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1 Introduction

Given the importance, complexity, and limited amount of the time we have,
it only makes sense that many of us look to digital tools in managing our
schedules, daily tasks, reminders, and other time-oriented responsibilities.
A given digital tool will often encompass one or two of these examples, each
with its own specialized eatures and interface. As a result, an average user
might use multiple time management tools in conjunction with one-another
to meet their overall needs. This leads to a degree of manual work by the
user to piece together how they’re going to spend their time and stay in sync
with their various responsibilities.

My own experience with this dynamic has lead me to pursue the de-
velopment of a unified scheduling and task management tool for the senior
exercise. Where a calendar app, reminders app, and to-do list app have
been my go-to tools for time management, I plan to create a tool which,
given the user’s existing calendar and a set of tasks, imposes them onto the
schedule and allocates time for these to be done proactively. Ultimately, the
goal is to increase efficiency and free time, while reducing overall stress in
the process. I plan to achieve this by framing it as a constraint satisfaction
problem (CSP).

In preparation for this project, I’ve explored the space of CSPs with
relation to time management. In this paper, I look to summarize the find-
ings of my exploration into this richly defined space, in which I’ve found
background information, insights on implementation details and algorith-
mic approaches, related applications (and their successes and failures), as
well as a comparable previous attempt which I can learn from as I aim to
create a thoughtful, functional result.

The survey begins with a brief introduction of CSPs in general (those
familiar with CSPs may skip). I then discuss some general framings of CSPs
in regards to planning and scheduling, followed by some common examples



of scheduling problems tackled by CSPs. This is to set the scene for the
inspiration of my senior project–the gaps in exploration of CSPs surrounding
personal scheduling is evident. I delve into the most prominent exception to
this, PTIME, in the following section, focusing on what was accomplished
and how it relates to what I set out to achieve.

The rest of the paper focuses on the details relating to my own imple-
mentation. I begin discussing temporal constraints and how to set them
up in our CSP. Next is a detailed introduction to Answer Set Programming
(ASP) and the way in which it can be mapped to a CSP. This will serve to
be the most concrete in its technical details and provide a clear launching
point for next semester’s implementation. Finally, I detail some important
aspects of what an effecive user interface around the CSP should look like.

2 Background and Literature Review

2.1 CSP Applications in Scheduling

2.1.1 CSP Definition

A CSP [BSR10] is a triple containing sets 〈X,D,C〉:

• variables X = {x1, ..., xn}

• domains D = {D1, ..., Dn}

• constraints C = {c1, ..., ck}

Each variable xi ∈ X corresponds with domain Di ∈ D, where Di is the set
containing all possible values for instantiation of xi. A given constraint cj
represents some condition involving one or more variables from X. In order
for a constraint cj to be satisfied, the instantiated values of the variables it
encapsulates must meet its condition in a way such that it is also possible
for all other constraints {c1, cj−1, cj+1, ..., ck} to also be satisfied.

We solve our poblem by progressively instantiating variables one at a
time. This entails assigning a given variable some value from its domain,
such that the value satisfies all applicable constraints containing the variable
in question, or does not prevent future satisfaction of any constraints. If we
find a conflict which prevents one or more remaining variables from being
instantiated in a way which satisfies all constraints, we must backtrack and
assign a different value to one or more of the prior variable(s). We continue
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this process until all variables in X are instantiated, and all constraints in
C are satisfied.

2.1.2 Applications

With their flexible, finite, and widely applicable nature, it’s not surprising
that a long history of CSP applications in scheduling has been cultivated by
the artificial intelligence community.

Job-Shop Scheduling

The job-shop problem is a popular scheduling application of CSPs. It con-
sists of a set of n jobs J = {j1, ..., jn} and a set of m machines (which we
can denote as R resources) R = {r1, ..., rm}. Each job contains one or more
operations [o1, ..., ok] which must be completed in a specific order. The goal
in working through this problem is to not only find a solution in which we
complete all jobs in J using the machines available in R, we also want to
minimize the time elapsed from the start of the first job we take on to the
end of the last job we complete, known as the makespan. In Figure 2.1, the
makespan is 13.

Figure 2.1: “Gantt Chart” depicting three jobs, each containing three oper-
ations, distributed over four machines. [PMC08]

Most often, this problem is formulated as a CSP by focusing on the
start time of each operation of each job. This leads to a problem with
m × n decision variables, whose domains are comprised of possible start
times. However, this problem may also be framed as a disjunctive graph via
the PCP approach. In doing so, the problem focuses on setting sequencing
constraints which denote which operation is assigned which resource. A
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decision variable Orderingij is defined for each pair of operations (Oi, Oj) in
which ri = rj (the two operations utilize the same resource). In this scenario,
Oi may be sequenced either before Oj or after Oj . As decisions are made,
they are “posted” to a temporal relations graph, and propagation ripples
the consequences through the remaining CSP variables [CS97]. The PCP
model utilizes the basic elements of a general temporal constraint network,
including qualitative constraints and continuous domains, which is discussed
in [DMP91]. Similar processes have also been explored with Multiprocessor
Scheduling as a CSP [CGB09], though with the addition of it being real-
time.

