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ABSTRACT

Motivated by our ongoing efforts in the development of Re-
fraction 2, a puzzle game targeting mathematics education,
we realized that the quality of a puzzle is critically sensi-
tive to the presence of alternative solutions with undesirable
properties. Where, in our game, we seek a way to automati-
cally synthesize puzzles that can only be solved if the player
demonstrates specific concepts, concern for the possibility of
undesirable play touches other interactive design domains.
To frame this problem (and our solution to it) in a general
context, we formalize the problem of generating solvable
puzzles that admit no undesirable solutions as an NPNP-
complete search problem. By making two design-oriented
extensions to answer set programming (a technology that
has been recently applied to constrained game content gen-
eration problems) we offer a general way to declaratively
pose and automatically solve the high-complexity problems
coming from this formulation. Applying this technique to
Refraction, we demonstrate a qualitative leap in the kind
of puzzles we can reliably generate. This work opens up
new possibilities for quality-focused content generators that
guarantee properties over their entire combinatorial space
of play.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General — Games; 1.2.3
[Artificial Intelligence]: Deduction and Theorem Prov-
ing — Logic programming

Keywords
game design, procedural content generation, answer set pro-
gramming, educational games, puzzle games

1. INTRODUCTION

Procedural content generation (PCG) can assist game de-
signers both offline, in the form of design assistance and au-
tomation tools, and online, in the form of fully-automated
content generators embedded into games. PCG is often mo-

tivated as a way to create a larger space of individual arti-
facts (such as the generated weapons of Galactic Arms Race
[9] and Borderlands (Gearbox Software 2009)) or creating
single artifacts with many more details than than would be
reasonable to author via traditional means (such as the de-
tailed dungeons of Diablo 3 (Blizzard Entertainment 2012)
or the pseudo-infinite terrains of Minecraft (Mojang 2009)).
On a quantity—quality tradeoff spectrum, most PCG sys-
tems will try to complement human authoring efforts by
providing additional quantity (more artifacts/details) in ex-
change for reduced authorial control. By contrast, in this
paper, we are interested in developing game design automa-
tion systems (starting in the domain of puzzle games) that
assist their human collaborators by outperforming them in
regards to quality: eliminating broad classes of shortcut so-
lutions that would undermine a puzzle’s intended purpose.
Our primary strategy is to apply exhaustive (but intelligent)
search over the entire combinatorial space of play, a space
too large to feasibly check by hand. In this paper, we use the
term “shortcut solution” to denote any gameplay a designer
would find undesirable, even when the artifact in question
is not a puzzle (perhaps another kind of level or interac-
tive story) or when makes the shortcut undesirable is not a
property literally relating to its length.

1.1 The Refraction Project

Refraction® is a puzzle game that targets mathematics ed-
ucation. Because Refraction puzzles intentionally entangle
spatial and mathematical challenges, they have the capacity
to present players with deep challenges in gameplay. This
same depth complicates puzzle design, where we would like
to carefully control which concepts are being introduced
across the game’s level progression. As Refraction’s level
progressions are altered to be appropriate for different audi-
ences in several ongoing game-based education studies, the
game continually demands more original puzzle design ef-
fort. Thus far, our team has authored at least eight full
sequences of levels (of 20 to 50 levels each). To support fine-
grained player adaptivity in the upcoming game Refraction
2, we will need both a massive increase in the quantity of
puzzles designed as well as an increase in the level of quality
assurance applied to each puzzle.

In previous work [13], we created a set of in-house de-
sign automation tools using answer set programming (ASP)
to separate the definition of the Refraction-specific design
spaces from the domain-independent combinatorial search
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tools used to generate puzzles and search for alternative so-
lutions. Given high-level gameplay requirements (such as
that a level involve using certain pieces, building certain
mathematical expressions, or selecting amongst a number
of distracting pieces), our previous synthesis tool created
a puzzle-and-solution pair where the solution demonstrated
the required concept.

Ensuring that a level could be solved in a certain way was
not enough, however. Often, with the addition of distractor
pieces that are not part of an intended solution (and some-
times even without them), there were alternative ways to
solve a puzzle that did not demonstrate the target concept.
To automatically determine if a puzzle could be solved in
a certain alternative way (perhaps never constructing a re-
quired fraction), we also created an analysis tool that could
reason over all possible ways a given puzzle could be played.

