
INFORMED SEARCH
Joseph C. Osborn

CS51A
Material borrowed from :

David Kauchak, Sara Owsley Sood and others

Foxes and Chickens

Three foxes and three chickens wish to cross the river. They
have a small boat that will carry up to two animals. The boat
can’t cross unless it has at least one animal to drive it. If at
any time the Foxes outnumber the Chickens on either bank of
the river, they will eat the Chickens. Find the smallest
number of crossings that will allow everyone to cross the river
safely.

What is the “state” of this problem
(it should capture all possible valid
configurations)?

Foxes and Chickens

Three foxes and three chickens wish to cross the river. They
have a small boat that will carry up to two animals. The boat
can’t cross unless it has at least one animal to drive it. If at
any time the Foxes outnumber the Chickens on either bank of
the river, they will eat the Chickens. Find the smallest
number of crossings that will allow everyone to cross the river
safely.

Foxes and Chickens

Three foxes and three chickens wish to cross the river. They
have a small boat that will carry up to two animals. The boat
can’t cross unless it has at least one animal to drive it. If at
any time the Foxes outnumber the Chickens on either bank of
the river, they will eat the Chickens. Find the smallest
number of crossings that will allow everyone to cross the river
safely.

CCCFFF B

CCFF B CF

CF B CCFF

…

Searching for a solution

CCCFFF B ~~

What states can we get to from here?

Searching for a solution

CCCFFF B ~~

CCFF ~~ B CF CCCF ~~ B FF

Next states?

CCCFF ~~ B F

Foxes and Chickens Solution

 Near side Far side

0 Initial setup: CCCFFF B -

1 Two foxes cross over: CCCF B FF

2 One comes back: CCCFF B F

3 Two foxes go over again: CCC B FFF

4 One comes back: CCCF B FF

5 Two chickens cross: CF B CCFF

6 A fox & chicken return: CCFF B CF

7 Two chickens cross again: FF B CCCF

8 A fox returns: FFF B CCC

9 Two foxes cross: F B CCCFF

10 One returns: FF B CCCF

11 And brings over the third: - B CCCFFF
How is this solution different than the n-queens problem?

Foxes and Chickens Solution

 Near side Far side

0 Initial setup: CCCFFF B -

1 Two foxes cross over: CCCF B FF

2 One comes back: CCCFF B F

3 Two foxes go over again: CCC B FFF

4 One comes back: CCCF B FF

5 Two chickens cross: CF B CCFF

6 A fox & chicken return: CCFF B CF

7 Two chickens cross again: FF B CCCF

8 A fox returns: FFF B CCC

9 Two foxes cross: F B CCCFF

10 One returns: FF B CCCF

11 And brings over the third: - B CCCFFF
Solution is not a state, but a sequence
of actions (or a sequence of states)!

One other problem

CCCFFF B~~ CCCFF B~~ F

What would happen if we ran DFS here?

CCCFFF B ~~

CCFF ~~ B FC CCCF ~~ B FFCCCFF ~~ B F

FFFCCC B~~

One other problem

CCCFFF B~~ CCCFF B~~ F

CCCFFF B ~~

CCFF ~~ B CF CCCF ~~ B FFCCCFFF ~~ B C

CCCFFF B~~

If we always go left first, will continue forever!

One other problem

CCCFFF B~~ CCCFF B~~ F

CCCFFF B ~~

CCFF ~~ B CF CCCF ~~ B FFCCCFFF ~~ B C

CCCFFF B~~

Does BFS have this problem? No!

DFS vs. BFS

Why do we use DFS then, and not BFS?

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

How big can the queue get
for BFS?

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

At any point, need to remember roughly a “row”

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

How big does this get?

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

Doubles every level we have to go deeper.
For 20 actions that is 220 = ~1 million states!

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

How many states would DFS keep on the stack?

