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Abstract

The modeling of human crowds has applications ranging from
entertainment to public safety. Health and safety officials rely
on agent-based simulations to plan emergency exit routes, to
anticipate congestion, and to predict ways to minimize evac-
uation casualties. Beginning with an investigation of current
crowd models, we build a simulation to investigate how the
proportion, behavior, and knowledge of trained leaders af-
fects evacuation success. We base our simulation on the Hel-
bing Social Force Model and incorporate other algorithms to
facilitate collision avoidance and high-level wayfinding. New
features include an extended collision avoidance algorithm
and a high-level wayfinding algorithm that allow agents to
avoid large crowds and to minimize time to exit rather than
distance to exit. As expected, we found that increasing leader
proportion speeds evacuation. In particular, we found that
an evacuee to leader ratio of 20:1 is optimal and that lead-
ers should guide rather than lead agents out of the building.
Providing leaders with real-time communication and surveil-
lance can help them optimize evacuee flow, especially in large
buildings. These results are consistent with previous research
and guidelines set by the Occupational Safety and Health
Adminstration.
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Chapter 1

Introduction

Spurred by a rapidly growing list of applications in entertainment, virtual
training, transportation planning, and public safety, crowd modeling has
developed a large base of research over the last 15 years (see [Chal0)).
Crowd modeling initially branched off of traffic modeling, which helps in-
frastructure planners design highways and roundabouts to maximize flow
using one-dimensional simulations. As noted in [BND11], “the mathemati-
cal structure to be used for the modeling of crowd dynamics is analogous to
that of vehicular traffic, but in a vector form to take into account the fact
that pedestrians move in more than one space dimension” (427). Crowd
modeling has been less studied and, until Helbing’s work in 2000 ([HF'V00)),
had experienced few major developments. In fact, until recently, large-scale
crowd simulations were not possible due the complexity of human interac-
tions with other pedestrians and their environment. Even now, with much
greater computing resources, researchers struggle to imitate human behav-
ior in individual agents. Some effort has been made to simulate the human
decision-making process with the belief-desire-intention model and others
described in [LZCT08]. Most simulations select several features of human
behavior that, when injected into many agents, cause the agents to exhibit
desired emergent behaviors. By building models that are sufficiently accu-
rate and complex, we are able to investigate how many different types of
crowds will behave in varying environments and scenarios. Our model incor-
porates sufficient agent traits that we observe emergent behaviors and are
able to make conjectures about how leader behavior affects an evacuation.
Our work is motivated by the recent rise in the number of high-occupancy
buildings, which has increased the need for evacuation and safety planning.
Such planning emphasizes the need for evacuation drills, warden training,



and exit route planning but has also influenced building architecture and
design. The Occupational Safety and Health Act of 1970 formalized and
strengthened building requirements, specifying that any public location must
have alternate exit routes and that evacuation route signs must be posted.
According to OSHA (Occupational Health and Safety Adminstration):

The employer should assure that an adequate number of em-
ployees are available at all times during working hours to act as
evacuation wardens so that employees can be swiftly moved
from the danger location to the safe areas. Generally, one war-
den for each twenty employees in the workplace should be
able to provide adequate guidance and instruction at the time
of a fire emergency. The employees selected or who volunteer to
serve as wardens should be trained in the complete workplace
layout and the various alternative escape routes from the
workplace [Occ80].

Federal guidelines suggest evacuation drills involving all employees in addi-
tion to the detailed training of “evacuation wardens”, or what we call trained
leaders. We design an agent-based evacuation simulation to determine an
optimal ratio of leaders to agents, the most suitable leader behavior, and the
ideal level of leader knowledge about alternate escape routes and realtime
building congestion information. We then compare these guidelines to our
findings.

Beginning with an investigation of current crowd models, we build a
simulation to determine how the proportion, knowledge, and behavior of
trained leaders affects evacuation success. Similar to in [PBO06], all agents
know at least one evacuation strategy, whether it be following exit signs and
maps, or departing in the same way they entered the building. Therefore, in
our simulation, all agents have a complete knowledge of the floorplan, but
not the hazards in it. Leaders communicate with each other by radio and
can inform agents within hearing distance of hazards throughout the build-
ing. The percentage of leaders in the population and their behavior can
vary. New features in our model include an improved collision avoidance
algorithm that incorporates both slowing and turning as well as short-term
path optimization that allows agents to avoid dense crowds ahead of them.
We expand on Pelechano’s work in [PB06] by adding high-level wayfinding,
where agents and, in particular, leaders, can plan evacuation paths based
on observed crowd densities and flows. Pelechano mentions this idea as a
possible extension in her future work section. Thus, our model extends pre-
vious work in the area by combining the idea of leaders with more complex



leader behavior and knowledge.

Like [PBO06], we base our simulation on the Helbing social force model,
described in [HFV00], with some additions from [HFV02] to simulate panic
propagation. After including corrections to the model enumerated in [LKFO05],
we incorporate collision avoidance, [KZ11], and high-level pathfinding. We
also add “cognitive maps” to each agent, giving trained agents an increased
real-time knowledge of the map by way of radio communication with other
leaders.

We validate our model by observing emergent behaviors, such as doorway
crowding and herding, as was done in [PABO7] and [HFV00]. In addition,
we qualitatively compare our graphical results to those found in [PB06].

These new features in our model allow us to explore how this additional
complexity enhances leaders’ ability to facilitate evacuations. Not only do
we seek to discover an optimal, yet practical, percentage and knowledge
level of trained agents in the population to expedite agent evacuation, but
also, for example, we investigate how having leaders adopt a directing vs.
leading strategy helps or hinders an evacuation. Such knowledge could lead
to better evacuation drill planning and emergency communication systems.

