
csci54 – discrete math & functional programming
lambdas and folds

practice problem from last time
 The mapish function takes a list of functions and a single

element x. It then returns a list of the results of applying each
function to x.

Implement the mapish function. What is the type of the mapish
function?

ghci> mapish [(+1), (*3)] 10
[11, 30]

mapish :: [a->b] -> a -> [b]
mapish [] _ = []
mapish (f:fs) x = (f x) : (mapish fs x)

mapish' :: [(a->b)] -> a -> [b]
mapish' fs x = [f x | f <- fs]

mapish’’ fs x = map (\f → f x) fs

use mapish to implement a
function f that takes a number
x and computes:

f1(x) = x2 +1
f2(x) = 4x-10

Higher order functions
 Let’s get practice with a few higher-order functions:

 dup :: a → (a → a → b) → b
 compose :: (a → b) → (b → c) → (a → c)
 rot :: (a → b → c → d) → (b → c → a → d)

 Same as: (a → b → c → d) → b → c → a → d

Implement these functions. You may (but don’t have to) use lambdas.

Currying
 Remember that in partial application, we always eliminate the

outermost (typically leftmost) arrow.
 dup :: a → (a → a → b) → b

 i.e. (a → ((a → a → b) → b))

 dup 7 :: (Num a) => (a → a → b) → b
 compose :: (a → b) → (b → c) → (a → c)

 compose double isEven :: ????
 rot :: (a → b → c → d) → (b → c → a → d)

 rot foldl :: … we’ll get to this later

lambdas (aka anonymous functions)
 functions that don't have names
 functions that you use once in the context of some other

function

 syntax:
starts with \ (meant to resemble λ).

 -> separates parameters from what the function evaluates to

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

ghci> filter (\y -> (head y) == 'a') ["ab", "aaaaa", "b"]

\a b -> (a * b + 10)

lambdas (aka anonymous functions)
 note that if we wanted a function headA such that it would take

out the elements that started with the character 'A', we could
define it as follows:

 practice: what is the type of the function foo? what does it do?

ghci> headA = filter (\y -> (head y) == 'A')

foo y zs = map (\x -> x^y) zs

One more built-in higher order function
 map, filter, reduce

 How would you write a function sumList that returned the sum
of a list of integers? prodList the returned the product of a list
of integers?

 what is similar?
 what is different?

 in Haskell "reduce" is referred to as "fold"

sumList [] = 0
sumList (x:xs) = x + (sumList xs)

prodList [] = 1
prodList (x:xs) = x * (prodList xs)

foldr' :: (b -> b -> b) -> b -> [b] -> b

Right fold (foldr)

 foldr (+) 0 [3,2,6]
 very, very informally can think:

 [3,2,6] is really 3:2:6:[].
 Replace [] with the base case 0 (sometimes called “seed” value)
 Replace : with the operator (+)

 associate to the right
 3 + (2 + (6 + 0))

 how would you write sumList and prodList using foldr?

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr (+) 0 [3,2,6]
 informally can think of as: [3,2,6] is really 3:2:6:[]. Replace [] with

the base case and the : with the operator
 associate to the right
 3 + (2 + (6 + 0))

 foldl - same idea but associates to the left
 So the seed value also goes in at the leftmost position

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

 foldr (+) 0 [3,2,6]
 foldl (+) 0 [3,2,6]

foldr' :: (a -> a -> a) -> a -> [a] -> a

foldl' :: (a -> a -> a) -> a -> [a] -> a

practice with folds

 The following evaluate to two different values:
 foldr (^) 1 [2,3]
 foldl (^) 1 [2,3]

 What do they evaluate to and why?

foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

and a hint of something more . . .
 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 what does the following do?

 what does this tell you about the type signature?

 (but really it's this:

)

foldr'' :: (a -> b -> b) -> b -> [a] -> b

foldr (_ s -> 1 + s) 0 "abcde"

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Currying practice
 foldr’: (a → b → b) → b → [a] → b

 foldr’ (+) :: ...
 rot :: (a → b → c → d) → (b → c → a → d)

 rot foldr’ :: …

	csci54 – discrete math & functional programming lambdas and fol
	practice problem from last time
	Slide 3
	Slide 4
	lambdas (aka anonymous functions)
	lambdas (aka anonymous functions) (2)
	Slide 7
	One more built-in higher order function
	Slide 9
	Right fold (foldr)
	foldr and foldl
	foldr and foldl (2)
	practice with folds
	and a hint of something more . . .
	Slide 15