DFS vs. BFS

1

2 3

4 5 6 7

…

Consider a search problem
where each state has two
states you can reach

Assume the goal state involves
20 actions, i.e. moving
between ~20 states

Only one path through the tree, roughly 20 states

One other problem

CCCFFF B~~ CCCFF B~~ F

CCCFFF B ~~

CCFF ~~ B CF CCCF ~~ B FFCCCFF ~~ B F

CCCFFF B~~

If we always go left first, will continue forever!

Solution?

DFS avoiding repeats

Other search problems

What problems have you seen that could be
posed as search problems?

What is the state?

Start state

Goal state

State-space/transition between states

8-puzzle

8-puzzle

goal

state representation?

start state?

state-space/transitions?

8-puzzle

state:
 all 3 x 3 configurations of the tiles on the

board

transitions between states:
 Move Blank Square Left, Right, Up or Down.
 This is a more efficient encoding than

moving each of the 8 distinct tiles

Cryptarithmetic

Find an assignment of digits (0, ..., 9) to
letters so that a given arithmetic
expression is true. examples:

 SEND + MORE = MONEY

 FORTY Solution: 29786

+ TEN 850

+ TEN 850

 ----- -----

 SIXTY 31486

F=2, O=9, R=7, etc.

Remove 5 Sticks

Given the following
configuration of sticks,
remove exactly 5 sticks
in such a way that the
remaining configuration
forms exactly 3 squares.

Water Jug Problem

Given a full 5-gallon jug and a full 2-gallon jug, fill the
2-gallon jug with exactly one gallon of water.

5
2

Water Jug Problem

State = (x,y), where x is
the number of gallons of
water in the 5-gallon jug
and y is # of gallons in
the 2-gallon jug

Initial State = (5,2)

Goal State = (*,1),
where * means any
amount

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.
jug

Empty2 – (x,y)→(x,0) Empty 2-gal.
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal.
into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal.
into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5-gal. into 2-
gal.

Operator table

5
2

8-puzzle revisited

1

4

6 5 2

7

83
How hard is this problem?

8-puzzle revisited

The average depth of a solution for an 8-puzzle is 22 moves

An exhaustive search requires searching ~322 = 3.1 x 1010
states

 BFS: 10 terabytes of memory
 DFS: 8 hours (assuming one million nodes/second)

Can we do better?

Is DFS and BFS intelligent?

1

4

6 5 2

7

83

from: Claremont to:Rowland Heights
What would the search algorithms do?

from: Claremont to:Rowland Heights

DFS

from: Claremont to:Rowland Heights

BFS

from: Claremont to: Rowland Heights

Ideas?

from: Claremont to: Rowland Heights
We’d like to bias search towards the actual solution

Informed search

Order to_visit based on some knowledge of the
world that estimates how “good” a state is

 h(n) is called an evaluation function

Best-first search
 rank to_visit based on h(n)
 take the most desirable state in to_visit first
 different approaches depending on how we define h(n)

Heuristic

Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek
heuriskein to discover.] involving or serving as an aid
to learning, discovery, or problem-solving by
experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (2/19/13)

heuristic 1. Of or relating to a usually speculative
formulation serving as a guide in the investigation or
solution of a problem: "The historian discovers the
past by the judicious use of such a heuristic device as
the 'ideal type'" (Karl J. Weintraub).

Heuristic function: h(n)

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples
 Map path finding?

 8-puzzle?

 Foxes and chickens?

Heuristic function: h(n)

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples
 Map path finding?

 straight-line distance from the node to the goal (“as the crow flies”)
 8-puzzle?

 how many tiles are out of place
 sum of the “distances” of the out of place tiles

 Foxes and chickens?
 number of animals on the starting bank

Two heuristics

Which state is better?1 2 3

8 6 4

7 5

6 2 3

8 4

7 1 5

2 8 3

1 6 4

7 5
1 2 3

8 4

7 6 5

GOAL

Two heuristics

How many tiles are out of place?

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

Goal

Two heuristics

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

5

Goal

Two heuristics

What is the “distance” of
the tiles that are out of
place?