We find that the optimal proportion of evacuees to leaders is 20:1. This
leader presence decreased evacuation time by 40%. Our findings indicated
that these leaders should guide agents (i.e. give them directions) rather than
leading their followers out of the building. The latter behavior produces clus-
tering and crowding around the leaders and impedes flow, thus increasing
evacuation time by about 25%. While leader knowledge of realtime crowd
dynamics has less of an impact on crowd evacuations in small, single-level
floorplans, knowledge of alternate exits is critical. The new features in our
simulation allow for better evacuation prediction because they incorporate
complexities of human behavior such as mutual cooperation and long-term
planning. Future work might indicate that realtime congestion knowledge
helps considerably in larger buildings. Finally, as OSHA suggests, lead-
ers should conduct regular evacuation drills to minimize panic and increase
communication between non-leader agents. This communication can almost
halve the total building evacuation time. These results are consistent with
the guidelines from OSHA, which were created to expedite evacuations dur-
ing disasters.






Chapter 2

Background

A pedestrian simulation attempts to describe how people interact with each
other and their environment. The underlying model ranges in complexity
based on the application. At the largest scale, a simulation might rely on flow
equations, such as the Navier-Stokes equation, to determine pedestrian flow
between adjacent cells in a cellular automata grid. Pure cellular automata
models can simulate the motion of large, dense crowds with up to 100,000
agents, and adding some statistical contributions can further increase their
accuracy. See [BND11] for an overview of crowd modeling approaches. The
primary benefit of these models is that they are very fast, but they lack the
ability to accurately model low-density crowds. For this reason, [NGCL09]
and others create hybrid models that rely on this type of “aggregate flow”
simulation combined with a more individualistic model for low densities.

To add a bit of granularity between agents, some researchers represent
individuals as particles, interacting according to systems like Smoothed Par-
ticle Hydrodynamics described in [Aue09]. Similar to aggregate flow models,
particle simulations are quick to calculate but lack the individualism appar-
ent in real pedestrians. Even though people are represented as individual
particles, each particle behaves according to the same rules or equations as
every other one. This limits the ability of these types of simulations to rep-
resent real crowds of varying densities, since people are actually individuals
that interact according to personal attributes and complex decision-making
patterns.

In the past 15 years, computers have become fast enough to represent
individuals as agents in the simulation. The most important contribution
of this type of model is that agents can be unique — one might be impatient
while another might feel strong altruism toward several others in his family.
An agent interacts with other agents and obstacles according to rules or



forces based on these properties. These simulations do not perform as well
as larger-scale models for big crowds partly because they can be extremely
slow to calculate and partly because people in high-density crowds do tend
to behave like particles or an aggregate flow. For example, see the figure in
[NGCLO09] of the Mecca. However, for smaller crowds, it allows for a richer
representation of pedestrians that increases result accuracy.

In this study, we used an agent-based model to simulate crowds of about
1000 pedestrians. Our primary goal was to investigate how trained leader
agents can affect evacuation time, so the individualism provided by agent-
based models was necessary.

2.1 Agent-Based Modeling

In [HFVO00], Helbing developed his well-known Social Force model, which
formed the basis for a multitude of later extensions. As the father of mod-
ern crowd modeling, he looked to work by social psychologists to derive his
list of nine characteristics of panicking human crowds. These include 1)
moving faster than normal, 2) pushing, 3) bottlenecks, 4) arch-shaped clog-
ging at exits, 5) jams, 6) dangerous interpersonal pressure, 7) slowing due to
obstacles, 8) mass behavior, or herding, and 9) overlooking alternative exits.
He describes several of these behaviors in detail in his later work, [HFV02].

From these principles, he developed an agent-based model that describes
each person, p; with a mass, m;, having a desired speed, v;, in direction
e;, and an instantaneous velocity, v;. Each agent will adjust its instanta-
neous velocity to match its desired velocity with a characteristic time 7;.
In addition, each agent interacts with other agents according to a repulsive
interaction force. Contact and “sliding friction forces” are applied if agents
are sufficiently close to each other. He observed that agents tend to either
crowd near exits in a herd-like manner or to behave completely individually
and find other exits. Neither situation is ideal, he argues, as one would like
the evacuation flow to be equally divided among all exits.

Five years later, Lakoba addressed some issues in the Helbing model in
[LKF05]. First, he criticizes the approximation that Helbing made in cal-
culating inter-personal forces. Helbing, he describes, neglected to include a
“maximum squeezing distance”, dy, for agents in the crowd, which means
pedestrians can overlap each other. Instead, Lakoba used a social force func-
tion between people with an artificially high coefficient that would simulate
these collisions. However, at equilibrium distances of 50 cm, this function
behaves inappropriately, exerting an outward force of 5 N on each agent



involved. For large crowds, this approximation may be sufficiently accurate,
but it does not give good results for less dense crowds where individual in-
teractions matter more. For this reason, Lakoba investigates other collision
algorithms in an attempt to find one more appropriate for crowd modeling.
One such model creates a vertical asymptote in the force as the distance
between agents approaches 2dy. This modification effectively creates an
infinite repulsive force between two completely squished agents and so pre-
vents overlaps. Unfortunately, this model requires smaller and smaller time
steps as the agents become closer, making it computationally inefficient. In
addition, all existing algorithms required solving for all interactions between
agents, even though the interaction matrix is sparse since agents only need
to interact with others within three meters. If the model has n agents, the
algorithm needs to calculate O(n?) forces instead of O(n) in each simulation
iteration.