In order to express our interest in solvable puzzles that admit
no undesirable solutions, we needed a system that combined
the competencies of our previous tools. Simply combining
them in a pipeline (where one proposes a stream of solvable
puzzles and the other filters them by the presence of short-
cut solutions) would be unsatisfactory. First, there would
be enormous inefficiencies when the synthesis tool continu-
ally proposes variations on a common idea that the analysis
tool could determine to always fail for the same reason—the
pipeline system would not learn from its mistakes. Secondly,
when the concept we wanted to require in all solutions was
not actually enforceable (perhaps it requires constructions
too large for the game’s fixed grid space or was indirectly
contradictory in other wise), this lack of feedback would
force the synthesis tool to completely enumerate the space of
puzzles before reporting that our request was unsatisfiable.

What was needed was a new problem formulation that would
allow us to express the concerns of solvable puzzle genera-
tion and erhaustive machine playtesting at the same time.
This formulation would allow rapidly exploring alternative
encodings of design concerns as the nature of high-quality
puzzles is iteratively discovered. To solve these problems,
we needed new and reusable infrastructure for content gen-
eration that would allow us to quickly and concisely express
the idea that what makes content appropriate may depend
on the entire combinatorial space of play.

1.2 Contributions

To address the general challenge sketched above, this paper
makes three primary contributions:

e We identify many interactive design problems as being
critically sensitive to the presence of shortcut behaviors.
This entails a natural formulation of the design automa-
tion problem as an NPN"-complete search problem.

e We offer a translation-based extension to normal ASP
that allows elevated-complexity modeling by means of
design-appropriate language constructs, allowing the di-
rect reuse of state-of-the-art search techniques.

e We report on an application of this technique to the full
complexity of an existing, deep puzzle game, demonstrat-
ing the ability to pose interesting constraints quantified
over the entire space of play.

2. RELATED WORK

Stepping back from Refraction’s need for a particular kind of
generated puzzle levels, this section examines how shortcuts
are typically addressed in level generation projects. There
has been much work in automatically generating levels; how-
ever, work that makes strong guarantees that generated lev-
els will be solvable is rare. Work guaranteeing some prop-
erty over the space of solutions is even rarer. The strate-
gies described in this section all contrast with the standard
for manual level design: thinking very carefully about the
game’s mechanics, playtesting levels thoroughly, iterating
across many variations, partially railroading players with
obvious checkpoints, and occasionally letting levels with un-
desirable solutions pass into production.

2.1 Softening with Game Mechanics

The first strategy is that of designing games so that any level
is solvable with enough effort or that solving individual levels
is less important because there many higher-level routes to
success.

In Spelunky (Derek Yu 2009), players navigate a maze-like
cave populated by critters, traps, and treasures. At a coarse
grid level, Spelunky’s level generator plans a path between
the entrance and exit rooms [17]. To fill in rooms with de-
tail, a random room template is selected and populated. De-
pending on how the templates are populated, the final level
may not be solvable by the particular original coarse path.
To mitigate this, the player is given ropes to climb distances
that cannot be jumped or bombs to blast through walls that
cannot be avoided, and they can backtrack to gather more of
these items. In this way, the mechanics of Spelunky virtually
guarantee there is a solution for every generated level.

This clever design solution is not applicable to all game de-
signs. For example, the designer may not want to allow the
player to alter the level through destructive actions for tech-
nical or artistic reasons. In light of Refraction’s educational
goals, we want a tighter level of control over solvability con-
ditions than the softening strategy allows.

2.2 Sparse Solutions by Reference Agents

If an algorithm for computing a reference solution is avail-
able, we could use this algorithm in the inner loop of a puzzle
generator or as a post-filtering process to ensure any gener-
ated puzzle has a solution. Uses of this strategy often also
assume that properties of the reference solution are indica-
tive of the properties of the puzzle as a whole.

The reference agent strategy was adopted by the developers
of the upcoming game Cloudberry Kingdom [5], a project
that foregrounds the generation of very complex platform-
ing levels with solvability guarantees. By interleaving calls
to a reference agent, the outer loop of level design can be
sure it places platforms just within the player’s expected
path and dangerous enemies/traps just outside. In an aca-
demic context, Shaker et al. [11] employ a similar strategy to
generate Infinite Mario Bros (Markus Persson 2006) levels
that are personalized according to an estimate of a player’s
experience of fun on that level. In both of these projects,
properties of the sparse set of reference solutions generated
for each level are used to estimate the overall appropriate-
ness of the level. Sometimes, a level will also admit alternate



solutions that might be nearly as likely to occur in human
play as the reference solutions. When these realistic alter-
native solutions differ dramatically, they undermine the use
of the reference agent as an informative model for a player.