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

Goal

Two heuristics

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

Goal

1

1

1

1

2

6

Two heuristics

Tiles out of place Sum of
distances for
out of place
tiles

5 6

?
1 2 3

8 6 4

7 5

6 2 3

8 4

7 1 5

2 8 3

1 6 4

7 5
1 2 3

8 4

7 6 5

GOAL

Two heuristics

Tiles out of place Sum of
distances for
out of place
tiles

5 6

1 2 3

8 6 4

7 5

6 2 3

8 4

7 1 5

2 8 3

1 6 4

7 5
1 2 3

8 4

7 6 5

GOAL2 2

2 6

1

1

3

3

Two heuristics

Tiles out of place Sum of
distances for
out of place
tiles

5 6

1 2 3

8 6 4

7 5

6 2 3

8 4

7 1 5

2 8 3

1 6 4

7 5
1 2 3

8 4

7 6 5

GOAL2 2

2 6

1

1

3

3

Which
heuristic is
better (if
either)?

Two heuristics

Tiles out of place Sum of
distances for
out of place
tiles

5 6

1 2 3

8 6 4

7 5

6 2 3

8 4

7 1 5

2 8 3

1 6 4

7 5
1 2 3

8 4

7 6 5

GOAL2 2

2 6

1

2

3

3

More closely
approximates “real”
number of steps
remaining?

2 8 3

1 6 4

7 5

Next states?

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

Which would you do?

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

Which would DFS choose

Completely depends on how next states are generated.
Not an “intelligent” decision!

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

Best first search: out of place tiles?

1 2 3

8 4

7 6 5

GOAL

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

Best first search: distance of tiles?

1 2 3

8 4

7 6 5

GOAL

1

1

1

1

2

6
1

1

2 1

1

1

1

2

4 6

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

Next states?

1 2 3

8 4

7 6 5

GOAL

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

GOAL

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

1

1
4

2

3 5 5 5

Which next for best first search?

6 6

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

GOAL

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

1

1
4

2

3 5 5 5

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

2 3

1 8 4

7 6 5

442

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

GOAL

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

1

1
4

2

3 5 5 5

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

2 3

1 8 4

7 6 5

442

…

Informed search algorithms

Best first search is called an “informed”
search algorithm

Why wouldn’t we always use an informed
algorithm?

 Coming up with good heuristics can be hard
for some problems

 There is computational overhead (both in
calculating the heuristic and in keeping track
of the next “best” state)

Informed search algorithms

Any other problems/concerns about best
first search?

Informed search algorithms

Any other problems/concerns about best
first search?

 Only as good as the heuristic function

START GOAL

What would the search do?

Best first search using distance as the crow flies as heuristic

Informed search algorithms

Any other problems/concerns about best
first search?

 Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic

START GOAL

What is the problem?

Informed search algorithms

Any other problems/concerns about best
first search?

 Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic

Doesn’t take into account how far it has come.
Best first search is a “greedy” algorithm

START GOAL

Informed search algorithms

Best first search is called an “informed”
search algorithm

There are many other informed search
algorithms:

 A* search (and variants)
 Theta*
 Beam search

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Sudoku

7 2 8 9 3 6 5 1 4

9 4 3 1 5 8 6 7 2

5 6 1 4 7 2 9 3 8

8 3 4 7 6 5 2 9 1

2 1 7 8 4 9 3 6 5

6 5 9 2 1 3 8 4 7

1 8 6 3 2 4 7 5 9

3 7 2 5 9 1 4 8 6

4 9 5 6 8 7 1 2 3

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

How can we pose this as a search problem?

State

Start state

Goal state

State space/transitions

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

How can we pose this as a search problem?

State: 9 x 9 grid with 1-9 or empty

Start state:

Goal state:

State space/transitions

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

How many next states?
What are they?