To correct the Helbing model, Lakoba creates an “overlap eliminating
algorithm”. First, the most overlapped agent is identified. It is moved
out of the wall, if it overlaps, and set to be “stationary”, meaning that
it cannot be moved for the rest of the round. All agents overlapping the
stationary agent are moved and assigned new velocities corresponding to it.
The algorithm then performs the same procedure until no overlapping agents
are found but no more times than the number of pedestrians in the room.
The simulation time step is determined by the distance between the closest
pair of agents. The algorithm drastically reduced the running time of the
simulation and allowed [LKF05] to adjust the interpersonal force coefficient
to more accurately reflect human crowds.

Several types of crowd modeling stemmed from Helbing’s novel work.
Pelechano et al. ([PABO07]) group these into three categories: force-based,
rule-based, and flow-based. Helbing and Lakoba both focused on primarily
force-based algorithms; we also use a force-based algorithm in our model. In
these models, individuals behave like particles with some element of social
force between them. The researchers in the following years lamented the
lack of individualism in the agents, and some even tried to model the human
decision-making process.

2.2 Model Specialization

With the advent of more powerful computers and a greater demand for
realistic models, works such as [BMdOBO03], [Hu06], and [LZC*08] built
increasingly complex simulations to describe how human behavior affects



crowd dynamics. In [BMdOBO03], Braun et al. introduce altruism and so-
cial dependence into their model. As crowds are not generally composed
of equally selfish individuals, they aimed to observe how changing the com-
position of the agent population affected evacuation success. Altruism is
represented as a force drawing an agent towards its group (such as family or
friends). Dependence reflects how capable an agent is of dealing with stress:
a child or disabled person has high dependence and may tend to stop moving
altogether in an emergency. Braun’s test results exhibited group formation
and less efficient evacuation in general.

Moving past the force-based model standard, [Hu06] characterizes agents
with behavioral context in a rule-based state model. Individuals make adap-
tive choices based on their environment. Each individual occupies a single
behavioral state at any time, and, at a higher level, maintains a behav-
ioral context state. Behaviors include casual walk, explore point, maintain
personal space, follow crowd, and flee to exit. Each behavior contains in-
hibitory coefficients that prevent an agent from moving into that state from
another. These coefficients can be changed by the behavioral context state.
For example, a panicked agent will be more likely to “flee” (a panicked,
semi-irrational behavior) than one not so afflicted. Hu’s paper made im-
portant contributions in the area of rule-based simulations by incorporating
behavioral states.

Luo in [LZC"08] extends these discoveries to build a three-layer generic
model that aims to “naturally reflect human decision making due to external
stimuli”. His daunting goal demonstrates the increasing focus on individu-
alistic agents. The top level is the crowd level, modeling social relationships
such as altruism. The second layer is the individual level, where an agent
processes sensory inputs and accumulates situation awareness. This level
sends information to the third, physical layer which forms a list of basic
actions to interact with the world. In addition to this complex system, Luo
et al. include a plethora of other variables such as energy level, emotional
attraction, and panic.

Not all researchers developed more individualistic agents. Narain et al.
in [NGCL09] instead formulated large-scale crowd modeling algorithms for
use with 50,000 to 100,000 agents. Previous simulation techniques were
infeasible due to the complexity of agent interactions and collision detec-
tion. Narain develops an aggregate flow cell-based model. He relies on an
assumption he terms unilateral incompressibility, meaning that agents in
an extremely dense crowd behave like an incompressible fluid. Each cell
contains a pressure gradient and flow, so he avoids most of the agent col-
lision detection. The global planner determines individual velocities, these



velocities are “splatted” to a cell, the model performs the unilateral incom-
pressibility calculation, and the actual agent velocities are extracted. Not
wishing to sacrifice individual movement or over-constrain less dense crowds,
he determines each agent’s velocity based on an interpolation between the
preferred velocity and flow velocity depending on the crowd density. For
example, in an extremely dense crowd (such as at the Mecca), agents must
move entirely with the flow whereas agents at a large campground can move
almost independently. In this way, the model uses a mixture of Eulerian
and Lagrangian principles. Pelechano in [PAB07] also experiments with
large, high density crowds but incorporates some individual behavior such
as politeness and impatience. Her model creates an attractor point in each
room which draws all agents. She successfully simulated behaviors such as
queueing, pushing, and panic propagation.

In an earlier paper, [PB06] tackle a novel concept in evacuation modeling:
that all agents do not have equal information. They combine Helbing’s social
force model with high-level wayfinding and varied agent roles. In general, an
individual in an evacuation may not have a complete cognitive map of the
building and so will either proceed to the nearest known exit or will explore
unknown areas. In addition to this possibly incomplete internal blueprint,
each agent has an orientation (where it is), and an ability to navigate or
explore. It can communicate its knowledge to other agents with varying
degrees of ability. All agents in the model also have some personality traits
as described in previous papers. More importantly, some agents will initially
have greater knowledge. These “leaders” can inform other agents of nearby
exits or alternative evacuation routes. Pelechano et al. investigate how the
presence of these leaders affects evacuation efficiency. They determine that
even a few such agents can drastically reduce the casualties in an emergency.