2.3 Minimal Solutions

In games with highly-nonlinear play, knowing the properties
of any single solution tells us very little about what it is
like to play a level in general. Knowing that a maze has a
long solution, for example, does not imply the absence of a
shorter one.

The strategy of generating solvable puzzles with a known-
minimum solution length enforces one kind of property over
all of a puzzle’s solutions: they are all at least as long as
the minimum. This is commonly done by employing a refer-
ence agent that produces guaranteed-optimal solutions. In
Ashlock’s chess and chromatic maze generators, a dynamic
programming algorithm exactly determines a generated puz-
zle’s minimum solution length [1]. The Sokoban level gener-
ator by Taylor and Parberry applies this strategy in reverse,
searching from a solved game state to find a guaranteed-
distant game state and then naming that as the initial state
[16]. Attempting to apply this technique to a binary prop-
erty (e.g. the player takes a critical action or they do not)
yields a degenerate metric that lacks the informative gra-
dients on which many optimization algorithms rely when
searching large design spaces.

2.4 Declarative Design Space Models

The final strategy, of exhaustive symbolic reasoning over
the space of all puzzles and solutions, is not yet a com-
mon strategy for producing content generators. The general
idea of representing a space of game content artifacts using
answer set programming (ASP, a declarative programming
paradigm focused on complex combinatorial search and op-
timization problems [6]) was proposed recently [15]. In addi-
tion to enabling our previous tools for Refraction [13], this
strategy has been applied to real-time strategy maps [2],
mini-game rulesets [14], platformer levels [12, sec. 10.5.3],
and opponent behavior [3].

This strategy has been most successful for generation prob-
lems in the complexity class NP, for which ASP provides an
expressive modeling language. However, as we will show in
Section 5, the general problem of shortcut-free generation
lives outside of NP. Although there are many off-the-shelf
tools that solve problems at the required level of complexity
(e.g. general theorem provers), the challenge is in figuring
out how to encode puzzle design problems in their modeling
languages without first becoming an expert in formal logic.

3. REFRACTION

In this section, we briefly review the mechanics and design
challenges of our game as a concrete point of reference for
our general problem formulation.

Figure 1 shows a typical puzzle and an example piece from
Refraction 2. The player’s goal is to place a given set of puz-
zle pieces so that laser beams flow from fixed laser sources,
through player-arranged pieces (which may split and recom-
bine beams to form different fractions), into fixed laser tar-
gets with required power levels. The various types of pieces

Figure 1: Screenshot of Refraction 2 and detail of a
splitter piece showing input/output ports. Players
should drag pieces from the tray onto the board to
form a network of laser beams that satisfies targets
with the correct fraction. Pieces cannot be rotated.

in the game (sources, targets, benders, blockers, splitters,
and combiners) present a the player with a mixture of spa-
tial and mathematical obstacles. Setting up these challenges
requires a mastery of these entangled mechanics.

Because the type and input/output port configuration of
each piece is fixed by the puzzle’s designer, the player must
carefully allocate piece usage between the different goals
presented by a puzzle. Meanwhile they must ignore extra
pieces, called distractors, that a designer may add to a puz-
zle. When there are multiple sources and multiple targets,
we often make careful spatial/mathematical design choices
so that players cannot simply connect the nearest sources
and targets. Combining dataflow-like mechanics with the
compact game board, the potential for deep puzzles is enor-
mous (as is the potential for unforeseen solutions).

What makes a Refraction puzzle difficult, interesting, or el-
egant is not easy to state. Simply heaping on distractor
pieces in an attempt to hide a solution often only serves to
give players the tools to build a simpler solution. Likewise,
scattering many blockers around a puzzle can work to give so
many spatial clues to a puzzle’s solution that mathematical
reasoning is not required to solve it—in simply using avail-
able pieces to route around the cloud of blockers, players
may find that they have accidentally solved the mathemati-
cal challenge in passing. Judging the quality of a Refraction
puzzle requires a much deeper analysis of the play it affords.

We do not claim to have completely characterized the judge-
ment of a puzzle’s quality or appropriateness to a point in a
level progression. We have, however, uncovered a very gen-
eral type of constraint that we would like to place on nearly
every generated puzzle: that no detectably-undesirable ar-
rangement of pieces is a valid solution to the generated puz-
zle. Although our example results in § 6.4 focus on easily de-
scribable kinds of shortcuts, our internal use of this idea will
define shortcuts with respect to data-derived player models.