Flow-Shop Scheduling

Figure 2.2: “Conceptual schema of the six workstations”, each padded by
buffers between them. An individual worker may only occupy one worksta-
tion at a time. [NS09]

Much like in the job-shop scheduling problem, flow-shop scheduling looks
to efficiently complete some set of jobs J . However, each of these jobs is
identical. And, rather than thinking in terms of operations and machines, we
think in terms of workstations along an assembly line, with operators needed
for them to function, where there are less operators than workstations. The
output of one worker is the input to another, and when all operations of
a job are complete, the job is finished. As shown in Figure 2.1, there is a
buffer at the beginning of the assembly line, at the end, and between each
workstation, to hold work as it’s not the focus of an active workstation.
Once again, the goal is to minimize the makespan given the jobs, operations
(workstations), and workers.

In regards to framing the CSP, Neubert [NS09] creates a dynamics prob-
lem, with variables to represent each element in terms of a number of time
steps k. For example, a unique variable is assigned for each worker’s state
for each value of k, one for each piece worked on at a give workstation w
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(pw(k)), the number of pieces present in the last buffer (denoting the num-
ber of jobs that have finished their operations). There also are variables
denoting the number of pieces at every intermediary buffer for each value of
k.

Finally, constraints give rise to the behavior of the flow-shop itself. We
start by constraining the initial conditions, that is, the variables denoting
the pieces contained by each buffer at time k = 0, which should all be set to
empty: bs(0) = b0s for all s buffers. Now, we must denote how jobs advance
between workstations. For the first buffer, this is b0(k) = b0(k − 1)− p1(k).
For the rest of the buffers, we’ll also add constraints in the form bw(k) =
bw(k − 1) − pw+1(k) + pw(k). For the last buffer, given it has no following
buffer, we constrain it as: bwnum(k) = bwnum(k − 1) + pwnum(k). Finally,
we add our buffers’ upper bounds to be bs(k) ≤ bubs . Workers are also
constrianed, in a way such that each worker corresponds to at most one
station for each k, and that at each workstation, there is at most one worker.
————

With these two examples, we see a few common threads. Firstly, each
has a static backlog of activities to be completed. While there may be de-
pendencies among activities, there will neither be a shift in the number of
needed variables nor the number of applied constraints once our problem
solving begins. Hence, we are able to frame them as constraint satisfaction
problems. Another commonality, however, is the presence of multple enti-
ties carrying out the scheduled work. Both job-shop and flow-shop utilize
multiple machines or operators to handle applicable jobs.

With that in mind, one could argue these problems are more complex
than personal scheduling–they require us to juggle tasks for multiple workers
as opposed to just one, and these workers can have different capacities and
skills as is the case with job-shop scheduling. However, one might suggest
we frame personal scheduling as a single-machine job-shop problem. And,
in fact, there are nuances to personal scheduling in practice which the above
problems do not fully account for. There is a particular exploration in the
literature which sheds light on and looks to address many of these: PTIME.

2.2 Case Study - PTIME

2.2.1 Background

The Personalized Time Manager (PTIME) system was created by the Stan-
ford Research Institute as one of six major functions making up a larger au-
tomated assitant endeavor called CALO [BGU+05]. Much like the project
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I intend to build, the motivation for PTIME came from the noticeable lack
of automated scheduling tools available, in conjunction with the separation
of general to-do list and task management tools. The core goal of PTIME
was to address this by providing an application where a user could, when
scheduling an event or task, find an ideal time for it based on suggestions
calculated leveraging temporal constraints. To do this, a dedicated Con-
straint Reasoner module was implemented, as shown in Figure 3.1. The
tool also provided personalized reminder generation, and various degrees of
advisability and instruction by the user. Another major objective of PTIME
was to learn user preferences over time through passive means, eventually
making more autonomous scheduling decisions as it progressively learns and
gains the user’s trust. The tool was primarily implemented in Java.

Figure 2.3: PTIME basic architecture within Calo. [BGU+05]

While user preference learning is not one of the goals of my project, the
internal events scheduling algorithm built upon temporal constraints is quite
similar to what I’m looking to build myself. With this in mind, there are a
few things we can observe in PTIME and learn from as I not only look to
solve the problems in question, but most clearly and eloquently define them.