As Helbing notes in [HFV00], “One of the most disastrous forms of col-
lective human behaviour is the kind of crowd stampede induced by panic,
often leading to fatalities as people are crushed or trampled”. This reason-
ing, as well as interest in convincingly portraying crowds in entertainment
and video games, has brought crowd modeling to the front of current simu-
lation research. Beginning only 11 years ago, Helbing introduced his novel
social force model, which served as the basis for countless others. Some
moved in a more individualistic direction and others toward large-scale sim-
ulation. However, all may be important in modeling evacuation scenarios.
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Chapter 3

Our Model

Of the many models developed to simulate crowd dynamics, we selected a
few that gave rise to emergent behaviors presented in [LKF05] and allowed
us to investigate how the presence of leaders affects evacuations. These
models were selected and incorporated to give a force-based, rather than
rule or flow-based, model that is relatively simple to implement and likely
to be robust enough to exhibit emergent behavior. In addition, force-based
models do not require as many esoteric parameters or state-transition rules,
instead depending on intuitive quantities like personal space radius and other
functions described in [HFV00].

At the base of our model is the path-finding algorithm that agents use
to find exit paths. Overlaying that are a variety of agent-interaction models
such as the Helbing social force model, the overlap eliminating algorithm,
a panic propagation model, a collision avoidance algorithm, and a novel
high-level wayfinding method.

3.1 Path Finding

Agents in our simulation rely on a visibility graph to plan minimum-distance
paths to exits, in contrast to the portal-based approach in [PB06]. During
pre-processing of the floorplan image, the program identifies convex corners
as vertices in the graph and creates edges between all pairs of vertices within
line-of-sight, as shown in figure 3.1. We chose this approach because it
facilitates running simulations on arbitrary floorplans. In many portal-based
algorithms, graph vertices are rooms rather than corners. So, when the
connection between two rectangular rooms is particularly wide, an agent
cannot optimize its path by choosing which side of the “door” it passes
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through without our implementing inconvenient extensions to the algorithm.

Figure 3.1: Visibility graph for simple floorplan. Lime green dots denote
vertices, and gray lines are edges. Magenta boxes are destination points, or
exits in the floorplan. This floorplan has 41 vertices and 400 edges.

An agent determines an optimal sequence of edges to traverse using a
single-source, shortest path algorithm. Interactions with other agents may
cause this agent to deviate from its planned path enough so that the next
vertex in its path is obscured by a wall. An agent would then need to re-
calculate its exit path. In addition, an agent does not need to actually reach
each vertex along its exit path; it only needs to follow each edge until the
next edge in its path is visible. Several optimizations can be made to the
algorithm by reusing previously calculated parent maps, recalculating new
paths only when described above, and precalculating the visibility of each
vertex from each pixel in the floorplan. In practice, only the last technique is
possible. The dependence of exit time on current crowd conditions severely
hampers optimization, and using individualized cognitive maps limits the ef-
fectiveness of caching previous results. Because crowd conditions can change
during any time step, an agent must recalculate its path every time. Visi-
bility precalculations of each vertex from each pixel in the floorplan greatly
speeds up the simulation at the cost of a memory usage. The program stores
one bitmap for each vertex in the floorplan. So, if there are n vertices and
the floorplan has m pixels, nm bytes will be required. During each iteration
of the simulation, an agent needs to consider whether it can still see the next
vertex in its exit path. In addition, for two agents to interact, one needs to
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be able to see the other’s next point to ensure both are on the same side
of a wall. A naive approach might trace a path between each agent and its
next vertex at every iteration, but storing precalculated visibilities gives a
much faster implementation.

3.2 Agent Interactions

During an evacuation, agents navigate around walls and through doorways
along an exit path. Each agent must consider nearby agents, obstacles, and
hazards to effectively minimize its own evacuation time. Our simulation
relies on four primary models and algorithms.

3.2.1 Helbing Social Force Model

The Helbing Social Force Model describes the quantitative motions of crowd-
ing agents using the concept of personal space. Helbing in [HFV00] describes
personal space as “a psychological tendency of two pedestrians to say away
from each other” by a repulsive interaction force whose magnitude is given
by Ae~% B where d is the distance between two interacting agents and A
and B are constants. A tangential friction force resists the sliding motion
of both agents while the normal force protects the agent’s personal space.
We choose A and B based on results from Helbing’s work and determine
similar constants for agent-wall interactions to ensure that an agent cannot
push another through a wall. During each time step, an agent accelerates
from his initial velocity, vi to meet his desired velocity, vo with a specified
time constant, 7.
dv  vg—V;

— = other forces
dt T +

As noted in the background, this model has several flaws, particularly
in calculating collisions. We address these by adding some modifications
detailed in [LKF05]. The resulting model forms the basis of all agent inter-
actions in our model.

3.2.2 Overlap Eliminating Algorithm

In [LKF05], Lakoba et al describe an Overlap Eliminating Algorithm (OEA)
as an alternative to Helbing’s collision model. The authors reject the idea of
modeling interpersonal collisions with a simple exponential function, Ae®/5,
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where d is the distance between them, noting that people should never ac-
tually overlap. They explore using asymptotic functions to model interper-
sonal forces. Since the force between two touching agents will be infinite, it
guarantees that agents will never overlap. However, solving for the motion
of agents requires an impractically small time step, so they develop the OEA
to govern collisions instead. During each simulation iteration, the following
algorithm is run:

1. Find the most overlapped pedestrian.

2. If that pedestrian overlaps a wall, move him away from the wall and
set the component of his velocity toward the wall to be 0.

3. Mark the pedestrian as “stationary”, meaning that he cannot be moved
again during this iteration.

4. Move all non-stationary pedestrians away from him to eliminate their
overlap.

5. Repeat steps 1-4 until no overlapping pedestrians are found, but no
more times than the number of agents.

In almost all cases, all overlaps will be eliminated. It is conceivable that an
agent in a corner will be unable to eliminate overlaps with agents around
him if those agents are already stationary.