4. SHORTCUTS IN THE WILD

Shortcuts (or undesirable solutions generally) can occur in
many forms. In Refraction, two kinds of shortcuts stand
out as the most prominent annoyance in both manual and
automated puzzle design. In spatial shortcuts, we intend



Figure 2: Puzzle with shortcuts. Left: an opti-
mistic reference solution that demonstrates equal
partitioning and reassembly (part of the game’s ed-
ucational content). Right: an alternate, shortcut
solution using only two bender pieces.

that the player will build a particular chain of benders to
route a laser around obstacles; however, in a shortcut solu-
tion, there is a way to leave most of those benders off of the
board. In mathematical shortcuts, we intend that the player
will construct certain mathematical expressions, but there is
a shortcut solution (which may actually involve more pieces)
in which the key expression is never realized. See Figure 2
for an example of both types of shortcuts.

Even veteran Refraction level designers are susceptible to
creating puzzles with undesirable solutions. One example
our team encountered was when a level designer, collabo-
rating with a learning scientist, was trying to create a level
that tested construction of 1/124+1/12 = 2/12. In order to trap
the common error of players thinking that 1/6 + 1/6 = 2/12
(that both the numerator and denominator should add), two
1/6 sources were added to the level. It was not until much
later that we realized the shortcut: a player could use just
one of the distracting 1/6 sources (which were intended to be
left unused in the ideal solution) to solve the puzzle without
practicing addition at all.

Shortcuts are hardly unique to Refraction. Consider design-
ing a piece of interactive fiction (IF) like the classic Anchor-
head [8]. IF games can involve several overlapping puzzles
that entangle movement, inventory, crafting, and charac-
ter relationship mechanics. Often, an author will imagine
a sparse set of reference solutions to their game that take
the player on an interesting tour of the story’s plot, setting,
and characters. Exacerbated by the non-visual nature of IF
games, there may be many shortcut solutions that bypass
the key narrative details or allow it to be experienced in an
undesirable order. Drama management systems, such as the
system Nelson and Mateas [10] applied to Anchorhead, make
small edits to the story world as the player plays (silently
locking or unlocking doors, moving items to alternate loca-
tions, etc.) in an effort to guide the player through interest-
ing experiences. However, there are as yet no tools available
to help authors manage the properties of the combinatorial
space of alternate solutions at design-time.

Many game designs are likely to be critically sensitive to the
presence of undesirable solutions. Quality-focused content
generators, we claim, should actively seek out their presence.

S. QUANTIFYING OVER PLAY

In this section, we formalize the problem of generating solv-
able puzzles that are free of shortcuts. Even though this
section makes use of the vocabulary of formal logic, the non-
formalist reader will still benefit from seeing how the con-
cerns of puzzle design (of puzzle creation and subsequent
playtesting) are reflected in the logical setting.

To make it easier to ascribe intent to the various structures
to come, we introduce two characters. Elise is a game de-
signer who wants to create a puzzle; she wants to show that
there exists a puzzle-and-solution pair with desirable prop-
erties. Fiona is a design assistant who is asked to examine
Elise’s puzzles and ensure they are free of shortcuts; she
wants to show that for all possible ways to solve a puzzle,
none are problematic. Later we will show how to automate
the work of Elise and Fiona using state-of-the-art search
techniques.

Although we focus on puzzles and solutions to stay close
to our motivational setting, the reader should feel free to
replace these terms with those of their own design domain.
For example, platformer or role-playing game world designs
would count as puzzles where reaching a final platform or
completing the main quest count as the solution conditions.
Finishing within a certain time or experiencing a critical
narrative sequence are valid concepts.

5.1 Basic Puzzle Generation

Before jumping into reference/alternate solutions, we first
consider the basic puzzle generation problem: proposing a
puzzle with efficiently detectable properties guaranteed of
its form. Symmetric placement of blockers in Refraction is
an example of this type of property, as are ensuring there
are source pieces with certain fraction values. Basic puzzle
generation is part of Elise’s job. Formally, she is asked to
prove (by construction) the following statement, where p is
a vector of Boolean variables that define a puzzle:

3p Form(p)

Assuming evaluating the Form predicate on a puzzle is easy
(formally, in the complexity class P), the basic puzzle gen-
eration problem has complexity NP—it is the problem of
non-deterministically guessing a candidate puzzle such that
its form can be quickly verified. As some problems in NP are
easier than others, it is not surprising that many generation
problems can be solved by efficient, feed-forward generation
algorithms (often called constructive generators).

