
csci54 – discrete math & functional programming
tuples and lists

Recap

 Write a function cap' that
not only caps the upper limit
at 100, but additionally
evaluates to 0 if n is less
then or equal to 0.

 Write a function pow that
takes two parameters n and
k and returns n to the kth
power. (assume that k is
guaranteed to be a non-
negative integer. do not use
the ** operator)

cap' n =
 if n > 100
 then 100
 else

if n < 0
then 0
else n

pow n k =
 if k == 0
 then 1
 else n * (pow n (k-1))

cap n =
 if n > 100
 then 100
 else n

cap' n =
if n < 0
then 0
else (cap n)

maxInt
 write a function maxInt that takes a list of integers and returns

the value of the largest element. you may assume the list is
not empty.

maxInt [x] = x
maxInt (x:xs) = max x (maxInt xs)

Lists in Haskell
 Homogeneous (all same type)
 square brackets with element separated by commas
 building lists

 square brackets with values separated by commas

 cons

 concatenation

ghci> aList = [1, 10, -3, 5]

ghci> aList3 = aList ++ aList2

ghci> aList2 = 2 : [1, 10, -3, 5]

Lists in Haskell continued
 functions on lists

 head, tail
 init, last
 take, drop
 length, null
 reverse
 ...

 `elem` vs elem
 infix vs. prefix
 same with arithmetic functions: div, mod

 div: round down
 mod: integer mod (goes with div)

aList = [2, 1, 10, -3, 5]

elem 1 [2, 1, 10, -3, 5]
1 `elem` [2, 1, 10, -3, 5]

(Haskell also has quot, rem, which
behave differently than div/mod with
negative numbers)

-->true

-->true

Practice problems
 what does this function do?

numList n =
 if n <= 0
 then []
 else
 n : (numList (n-1))

Practice problems
 (on week01-ps) numList n evaluates to a list of integers from n

down to 1

 numList 3 →
 3 : numList 2 →
 3 : (2 : numList 1) →
 3 : (2 : (1 : numList 0) →
 3 : (2 : (1 : []))) == [3, 2, 1]

numList n =
 if n <= 0
 then []
 else
 n : (numList (n-1))

Practice problems
 (on week01-ps) numList n evaluates to a list of integers from n

down to 1

 Write a function oddList where oddList n evaluates to a list of
odd integers from n down to 1. If n < 1 the function should
return an empty list.

 Write a function oddList' where oddList' evaluates to a list of
odd integers from 1 up to, but possibly not including, n. If n <
1 the function should return an empty list. Do not use the
reverse function.

numList n =
 if n <= 0
 then []
 else
 n : (numList (n-1))

 In this example, will aList and bList be the same at the
end?

aList = [2, 1, 10, -3, 5]
bList = 2:aList
aList = 2:aList

List comprehensions (and ranges)
 A way to build up lists:

 Note use of ranges in Haskell

 Can add more to list comprehensions:

[x*2 | x <- [1..3]]

[x*y | x <- [1..3], y <- [6,4,2]]

[1,3..10]
[10,9..1]

[1,4..]
[47..]

[x*y | y <- [6,4,2], x <- [1..3]]

More on list comprehensions
 Can add predicates:

 Can use any expression:

 a tuple does not need to be homogeneous; cannot append or
concatenate, so must know number of elements from start

[x*y | x <- [1..3], y <- [1..3], x > y]

[if x*y > 3 then "BIG" else "SMALL" | x <- [1..3], y <- [1..3]]

[(x,y) | x <- ['a'..'c'], y <- ["rat","ox","tiger"]]

Practice problems
 Write a function oddList where oddList n evaluates to a list of

odd integers from n down to 1. If n < 1 the function should
return an empty list.

 Write a function oddList' where oddList' evaluates to a list of
odd integers from 1 up to, but possibly not including, n. If n <
1 the function should return an empty list

 Rewrite oddList and oddList' using list comprehensions
 What do these evaluate to?

[if x*y > 3 then [1] else [2] | x <- [1..3], y <- [1..3]]
[(x,y,z) | x <- [1..3], y <- [1..3], z <- [1..3], x < y, y < z]

[(x,y,z) | z <- [1..3], y <- [1..3], x <- [1..3], x < y, y < z]

	csci54 – discrete math & functional programming tuples and list
	Recap
	maxInt
	Lists in Haskell
	Lists in Haskell continued
	Practice problems
	Practice problems (2)
	Practice problems (3)
	Slide 9
	List comprehensions (and ranges)
	More on list comprehensions
	Practice problems (4)