This can be remedied by prioritizing agents that overlap walls, even
if other agents may be more overlapped, which is a danger with large time
steps. This ensures that pedestrians are not trapped against walls (or pushed
through them, as the case may be). At reasonable densities of at least 2 sq.
ft per agent, our implementation of the algorithm gives reasonable-looking
results, especially after some position averaging to remove jitter. Position
averaging simply displays agents at a position which is the running average
of their actual position over several time steps. Agents form arch-shaped
clogs at bottlenecks (see figure 3.2) and push each other out of the way.
For example, an agent at the outer edge may squeeze between two agents,
pushing them both farther from the door. Both pushing and clogging are
emergent behaviors noted in [HFV00].

3.2.3 Collision Avoidance Algorithm

Depending on the density of a crowd, agents may attempt to avoid collisions
by making small adjustments to their velocity. Our method is loosely based
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Figure 3.2: Arch-shaped clogging at an exit. Agents appear to be overlapped
because of position averaging.

on a description in [KZ11], which models agents interactions through sen-
sory input. Figure 3.3 illustrates how, in Koh’s model, an agent perceives
its surroundings through contact, personal space (hearing), and vision. Koh
projects rays from the agent throughout its field of view. It can pay at-
tention to a fixed number of objects at any time and will attempt to avoid
collisions with these objects with a success rate dependent on its level of
panic and the required deviation in velocity. In a less dense crowd, per-
sonal space increases, and agents will make greater adjustments in velocity
to stay away from others. In dense crowds, agent inhibitions against contact
are diminished, particularly during panicked evacuations. Interestingly, us-
ing the low-density parameters for a high-density crowd causes some agents
to following winding paths through a maze of agents, almost tripling their
evacuation times.

[KZ11] does not detail algorithms and methods for avoiding collisions,
but it suggests that an agent will either turn or slow down. In our model, an
agent will perform both according to its panic and desired speed. [HFV02]
describes that panic makes agents move more quickly and impedes their
ability (and desire) to avoid collisions. Therefore, a panicked agent will
turn rather than slow down, but not as much as it would under normal
circumstances. In figure 3.4, agent 1 will turn slightly to the right and slow
down in order to minimize the change to his velocity but avoid the collision.
For example, turning left would require a much greater deviation.

Koh indicates that people can psychologically only pay attention to a
few objects at a time. These “attention points” are ranked according to
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Figure 3.3: One agent’s perception of its environment through vision, hear-
ing, and touch.

Figure 3.4: Agent 1 will turn right and slow slightly to avoid the anticipated
collision with Agent 2.

collision risk and relative position and velocity. We make the addition that
an agent can still be aware of agents farther away that have no chance of
colliding with it. For example, a person can usually tell you the location
of large clusters of people, even if they do not have any recollection of the
individuals within the group. Suppose an agent anticipates a direct head-on
collision with another agent. Clearly, he must turn to avoid the collision,
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but since turning either left or right will suffice, he considers several other
factors. The first is cultural. People will generally follow traffic guidelines
and prefer to pass on the right side (in the United States at least), all
else equal ([KZ11]). In addition, they may consider the room’s larger-scale
dynamics and choose to turn to avoid passing through dense crowds. For
example, see figure 3.5.

Our model is also novel in its attempt to simulate unspoken agreement
between agents about which will make a change in velocity. In real crowds,
people use eye contact to decide which person will turn to avoid the other,
and this method is usually successful. We decided that the accommodating
person tends to be the one that turn in most collisions. Similarly, a person
that constantly stares at the ground will not be the one to change velocity
to avoid others. So, we assign each agent a random number at the beginning
of the simulation. Before an anticipated collision, the agent with the lower
number will usually make the change in velocity. The method does not
allow agents to always avoid collisions without drastic reductions in speed,
but even real people cannot always predict the motion of others.

Figure 3.5: An agent will likely follow the green path to avoid agents imme-
diately ahead of it to optimize its travel time. The figure also demonstrates
how an agent can overtake several others in a typical human behavior.

3.2.4 High-level Path Optimization

To optimize its path through a single room, an agent needs to plan a route
based on observed crowd motion that minimizes travel time rather than
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simply travel distance. For example, an agent may decide to take an entirely
different exit path after observing the locations of crowds throughout his field
of view. A less-crowded, longer path may allow for a speedier evacuation.
Unfortunately, the average agent can only factor in crowd dynamics within
his field of view. Consider figure 3.6 to compare how high-level individual

planning can optimize agent flow.

TEY Y P
arma,

Figure 3.6: On the left, agents crowd unnecessarily around a single exit. On
the right, high-level path optimization allows them to predict a short exit

time through the upper door.

This feature is implemented in the simulation by creating a “path” un-
der each edge of some predetermined, fixed width (see section 4.2). A single
agent could potentially be on multiple paths at the same time, since edges
overlap and their paths certainly do. From an agent’s location, the simula-
tion determines which paths the agent is on and records average path speed
and density for observation by other agents. In addition, since crowds tend
to form near vertices, the number of agents within a fixed crowd width (see
parameters) is counted to determine density at each vertex. Agents account
for densities near edge endpoints to predict their time of exit.