5.2 Solvable Puzzle Generation

Although puzzles with guaranteed good form may look
pretty, they might not always be solvable. To generate
guaranteed-solvable puzzles in a general way, we use the
strategy of generating puzzle-and-solution pairs. This is
Elise’s full job. In the following statement, p describes the
puzzle as before, and s describes a reference solution:

s, p [Form(p) A Solves(s,p)]

Here, we have quantified over the space of play (potential
solutions) using an existential quantifier. Deciding, given a
candidate solution, whether that candidate solves the puz-
zle currently under consideration can be non-trivial. In Re-
fraction, checking validity of solutions requires simulating



beam flow through the player’s arrangement of pieces. For
other games with mechanics approaching the expressiveness
of general purpose programming, such as Light-Bot (Coolio
Niato 2008) and SpaceChem (Zachatronics Industries 2011),
this check approaches a P-complete problem—it may involve
simulating a machine of the player’s design for a bounded
number of steps.

So, assuming evaluating the Solves predicate is in P, the
problem of generating solvable levels is also in NP. It bears
mentioning that solvable puzzle generation problems may be
much bigger than their basic counterparts, however, because
it takes more bits to describe a puzzle-and-solution pair than
it takes to describe a puzzle in isolation.

5.3 Detecting Shortcuts

Given a specific puzzle, such as those Elise has been cre-
ating, we now look at the problem of detecting shortcuts.
If ¢ describes a candidate solution, the following statement
captures the problem of finding a shortcut solution for a
given puzzle described by p where shortcuts are defined as
solutions that do not practice an arbitrary target concept.

given p, 3t [Solves(t,p) A ~Concept(t,p)]

As before, we assume the Concept predicate can be evalu-
ated in P. Concept might simply check that the solution
used a type of piece that we wanted the player to practice,
or it might be more complex, as in checking if the solution
would not have been suggested by a set of heuristics that
we think the player may be following (ensuring that solving
this puzzle will force a re-evaluation of their strategy).

5.4 Verifying Lack of Shortcuts

Being able to ensure a given puzzle has no detectable short-
cuts is Fiona’s job. That is, we want to state that a playtest
could never reveal a shortcut solution.

given p, —(3 t[Solves(t,p) A ~Concept(t,p)])

Applying De Morgan’s laws and rewriting the inner expres-
sion as an implication, Fiona should prove that solving a
puzzle implies practicing the required concept:

given p, V¢ [Solves(¢,p) = Concept(t,p)]

As the complement (negation of the result) of a problem
in NP, this problem has complexity coNP. For this type of
problem, there is no single solution that witnesses the truth
of the statement, so Fiona must prove it by contradiction
(perhaps finding a set of mutually inconsistent constraints
or showing that any possible choice gives rise to such a set).

5.5 Shortcut-free Puzzle Generation

Moving to the crux of this paper, we look at how Elise and
Fiona can collaborate to create solvable puzzles that admit
no shortcut solutions. Stated formally, this is their task:

Js,p Vt (Solves(s,p) A [Solves(t,p) = Concept(t,p)])

Problems of the form ZJeVu®(e,u) (where ® is any
quantifier-free expression) are known as 2QBF problems.
2QBF is the canonical problem for the class NPNP. Because
shortcut-free puzzle generation and 2QBF are mutually re-
ducible (Concept could be any @), our formulation of the
shortcut-free puzzle generation problem is NPNP-complete.

That is to say, any problem other in NPN® can be posed as
a question about puzzles requiring concept practice.

As easily as we can imagine Elise and Fiona working in a
strict pipeline (where Elise enumerates solvable puzzles that
Fiona will verify), we can also imagine a scenario where Elise
and Fiona work in a more cohesive way, sharing notes and
learning from each other’s feedback. By formulating their
combined task as a single problem, we now have a way to
directly automate this second, more sophisticated scenario
using the declarative programming techniques in the follow-
ing section.

6. PUZZLE GENERATION

In this section we walk through an application of the above
problem formulation to generating shortcut-free puzzles for
Refraction 2. First, we review answer set programming, the
technology used in our previous generation of design au-
tomation tools. Next, we describe the answer set program
that models our design space for Refraction puzzles, making
use of two special constructs to setup the shortcut-free gen-
eration problem. Then we step through the very small (and
very general) meta-program that automatically transforms
our design space model into one with the desired shortcut-
free semantics. Finally, we review some example puzzles
generated by defining shortcuts in different ways.

