

bioinformatics: learn motifs

...

Test set

red, round, no leaf, 4oz, ... **?**

Learning is about generalizing from the training data

label

apple

apple

Probability dis	tributions	
Assuming the coin is fair,	what are our probabilit	lies?
numbe	r of times it happens	
probability = total	number of cases	
TTT		
ттн		
ТНТ	P(num heads)	
тнн	P(3) = ?	
нтт	P(2) = ?	
нтн	P(1) = ?	
ннт	P(0) = ?	
ннн		

Probability	distributions	
Assuming the coin	is fair, what are our probabilit	ies?
r	number of times it happens	
probability =	total number of cases	
TTT		
TTH		
THT	P(num heads)	
тнн	P(3) = ?	
HTT	P(2) = ?	
нтн	P(1) = ?	
ннт	P(0) = ?	
ннн		

Assuming the c	oin is fair, what are our probabilit	ies?
	number of times it happens	
probability =	total number of cases	
TTT		
ттн		
THT	P(num heads)	
THH	P(3) = 1/8	
HTT	P(2) = 3/8	
нтн	P(1) = ?	
ннт	P(0) = ?	
ннн		
ннн		

Some example probability distributions	Conditional probability distributions
probability of heads (distribution options: heads, tails)	Sometimes we may know extra information about the world that may change our probability distribution
probability of passing class (distribution options: pass, fail)	P(X Y) captures this (read "probability of X given Y")
probability of rain today (distribution options: rain or no rain)	distribution look like Note that this is still just a normal probability distribution
probability of getting an 'A' (distribution options: A, B, C, D, F)	

conditional distribution

Naïve Bayes Text	Classification
Positive	Negative
l loved it I loved that movie	I hated it I hated that movie
I hated that I loved it	I loved that I hated it
Given examples of text in differer category of new examples	it categories, learn to predict the
Sentiment classification: given posi (sentences), learn to predict wheth	tive/negative examples of text er new text is positive/negative

Negative

I hated that movie

I loved that hated it

l hated it

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
P(I positive) = 1.0	
P(loved positive) = 3/3 P(hated positive) = ?	
P(word label) = number of times word total number of	l occured in "label" examples examples with that label

Training the	model	
Positive		Negative
l loved it		l hated it
I loved that movie		I hated that movie
I hated that loved it		I loved that hated it
P(I positive) P(loved positive) P(hated positive)	= 1.0 = 2/3 = 1/3	P(I negative) = ?
$P(word label) = \frac{number}{tot}$	r of times wor cal number of	d occured in "label" examples examples with that label

Training the modelPositiveNegativeI loved itI hated itI loved that movieI hated that movieI hated that loved itI loved that hated itP(I | positive)= 1.0P(loved | positive)= 2/3P(hated | positive)= 1/3......P(word|label)= number of times word occured in "label" examples

Training the	model		
Positive		Negative	
l loved it		I hated it	
l loved that movie		I hated that movi	ie
I hated that loved it		I loved that hate	d it
P(I positive)	= 1.0	P(I negative)	= 1
P(loved positive) P(hated positive)	= 2/3 = 1/3	P(movie negative)	= ś
$P(word label) = \frac{number}{tot}$	r of times wor tal number of	d occured in "label" examples examples with that label	

in canning into	modor		
Positive		Negative	
l loved it		l hated it	
I loved that movie		I hated that mov	ie
I hated that loved it		I loved that hate	d it
P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 2/3	P(movie negative)	= 1/
P(hated positive)	= 1/3		
$P(word label) = \frac{number}{ta}$	r of times word	l occured in "label" examples	

Classifying	9		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive) Notice that each	= 1.0 = 1.0 = $2/3$ = $2/3$ = $1/3$ = $1/3$	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative) wn probability distribution	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
P(loved positi	tive)		
P(loved posit	tive) = 2/3		
P(no loved po	sitive) = $1/3$		
90			

t positive)	_/ •		- 1.0
	= 2/3	p(that negative)	= 2/3
that positive)	= 2/3	P(movie negative)	= 1/3
novie positive)	= 1/3	p(it negative)	= 2/3
nated positive)	= 1/3	p(loved negative)	= 1/3
nated positive) nated positive)	= 1/3 = 1/3	p(it negative) p(loved negative)	= 1

p(it positive) = 2/3 p(that negative) = 2/ p(that positive) = 2/3 P(movie negative) = 1/ p(movie positive) = 1/3 p(it negative) = 2/	p(movie positive) = 1/3 $p(it negative) = 2/3$	o(it positive) o(that positive) o(movie positive)	= 2/3 = 2/3 = 2/3 = 1/3	p(hated negative) = 1.0 p(that negative) = 2/3 P(movie negative) = 1/3 p(it negative) = 2/3
--	--	---	----------------------------------	--

(loved positive)	= 2/3	p(hated negative)	= 1.0
(it positive)	= 2/3	p(that negative)	= 2/3
(that positive)	= 2/3	P(movie negative)	= 1/3
(movie positive)	= 1/3	p(it negative)	= 2/3
(hated positive)	= 1/3	p(loved negative)	= 1/3

p(max positive) = 2/3 p(max positive) = 1/3	$P(\text{movie} \mid \text{negative}) = 1/3$
P(hated positive) = 1/3	p(loved negative) = 1/3

Trained m	odel		
P(I positive) P(loved positive) p(it positive) p(movie positive) P(hated positive) P(lated positive) P(I positive) * P(hated pos	= 1.0 = 2/3 = 2/3 = 1/3 = 1/3 = 1/3 mitive) * P(the gative) * P(the	P(negative) p(hated negative) p(that negative) P(movie negative) p(i negative) p(loved negative) positive] * P(movie positive) = negative] * P(movie negative) re these?	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3 = 1/3

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 2/3	p(hated negative)	= 1.0
p(it positive)	= 2/3	p(that negative)	= 2/3
p(that positive)	= 2/3	P(movie negative)	= 1/3
p(movie positive)	= 1/3	p(it negative)	= 2/3
P(hated positive)	= 1/3	p(loved negative)	= 1/3
(I positive) * P(hated posi (I negative) * P(hated neg	tive) * <mark>P(the p</mark> gative) * <mark>P(the </mark>	negative) * P(movie positive) =	=

in a line a lin	ouer		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
(I positive) * P(hated pos (I negative) * P(hated ne	itive) * <mark>P(the p</mark> gative) * <mark>P(the </mark>	<pre>bositive) * P(movie positive) = negative) * P(movie negative)</pre>	=
Our solution: assume probability, e.g. in t	e any unseer his example	n word has a small, fixed	

98

Indined III	odel		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
positive) * P(hated pos negative) * P(hated ne	itive) * P(the p gative) * P(the	positive) * P(movie positive) = 1 negative) * P(movie negative)	/90 = 1/30
Our solution: assume	e any unseer	n word has a small, fixed	

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine

If you're curious, I'd be happy to talk to you offline

99