3.3 Hazards and Leaders

In a realistic evacuation, exits may be blocked, and hazards may impede
motion throughout the building. In our simulation, agents observe these
fixed-location hazards and plan new exit paths around them. [PB06] gives
each agent an individual cognitive map where it can store information it
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learns. With only hundreds of agents and 50-100 rooms, the space require-
ment is small. However, in a simulation with 1000s of agents that uses a
visibility graph, several gigabytes are necessary to store the most basic in-
formation in each cognitive map. Instead, in our simulation, each agent
maintains a list of “disaster edges” that are impassable due to some hazard.
They use these to share information and plan exit strategies.

We investigate how varying levels of communication between agents af-
fects evacuation speed. A complete lack of communication between agents
means that every agent must observe a hazard with his or her own eyes
before planning a new route. This low level of communication is unrealis-
tic — even if no verbal communication takes place, an agent is unlikely to
run into a room experiencing a mass exodus of panicked people. However,
at the other end of the spectrum, the exact location of all hazards cannot
spread instantaneously between all evacuees. A more realistic model that we
developed is that an agent hears from another agent within close quarters
about some hazard with some probability. In addition, that agent’s confi-
dence in the information is less than that of the agent that communicates
it. If an agent’s confidence is low enough, it will not trust the information
that is heard. In [PB06], Pelechano allows agents in a single room to share
information about their observations of the floorplan.

In order to expedite the evacuation process, leaders equipped with radios
and an admirable selflessness can direct or lead “followers” out of the build-
ing. Because these leaders share a global knowledge (due to the radios), they
can inform nearby agents of hazards and guide them on alternate evacuation
routes. Moreover, depending on their level of knowledge, they may know
relative congestion throughout the building and optimize paths using that
information. In addition to varying their proportion and distribution within
the population, we vary their behavior. One one hand, they can lead small
groups toward exits, and on the other they can act more as semi-stationary
directors of traffic.

3.3.1 Panic and Impatience

In an evacuation scenario, panic can lead to the stampeding crowds Helbing
describes. Our model relies on work in [HFV02] to model panic. An agent’s
panic level is increased by 1) the sight of a hazard or blocked path, 2)
moving too slowly, and 3) panicking agents in the vicinity. Some factors
that decrease an agent’s level of panic include motion and the presence
of leaders. Due to their extensive experience and training, leaders do not
panic. Our model records panic level on a scale from 0 to 100 for each
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agent. During each time step, each of the aforementioned situations will
change an agent’s panic level according to their respective weights in the
model. We assign weights rather arbitrarily in a way that makes intuitive
sense: each panicked neighbor adds 1, a leader decreases it by 7, movement
decreases it by 3, lack of movement increases it by 4, and seeing a disaster
increases it by 15. As mentioned briefly before, panic generally makes an
agent move faster, ignore better routes, collide more with its surroundings,
and exhibit herding behavior. For example, an agent will choose to turn
slightly rather than slowing slightly to avoid a collision. In the simulation,
these effects are model by increasing speed, decreasing observation-based
path optimization, decreasing willingness to change velocity to avoid another
pedestrian, and increasing desire to follow other agents. This model of panic
allows our simulation to consider how communication and leaders affect
individual agent behavior.
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Chapter 4

Experimental Framework

4.1 Technical Simulation Resources

We implemented our model in C++ using the Microsoft Visual C++ 2010
Express development environment. Graphics were created using the stan-
dard Windows GDI+ libraries. All other features were implemented using
the standard template and C libraries. Input floorplan images were on the
order of 300 pixels to a side. A single simulation run with about 1000 agents
and all features takes about 25 minutes to run. All of our simulations ran
on a single processor. The processor was an Intel Core i7 Nehalem E5530
(2.4 GHz, 256 kB L2, 8 MB L3). The computer had 16 GB of 1333 MHz
DDR3 RAM.

4.2 The Simulation Parameters

We ran the simulation using a similar floorplan as was used in [PB06]. Figure
4.1a displays this floorplan, where hazards are shown as red boxes. Hazards
could be fires, toxic gases, or other impassable obstacles. We added obstacles
to the floorplan according to figures in [PB06]. Since the hazards are dis-
tributed evenly throughout the building and remain stationary, they might
represent rubble after an earthquake, for example. Running the simula-
tion with fewer hazards should decrease the importance of leaders and their
knowledge. Our simulation begins with 1005 agents evenly distributed in a
grid throughout the building. Leaders are also evenly distributed. Notice
that agents in the room near the top right corner will not be able to evacuate.
In addition to the “maze” floorplan from [PB06], we used several very sim-
ple floorplans and a floorplan of a hotel (www.martinexecutivesuites.com,
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retrieved Feb 2012) to observe emergent behavior (see figure 4.1b).
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Figure 4.1: Two floorplans used for testing, validation, and final
runs. Red boxes denote hazards. Hotel floorplan (b) is from
www.martinexecutivesuites.com.

Our simulations test how changing a number of variables affects sim-
ulation success. The default configuration is specified below, and leader
proportion is set in each experiment to highlight findings.

e No communication between non-leaders. Agents will not verbally in-
form other agents of hazards.

e Leaders have knowledge of crowd densities and average speeds. This
knowledge should help them plan more efficient exit paths.

e Leaders guide followers out of the building rather than simply directing
traffic while stationary.

e Agents do not crowd leaders but rather listen to instructions given and
proceed accordingly toward the exit.

e Agents panic, and panic affects judgement and behavior.