6.1 ASP Refresher

In answer set programming [6], programs declaratively spec-
ify a space of answer sets: sets of statements that are true
in different solutions to the program. AnsProlog (the mod-
eling language used by ASP systems, distinct from Pro-
log) programs are composed of facts and rules. A fact like
type (4,source) formally states that the type relation holds
between the objects identified by the symbols 4 and source.
In the context of Refraction puzzle design, however, it ex-
presses the idea that piece #4 will be a laser source.

Three types of rules, employing variables to talk about many
facts at a time, allow an answer set solver to infer additional
facts from those given. Choice rules allow the solver to guess
that a fact may be true. Deductive rules force the solver to
deduce certain facts given the presence of others. Finally,
integrity constraints forbid solutions with certain properties.
Applied in Refraction, the following snippet shows a use for
one rule of each type:

% guess exactly one fraction power level for each source piece
1 { source_power(P,F):fraction(F) } 1 :- type(P,source).

% deduce whether solution practices use of a piece type
practiced(T) :- type_name(T), 2 { active(P):type(P,T) }.

% forbid leaving any target piece unpowered
:— type(P,target), not target_powered(P).

Another type of rule is supported only by some answer set
solvers: disjunctive rules. Although disjunctive rules are re-
quired to model NPNP-complete problems in ASP, their use
is strongly discouraged in practical applications that do not
absolutely require them. The creators of the same disjunc-
tive ASP tools we employ characterize disjunctive modeling
as “rather involved and hardly usable by ASP laymen” [7]—
a gloomy state that, in the interest of the “ASP laymen”




wishing to solve practical design automation problems, we
resolve in this paper.

Using a collection of facts and rules, a designer can cap-
ture a design space model that describes the space of appro-
priate artifacts without committing to a particular method
of generating those artifacts or ever explicitly using logi-
cal quantifiers [15]. Although we can imagine answer set
solvers repeatedly sampling combination of guesses, deduc-
ing their implications, and emitting the result if it has no
forbidden properties in a kind of generate-and-test process,
this is not how common solvers operate. Instead, they of-
ten apply a backtracking (and heuristically-informed) search
process that makes one choice at a time, eliminating large
subspaces of potential solutions at a time as soon as a for-
bidden property can be deduced from the partial solution.
The particular tools we use employ a search algorithm called
conflict-driven nogood learning (CDNL) that augments the
skeleton of backtracking search with an analysis of the un-
derlying reasons for dead-ends, allowing the algorithm to
lazily learn additional constraints (called nogoods) [6].

Inside the disjunctive answer set solver we use [4], two
CDNL-based solvers, called the “generator” and the “tester,”
collaborate. The responsibilities of these two internal solvers
resemble the roles of Elise (the generator) and Fiona (the
tester). Counterexamples found by the tester become no-
goods for the generator, allowing the generator to internally
reject future candidates that would fail for the same rea-
sons. As a result, a vast number of calls to the tester are
eliminated compared to a pipelined architecture.

6.2 The Design Space Model

Before tackling disjunctive modeling, we first sketch our de-
sign space model that captures the mechanics and design
constraints of Refraction 2 puzzles.

Our problem encoding is comprised of rules that guess
the primary structure of a candidate puzzle-and-solution
pair, deduce its properties, and forbid unsuitable candi-
dates. In particular, choice rules guess which pieces are
used (on the board vs. left in the tray), their locations, their
types, their port configurations (input/output directions),
and what power level will be emitted by sources. Several
integrity constraints forbid stacking pieces, assigning a di-
rection as both an input and output port, producing benders
that do not bend, or leaving a target unpowered. Additional
rules deduce the properties used in the integrity constraints
from those guessed with choice rules (e.g. deducing the laser
flow entering each target given the guessed arrangement and
configuration of pieces).

The encoding above (defined in only about 120 source lines
of code) describes the game in generic terms (e.g. on a d-
dimensional grid). To set up the puzzle design problem
for the specific 10-by-10 grid used in the public version of
our game with about 40 pieces (many with desired types
known a-priori), our problem instance description includes
facts committing to these values as well as tabulating al-
lowed fraction values the effect of splitters and combiners on
those fractions. In a deployed setting, the problem instance
description would be emitted by the game’s level progression
manager.

Feeding the problem instance and encoding to an answer set
solver, we have an automated system for generating solvable
puzzle-and-solution pairs. As in previous work [13], we could
add many constraints on the form of the reference solution.
Here, however, we want to focus on shaping the space of
play by defining a sense of shortcuts.

