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order

2. It is a permutation of the input list



Sorting a List

▶ Sort the list [1,5,2,3,1] in ascending order
▶ [1,1,2,3,5]

▶ We can sort lists of anything Ord

▶ Two important things about the output list:

1. It is in ascending order
2. It is a permutation of the input list



Ascending Order

▶ We can write this di�erent ways for a list l:
▶ forall x, if x appears at n in l, and n is not the end of the list, then

nth l (n+1) is at least as big as x.
▶ forall n, if n < length l then nth l n ≤ nth l (n+1)
▶ "An empty list and a one element list are sorted; prepending an

element x to a list is sorted if x ≤ the �rst element of the list, if any"
(an inductive de�nition!)

▶ sorted(l) = True where:

sorted (x:y:l) = x <= y && sorted (y:l)

sorted _ = True



Permutations

▶ We need this property too!
▶ Otherwise [] is a perfect output for any "sorting function"

▶ The new list needs the same elements as the old list, but possibly in
a di�erent order



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:

▶ If this element is smaller than the front of the new list (or if the new
list is empty), just cons it on

▶ If this element is bigger than the front of the new list, recurse with
the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:

▶ If this element is smaller than the front of the new list (or if the new
list is empty), just cons it on

▶ If this element is bigger than the front of the new list, recurse with
the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:

▶ If this element is smaller than the front of the new list (or if the new
list is empty), just cons it on

▶ If this element is bigger than the front of the new list, recurse with
the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:

▶ If this element is smaller than the front of the new list (or if the new
list is empty), just cons it on

▶ If this element is bigger than the front of the new list, recurse with
the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:
▶ If this element is smaller than the front of the new list (or if the new

list is empty), just cons it on

▶ If this element is bigger than the front of the new list, recurse with
the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:
▶ If this element is smaller than the front of the new list (or if the new

list is empty), just cons it on
▶ If this element is bigger than the front of the new list, recurse with

the tail of the new list

▶ Once we've inserted every element, we're done!



Key Idea

▶ Here's a simple sorting function

▶ We'll sort a list by making a new list from it, one element at a time

▶ The new list will always be sorted, by construction

▶ Inserting the new element into the new list does one of two things:
▶ If this element is smaller than the front of the new list (or if the new

list is empty), just cons it on
▶ If this element is bigger than the front of the new list, recurse with

the tail of the new list

▶ Once we've inserted every element, we're done!



Insert

insertion_sort [] = []

insertion_sort (x:l) = insert x (insertion_sort l)

insert _x [] = [x]

insert x (y:l)

| x <= y = x:y:l

| otherwise = y:(insert x l)

▶ Try it on these lists: [2, 1, 3], [1, 2, 3], [3, 2, 1].



Preservation Properties

▶ We often want to prove that applying some function doesn't lose us
some property
▶ We call these "preservation properties"
▶ E.g., "map preserves length" is the property that mapping over a list

doesn't change its length
▶ E.g., "�lter preserves order" states that the order of elements in a

list won't change through �lter

▶ Preservation properties are an easy way to build up proofs about a
whole procedure
▶ If each step of the procedure preserves the thing we care about, then

the whole procedure will too



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.

▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.
▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.

▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.
▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.

▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.
▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.

▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.
▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.
▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.

▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ Claim: forall l, sorted l = True implies forall x, sorted (insert

x l) = True

▶ By induction on l.

▶ (l=[]). Let x be given; we know insert x [] = [x] and we know
single-element lists are trivially sorted.

▶ (l=(y:l')). IH: sorted l' = True implies forall x, sorted (insert
x l') = True.
▶ WTP sorted (y:l') = True implies forall z, sorted (insert z

(y:l')) = True.
▶ Assume sorted (y:l') = True. Let z be given.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.

▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are
done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.

▶ Considering sorted (y:(insert z l')), we know y is no bigger
than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.

▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are
done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.

▶ Considering sorted (y:(insert z l')), we know y is no bigger
than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.

▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are
done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.

▶ Considering sorted (y:(insert z l')), we know y is no bigger
than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.

▶ Considering sorted (y:(insert z l')), we know y is no bigger
than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.

▶ Considering sorted (y:(insert z l')), we know y is no bigger
than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.
▶ Considering sorted (y:(insert z l')), we know y is no bigger

than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.
▶ Considering sorted (y:(insert z l')), we know y is no bigger

than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.
▶ Considering sorted (y:(insert z l')), we know y is no bigger

than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.

▶ We could have sorted (insert z l') by our IH, if we could prove
sorted (y:l'); and we already know sorted (y:l') from our
assumption.



Insert Preserves Sortedness

▶ (IH: sorted l' = True implies forall x, sorted (insert x l') =
True.)

▶ We have to show sorted (insert z (y:l')) = True. By cases
on whether z ≤ y.

▶ (z ≤ y): We have to show sorted (z:y:l') = True.
▶ We know z ≤ y, and we already assumed (y:l') is sorted, so we are

done.

▶ (y < z): We have to show sorted (y:(insert z l')) = True.
▶ Considering sorted (y:(insert z l')), we know y is no bigger

than the �rst element of insert z l', which will either be z or
some element of l'.

▶ Because we know y < z in this case and we assumed sorted (y:l').

▶ So sorted (y:(insert z l')) is true exactly when sorted

(insert z l') is true.
▶ We could have sorted (insert z l') by our IH, if we could prove

sorted (y:l'); and we already know sorted (y:l') from our
assumption.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.

▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.

▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.
▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.

▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.
▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True

▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.
▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.

▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.
▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')

▶ Since our IH states that insertion_sort l' is sorted, and we know
that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



insertionsort Produces Sorted Lists

▶ Claim: forall l, sorted (insertion_sort l) = True

▶ Proof. By induction on l.
▶ (l=[]). insertion_sort [] = []. Empty lists are trivially sorted.
▶ (l=(x:l')). IH: sorted (insertion_sort l') = True
▶ WTP: sorted (insertion_sort (y:l')) = True.
▶ insertion_sort (y:l') is just insert y (insertion_sort l')
▶ Since our IH states that insertion_sort l' is sorted, and we know

that insert preserves sortedness, we know insert y

(insertion_sort l') must also be sorted.



Using Sortedness

▶ Consider: forall l f, filter f (insertion_sort l) =
insertion_sort (filter f l)

1. Why is this an interesting property?
2. Prove it!


	Sorting Algorithms
	Insertion Sort
	Proving Sortedness