In addition, our model depends on a number of constants, as described
in table 4.1. Model parameters were determined either from background
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Parameter Value

Initial avg agent density 16 - 64 sq ft/agent
Simulation Time step .05 sec
Pixels per foot 2 pix

Path width (High-level Path Optimization) 4 ft
Crowd width (High-level Path Optimization) 7 ft

Minimum number of agents 10 agents
on a path to consider avoiding
Minimum squeezed agent diameter 1 ft ([LZCT08])
Wall-agent force (d is feet from wall) 0.04(10 — d), 0 < d < 10 pix/timestep?
Agent-agent force A =68,B=—.52ft. ([HFV00])
Personal space radius 3 ft
Field of view 80°
Max viewing distance to see individuals 15 ft
Default speed distribution (uniform) 3.7+£1ft/s
Time constant, T 0.3 s ([HFV00])

(double if low density crowd or if panicked)

Leader communication distance 13 ft (stationary), 8 ft (moving)

Table 4.1: Simulation Parameters

research where noted or by observation and trial and error. For instance, we
set an arbitrary minimum number of agents along a path for other agents to
consider them a potential obstacle to be 10 because we found that produced
reasonable-looking wayfinding displays. Because the goal of our simulation
was not to predict real times of evacuation, the interaction between param-
eters was more important than the exact values. For example, we set the
wall-agent force to balance the agent-agent force when an agent was next
to a wall. Most other parameters were chosen based on common sense, as
these are parameters that are easily understood. For example, the width of a
typical crowd near a doorway or field of view for a pedestrian are both intu-
itive parameters. We note that varying these parameters within reasonable
bounds had very little effect on the simulation.

We determined a good value for the time step experimentally. The value
was observed to be too high if agents were pushed entirely through walls
before the OEA could eliminate their overlap. A very low value would make
the simulation too computationally costly for experimental purposes. We
found that using 0.05 seconds per time step was a reasonable compromise.
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Chapter 5

Simulation Results

After developing our simulation, we validated it by comparing our results
to those in [PB06] and by observing emergent behavior. We varied the pro-
portion, knowledge, and behavior of leaders to determine which parameters
are ideal for a real evacuation. The graphs we created show the number of
agents left inside the building at a given time. We determined the time to
total evacuation by the number of time steps until all agents have exited the
building. In some cases, a hazard may trap agents inside the building, and
they are ignored in final calculations. Approximating the actual evacuation
time requires multiplying by the time step conversion factor (see table 4.1).
For example, if a total evacuation takes 2600 time steps, we could predict
that the actual evacuation would take about 2 minutes.

5.1 Validation

We validate our model primarily by observing emergent behaviors noted in
[LKF05] and [PB06]. Several other tests validate individual components of
our model like collision avoidance and the Overlap Eliminating Algorithm.

Arch-shaped Clogging Figure 3.2 demonstrates how arch-shaped clogs
form when the desired pedestrian flow out of the room exceeds the
doorway’s capacity.

Herding and Aversion to taking detours Particularly when panicked,
pedestrians tend to follow other pedestrians, even if that route is not
the fastest. Similarly, [HFV02] observes that pedestrians avoid taking
detours. In figure 5.1, leaders do not consider crowd density and aver-
age speed in path planning, so agents tend to follow the crowd, rather
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than taking the detour to their right, even when that strategy may
lead to a slower exit time.

- |
Figure 5.1: When leaders do not consider crowd density and average speed

in path planning, agents tend to follow the crowd, even when that strategy
may lead to a slower exit time.

Leader Crowding As observed in the simulations by [PB06], agents clus-
ter around leaders during an evacuation. See figure 5.2. We experi-
ment with various leader behaviors to minimize this clustering, since it
can restrict leader motion. A slower leader means a slower evacuation
for the entire group. Leaders that instead simply give directions can
optimize flow somewhat without becoming obstacles.

Avoiding Collisions To test the collision avoidance algorithm, we have
20 agents move between each other toward opposite sides of the room,
similar to in [KZ11]. Figure 5.3 exhibits how the algorithm allows
agents to avoid colliding with each other.

Maintaining Personal Space In low crowd densities, maintaining per-
sonal space becomes more important to agents. To test their ability to
both maintain this psychological barrier around themselves and avoid
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Figure 5.2: Agents cluster around leaders during an evacuation, sometimes

impeding a leader’s ability to guide them out. Note that the agents in the
upper right are trapped by an obstacle.
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Figure 5.3: Agent moving toward opposite sides of a room avoid collisions.
The “noses” in front of agents denote their instantaneous direction.

collisions, we used low-density crowd parameters in a high-density
crowd. Figure 5.4 demonstrates this result.
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Figure 5.4: Agents preserve personal space even in a high-density crowd with
adjusted parameters. Some agents seem to be heading in unusual directions
to avoid collisions with other agents. The small brown dots represent agent
noses which indicate instantaneous direction.

5.2 Effect of Leader Proportion

We investigated how the proportion of leaders affects evacuation success.
Leaders begin evenly distributed throughout the building, like security guards
in a museum or police in a subway station. In the graph, figure 5.5, the
number of agents in the building is plotted against time step. In general, a
greater number of leaders means that the evacuation proceeds more quickly.
When there are no leaders, many agents are trapped exploring the building,
looking for an unblocked exit path. The introduction of leaders allows more
agents to proceed directly to an exit. Interestingly, the evacuation proceeds
the most quickly during the first 1000 time steps when there are no leaders.
Without leaders, agents closer to the exit can proceed directly out — the
leader knowledge does not help them evacuate more quickly. The presence
of even a few leaders will cause some clustering, not necessarily around the
leaders, but along the path the leaders dictate is the best. At any instant,
all agents within hearing range of a leader will decide to proceed along the
same exit path. For example, a leader agent cannot tell half its followers at
any one time to go one way and half to go another. This lack of granularity
in leader instructions creates more congestion than if all agents decide indi-
vidually how to exit. Since agents only listen to the closest leader, training
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more leaders can minimize path congestion.