Two small additions the answer set program sketched above
prepare us for generating shortcut-free puzzles for Refrac-
tion. In each of the snippets below, we use a double-
underscore naming convention for predicates that will be
given special semantics under our program transformation
(described in the next subsection). The first addition is a set
of rules declaring which parts of the puzzle-and-solution pair
define the puzzle. This snippet shows how we tag the port
configuration of all pieces and the input power for targets as
a level design detail (vs. a solution detail):

__level_design(port(P,D,S)) :- port(P,D,S).
__level_design(target_power(P,F)) :- target_power(P,F).

The second set constructs a challenge for Fiona. It defines
the Concept predicate needed to formulate the shortcut-
free generation problem (assuming that candidate solutions
which would not satisfy the Solves predicate have already
been forbidden by integrity constraints). Here, we define the
concept of actively using at least six bender pieces:

active_bender(P) :- active(P), type(P,bender).
__concept :- 6 { active_bender(P) }.

Interpreted as a normal answer set program, these additions
cause no filtering of the set of puzzle-and-solution pairs.
They merely advise the game-independent program trans-
lator discussed in the next subsection that transforms this
program into one with the desired semantics.

6.3 Transforming the Model

The metasp? project, emerging from research in modeling
complex optimization problems in ASP, provides a powerful
toolkit for meta-programming in AnsProlog. By providing
a reference implementation of the answer set semantics in
AnsProlog itself, it is easy to build programs that modestly
extend these semantics.

One of the example applications of metasp is in building
building a subset minimality (also called inclusion-based
minimality) constraint. Although subset minimality does
not immediately appear to have anything to do with finding
shortcuts in the space of play, there is a way to reduce our
problem to one of judging subset minimality. Our method,
which was inspired by a crucial tip from one of the metasp in-
ventors (Martin Gebser) on how to model conformant plan-
ning problems, works by constructing a very specific set of
literals for use in the minimization.

The meta-program below (itself a normal answer set pro-
gram) analyzes the rules in our design space model from
the previous subsection and instructs the metasp library to
filter the space of puzzle-and-solution pairs to those satisfy-
ing both the subset minimality problem and demonstrating
the required concept in the reference solution. Applying the

2http://www.cs.uni-potsdam.de/wv/metasp/
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program below to any normal answer set program employing
__level_design and __concept rules yields a larger, diSjunC—
tive answer set program that is consistent with the intended
semantics of shortcut-free puzzle design.

% extract atoms in the head of _level design rules
level_design(A) :- rule(pos(atom(__level_design(A))),_).

% metasp: minimize over the set {A, not A, _concept}
wlist(-1,0,pos(atom(A)),1) :- level_design(A).
wlist(-1,0,neg(atom(A)),1) :- level_design(A).
wlist(-1,0,pos(atom(__concept)),1).
minimize(1,-1).

% metasp: use inclusion—based minimality for that set
optimize(1,1,incl).

% metasp: require that __concept is present
:- not hold(atom(__concept)).

We put these seven source lines in a file called metaC.1lp
and stored them with the other meta-programs taken from
the metasp project. Using this collection as a inline transla-
tor, we can sample shortcut-free puzzles from our previously
described design space model (refraction.lp) with the fol-
lowing command. Clingo and Clasp are state-ot-the-art an-
swer set solving tools from the Potassco® project (specifically
using a version of Clasp supporting disjunctive rules [4]).

$ clingo refraction.lp --reify \
| clingo - meta{,D,0,C}.1p -1 | clasp

Why does this work? Suppose Elise has found a puzzle-and-
solution pair for which the reference solution demonstrates
the concept. The __level_design decisions and their nega-
tions, along with the fact __concept, form a set. This is the
set our meta-program checks for subset minimality. If there
is some shortcut solution for this puzzle, Fiona can find a
second puzzle-and-solution pair that agrees with the Elise’s
on all __level_design choices (and their negations) but does
not satisfy the __concept definition. Because Fiona’s pair
demonstrates a feasible subset of Elise’s, the subset mini-
mality constraint rejects Elise’s candidate. The only puzzle-
and-solution pairs for which subset minimality is satisfied
are those for which either there are no shortcut solutions
(these are the ones we want) or those which do not sat-
isfy __concept in the first place. The final line of our meta-
program instructs the forbids the latter case. Note that
this explanation is independent of the particular search al-
gorithms used by the ASP tools.

Although this transformation is expressible by a very small
meta-program, it is far from intuitive. We intend of de-
sign automation tool developers to use our small utility as
a black-box translator. We give them the ability to ex-
press any problem in NPNF without straying from the normal
guess/deduce/forbid mindset beyond the use of our domain-
appropriate __level_design and __concept predicates.