Sudoku

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

1, 6, 7, 9

Sudoku

1

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

1, 6, 7, 9

Sudoku

1

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

How many next states?
What are they?

Sudoku

1

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

2, 6, 7, 8, 9

Sudoku

1 2

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

2, 6, 7, 8, 9

Sudoku

1 2

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

What are the next states?

Sudoku

1 2

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

7, 8, 9

Sudoku

1 2 7

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

7, 8, 9

Sudoku

1 2 7

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

Sudoku

1 2 7

9 4 3 6 7

5 6 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

Sudoku

1 2 7

9 4 3 6 7

5 6 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

Now what?
Try another branch, i.e. go
back to a place where we had
a decision and try a different
one

Sudoku

1 2 8

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

Fill in the grid with the numbers 1-9
 each row has 1-9 (without repetition)
 each column has 1-9 (without repetition)
 each quadrant has 1-9 (without repetition)

Generate next states:
• pick an open entry
• try all possible numbers that

meet constraints

7, 8, 9

Best first Sudoku search

Generate next states:
• pick an open entry
• try all possible numbers

that meet constraints

DFS and BFS will choose entries (and
numbers within those entries) randomly

Is that how people do it?

How do you do it?

Heuristics for best first search?

Best first Sudoku search

Generate next states:
• pick an open entry
• try all possible numbers

that meet constraints

DFS and BFS will choose entries (and
numbers within those entries) randomly

Pick the entry that is MOST constrained

People often try and find entries where
only one option exists and only fill it in
that way (very little search)

Representing the Sudoku
board

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

[1, 6, 7, 9], [1, 2, 6, 7, 8, 9], [1, 2, 7, 8, 9],
[1, 9], 4, 3,
5, [1, 6, 7, 9], [1, 7, 9]

 Board is a matrix (list of lists)
 Each entry is either:

 a number (if we’ve filled in the space already, either during
search or as part of the starting state)

 a list of numbers that are valid to put in that entry if it hasn’t
been filled in yet

Which is the most
constrained (of the ones
above)?

Representing the Sudoku
board

4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

[1, 6, 7, 9], [1, 2, 6, 7, 8, 9], [1, 2, 7, 8, 9],
[1, 9], 4, 3,
5, [1, 6, 7, 9], [1, 7, 9]

 Board is a matrix (list of lists)
 Each entry is either:

 a number (if we’ve filled in the space already, either during
search or as part of the starting state)

 a list of numbers that are valid to put in that entry if it hasn’t
been filled in yet

Which is the most
constrained (of the ones
above)?

Representing the Sudoku
board

1 4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

 Board is a matrix (list of lists)
 Each entry is either:

 a number (if we’ve filled in the space already, either during
search or as part of the starting state)

 a list of numbers that are valid to put in that entry if it hasn’t
been filled in yet

What would the state look
like if we add pick 1?

Representing the Sudoku
board

1 4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

 Board is a matrix (list of lists)
 Each entry is either:

 a number (if we’ve filled in the space already, either during
search or as part of the starting state)

 a list of numbers that are valid to put in that entry if it hasn’t
been filled in yet

Remove 1 from all entries in
the quadrant

[6, 7, 9], [2, 6, 7, 8, 9], [2, 7, 8, 9],
[9], 4, 3,
5, [6, 7, 9], [7, 9]

What other parts of the
board need to be updated?

Representing the Sudoku
board

1 4 3 6 7

5 4 2 8

8 6 1

2 5

5 4

6 7

5 1

8

 Board is a matrix (list of lists)
 Each entry is either:

 a number (if we’ve filled in the space already, either during
search or as part of the starting state)

 a list of numbers that are valid to put in that entry if it hasn’t
been filled in yet

Remove 1 from all entries in
the quadrant

[6, 7, 9], [2, 6, 7, 8, 9], [2, 7, 8, 9],
[9], 4, 3,
5, [6, 7, 9], [7, 9]

Remove 1 from all entries in
the same column

Remove 1 from all entries in
the same row