Proportion of Leaders
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Figure 5.5: Analyzing how the proportion of leaders within the agent pop-
ulation speeds evacuation.

As expected, a greater proportion of leaders speeds the evacuation. How-
ever, since any proportion above 20% is infeasible for real evacuation sce-
narios, the 5% gives the most effective leader presence ratio. Indeed, having
33% leaders instead of 5% leaders gives little, if any, benefit.

5.3 Effect of Non-leader Communication

Communication between non-leaders greatly diminishes evacuation time. In
both our simulation and in [PB06], evacuation times are halved. An agent
that sees a blocked path will inform other nearby agents of his knowledge.
Each time the information is spread, confidence in its accuracy and proba-
bility it will be trusted decreases. In these trials, we use a 1% leader-agent
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ratio.

Nonleader Communication
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Figure 5.6: Communication between non-leader agents can halve the evac-
uation time.

Clearly, figure 5.6 demonstrates that communication between agents can
speed the evacuation process considerably. However, this is not usually
a factor a safety planner can control. Pedestrians in an evacuation are
focused primarily on self-preservation, especially when panicked. Some ways
to increase interagent cooperation may be to have leaders present to reduce
panic levels and to have evacuation drills.

5.4 Effect of Leader Density Knowledge

Using radios, leaders could communicate information about crowd densities
and movement throughout the building to each other. Using this informa-
tion, leaders could plan evacuation routes more effectively to minimize exit
time. While non-leader agents do have knowledge of crowds they can see,
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they do not know about crowd dynamics observed by all leader agents. In
figure 5.7, leaders optimize crowd flow to reduce evacuation time by 10%.
In these trials, there is a 1:5 leader to agent ratio.

Leaders' Density Knowledge
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Figure 5.7: Knowledge of densities observed by all leaders helps maximize
flow out of the building.

Theoretically, leaders should be able to communicate at this level of de-
tail with the proper training. For example, they could refer to specific rooms
and hallways with unique identifiers known to all agents. However, leaders
do not have the ability to solve complex network-flow problems in their head
to maximize flow out of the building. For this reason, our simulation does
not rely on such algorithms; instead, each leader guides his current group
of followers out along a path that approximately minimizes their exit time
according to his knowledge. In a real evacuation, a leader that knows a
certain hallway is very congested might guide the agents following him out
along an alternate path.
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5.5 Effect of Leader Behavior: Directing or Guid-
ing

We experimented with two modes of leader behavior. In the first, leaders
lead groups of followers out the building by walking along the exit path with
them. In the other, they guide agents by informing them how to exit instead
of leading them out. In the extreme case, all leaders remain in the building
until all agents have left. In figure 5.8, these two types of behaviors are
compared. In both cases, leaders move toward the exit at their own desired
velocities (rather than remaining stationary). All of our simulations assign
leaders’ desired speed using the same distribution as is used for normal
agents. The only variation in leader behavior is in what instructions they
communicate to their followers. In these trials, 14% of agents are leaders.

Directing vs. Leading Behavior
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directing
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Timestep

Figure 5.8: Leaders guide agents out of the building by giving directions. In
this case, they also move at the same speed as the agents toward the exit.
The leading behavior means agents follow them out of the building, often
clustering around them and slowing the evacuation.
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It appears that guiding rather than leading gives a much faster evac-
uation (almost 25% faster). The primary benefit of the first behavior is
that agents do not crowd around leaders, thus preventing them from mov-
ing. Panic only exacerbates this phenomenon because agents pay even less
attention to avoiding collisions other agents.

In trials where leaders were stationary until all agents had evacuated, the
evacuation times were slower because leaders got in the way of crowds. One
benefit of this extreme strategy is that no agents were left behind, looking for
an exit. Helping people to realize the importance of staying in groups during
drills may help eliminate these stragglers but may also increase congestion
and unwillingness to follow detours. Perhaps a better strategy is for leaders
to stay near walls to allow crowds to pass them.
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Chapter 6

Conclusions

Our simulation emphasizes that the level of preparation for evacuations can
have dramatic effects on their success. We found that training 5% of agents
within the population to be leaders decreases evacuation time by up to
40% while minimizing panic and encouraging communication between all
agents can decrease it by almost 50%. This discovered coincides with the
OSHA guideline of a 1:20 leader to agent ratio. Leaders should have knowl-
edge about hazards and crowd dynamics throughout the building. Sufficient
training will allow leaders to quickly communicate this information between
each other during an evacuation.

Leader behavior should depend on the population composition; if agents
naturally travel in groups (for example, a large party a friends or closely-
knit workplace), leaders can exit the building normally while guiding agents
along optimal paths without worrying about stragglers. If not, agents should
remain close to walls to avoid impeding crowd flow while they ensure all
agents evacuate successfully. Choosing the optimal behavior could increase
evacuation rate by another 11%.

Even though the simulation does account for individual differences like
walking speed, patience, and knowledge, future work might model even more
individual aspects like altruism between family members. These unique at-
tributes could drastically affect an evacuation. Some work has already been
done in this area by [LZC108]. In addition to testing simulations by observ-
ing emergent behavior, several researchers have performed Hidden Markov
Model video analysis to compare their models to real crowd data. Such
testing and validation is important for the field to show that simulations
can predict the best way to organize and run evacuations. With that confi-
dence, building planners and architects may use simulations to analyze and
plan effective evacuation routes. In particular, future work might investigate
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typical office building or warehouse design to see if changes to the floorplan
facilitate evacuations.
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