6.4 Example Results
In this subsection, we give some examples of shortcut-free
puzzles for Refraction 2 generated® with different required

3http://potassco.sourceforge.net/

“We report problem construction (single-threaded) and
time-to-first-solution search times (with eight threads) using
a 2011-era laptop with a 2.2 GHz Intel Core i7 processor.
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Figure 3: Generated puzzles for the concepts of us-
ing at least one splitter and one combiner (left) and
using at least two splitters and two combiners (right).
Interestingly, the source and target power require-
ments do not seem to suggest a need to split or
combine, but the need arises from the spatial con-
cerns of port directions. At right, the player must
initially split/combine the given beams into beams
with power 1 and 4, and then split/combine these
to form the beams of power 2 and 3 in the correct
directions.

concepts. Our intent is to demonstrate direct control over a
major stumbling block in past manual and automatic puz-
zle design efforts. Previously, it was simply not possible to
directly ask for the kind of puzzles we wanted—we demon-
strate a design-critical, qualitative leap over previous puzzle
generation techniques.

Beginning with an example inspired by Figure 1, we ask
the generator to produce levels which always practice using
a splitter and combiner together (a typical mid-game chal-
lenge). The left side of Figure 3 shows one solution found
after 7.26 sec. (2.12 sec. search). In the next example, we
require that the player always splits and combines at least
twice. The right side of Figure 3 shows a solution found
after 18.9 sec. (8.29 sec. search).

We were intrigued by how the previous example involved
building a monolithic network to satisfy two source-target
pairs that would initially seem to be satisfiable indepen-
dently. Altering our definition of the required concept to
mean building a single network that spans every piece (an
unrealistically difficult request designed to stress our tools),
we searched for a puzzle that required this property over
three source—target pairs and several player pieces. After
152 sec. (140 sec. search), we found the left example shown
in Figure 4. This example highlights the generator’s mastery
of the design for the game’s entangled spatial and mathe-
matical mechanics. Where a human designer might use a
several blocker pieces to restrict the space of solutions to a
size that is feasible to manually check, our tools are capable
of designing levels that allow many (but all very complex)
solutions without this reasoning crutch. For a clearer ex-
ample of this phenomena, we asked the generator to find a
similar puzzle requiring monolithic solutions without using
any blockers at all. This is the source of the right example
in Figure 4, which was found in 74.2 sec. (67.2 sec. search).

Our new perspective on the puzzle design problem has al-
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Figure 4: Generated puzzles requiring that the three
source—target pairs can only be satisfied by a mono-
lithic laser network spanning every given piece. These
examples demonstrate the generator’s competence
in designing intricate puzzles without the need for
obvious chokepoints (particularly clear in at right).

lowed us to exactly formulate the key (and previously inex-
pressible) property sought for most levels: that they require
the player to practice game mechanics at a depth appropri-
ate to a certain point in the game’s level progression. These
preliminary results suggest that even concepts that are ex-
ceedingly difficult to enforce by hand are readily addressed
with off-the-shelf tools. Already, we have begun to learn
new puzzle design patterns from the generated outputs.

7. CONCLUSION

In this paper, we have revealed that many game designs
are critically sensitive to the presence of undesirable so-
lutions (crystallized in the concept of shortcuts). In re-
sponse, we have set up a logical foundation for a very
broad class of design automation problems. By formulat-
ing the shortcut-free generation problem in terms of state-
ments quantified over the space of play, we tap into the
availability of state-of-the-art combinatorial search infras-
tructure. Offering a very small translation utility, we allow
designers access to declarative solutions to this entire class
of problems (NPNP) using only two design-appropriate lan-
guage constructs: __level_design and __concept. Applying
this approach to our own design domain, we report promis-
ing feasibility results from building a shortcut-free puzzle
generator for Refraction puzzles.

In the future, we are intend to integrate player models that
can take a candidate (perhaps incomplete) solution as in-
put and report whether the candidate is feasible, likely, or
interesting. Using this kind of model, we will express that in-
teresting puzzles should require more subtle properties: per-
haps every solution is sufficiently likely for one model while
being sufficiently unlikely for another or that the player must
place a piece where their model suggests they would tend to
do otherwise (requiring concept practice in player-specific
contexts).

We encourage others developing quality-focused level design
tools to account for the distinct responsibilities of the level
designer (to synthesize levels with properties like solvability)
and the design assistant (to actively seek out and identify
potential interactions that might cause the designer to regret
her design choices in those levels).
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