2.2.2 What we can learn

As mentioned above, PTIME makes use of a Temporal Constraint Network
(TCSP). In this type of CSP, each variable represents a time point, such as
the start and end of each event, and each constraint defines ranges of dura-
tions and when the events in question may be scheduled. PTIME specifically
ensures these constraints are temporally disjuctive–meaning calendar events
may not be scheduled overtop to-dos, for example, allowing both to have
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their necessary uninterrupted time. Above just ensuring these events do
not overlap, however, PTIME seeks to understand the “floating” nature of
certain events and to-dos; for example, an event might require travel time,
and a task relating to exercise might require a shower and change before
returning to work.

In light of the complexities of this dynamic, as well as the still underlying
need for efficiency, PTIME combines Simple Temporal Problem (STP) rep-
resentations with Disjunctive Temporal Problems (DTP) representations to
create a hybrid approach. STPs utilize simplified, binary constraints which
only handle one single, specific time interval. While these allow for solv-
ing in polynomial time, they aren’t dynamic enough to handle the floating
events described above. This is where DTPs come in; their use of non-
binary constraints allows for a wider array of time intervals to choose from in
scheduling. However, checking the consistency of DTPs is NP-hard [TVP03],
incentivizing the use of binary constraints when possible. We can also learn

Figure 2.4: An example of the natural language interactions between the
PTIME and the user. [BGU+05]

from the ways in which PTIME’s user interactions were handled. PTIME
utilized natural language to communicate with the user during scheduling,
conflict management, and preference learning. For example, the user might
input “Please schedule a group meeting early next week.” PTIME might
then respond “Your specific request conflicts with your current workload
and meeting constraints,” and suggest several alternatives in plain english,
stipulating which sacrifices must be made to accomodate each of the new,
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numbered meeting options, as shown in Figure 3.2. The user might then say
“Ok go ahead with 2,” and the meeting is scheduled. This level of trans-
parency both provides the user with valuable information they might not
otherwise have known and builds trust between the them and the tool.

2.3 Implementation Research

As we’ve seen above, CSPs have a rich history of applications to a variety
of temporal problems. Let’s begin looking at the techniques we will apply
in solving our personal scheduling problem.

2.3.1 Temporal Constraints and CSP Variables

Temporal constraints are a crucial aspect of our CSP working properly. With
temporal constraints, the variables which they constrain can represent either
points, intervals, or durations in time. Their domains tend to be integers or
rational numbers. With this in mind, intuition tells us that we can see each
event in time, which we can refer to as a proposition, as corresponding with
a time interval containing a start time and an end time. We can denote a
proposition and its associated interval as Pi, and Ii = [si, ei] [DMP91].

With a variable representing each si and ei, we can control how our
events might relate to one another using qualitative interval constraints.
The table below, translated directly from [SV98], defines how each of these
relations applies to two propositions, Pi = [si, ei]0 and Pj = [sj , ej ]:

Relation Representation Inverse Representation

Pi Before Pj ei < sj Pi After Pj ej < si
Pi Equal Pj si = sj ∧ ei = ej Pi Equal Pj si = sj ∧ ei = ej
Pi Meets Pj ei = sj Pi Met by Pj si = ej
Pi Overlaps Pj si < sj ∧ ei < ej

∧sj < ei

Pi Overlapped by Pj si > sj ∧ ei > ej
∧si < ej

Pi During Pj sj = si ∧ ei < ej Pi Contains Pj si < sj ∧ ej < ei
Pi Starts Pj si = sj ∧ ei < ej Pi Started by Pj sj = si ∧ ej < ei
Pi Finishes Pj si > sj ∧ ei = ej Pi Finished by Pj sj > si ∧ ej = ei

In embodying our problem as a CSP, these constraint relations, and the
form in which the propositons take, will be crucial to realizing a proper
structure and behavior, as well as an encoding that is easily interpretable
and translated to a front-end.

So, how might our variables and constraints look in practice? What will
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our domains be? With what we’ve established above, it only makes sense to
structure each proposition as some interval in time. However, rather than
the pre-defined ordering of Schwalb’s use cases with propositions, determin-
ing the order of the propositions is our ultimate task. Thus, we need more to
go on, and will utilize a third variable to fix the value of each proposition’s
duration, allowing our upper and lower interval-defining variables to solely
drive the location of the proposition to be scheduled. In addition to this,
it’s important that we incorporate the “floating” propositions acknowledged
by PTIME. in order to generate a schedule which is actually realistic. We
can include a fourth and fifth variable to simply hold the padding needed
at the beginning and end of the proposition. By default, these will usually
be zero.

So, we can represent each proposition as being a quintuple:

E = 〈s, e, d, ps, pe〉

Here, s is denotes the start of the proposition, e denotes the end of the
proposition, d denotes the duration of the proposition, ps is the time padding
prior to the proposition start, and pe is the time padding following the end
of the proposition. While it might feel bulky to have five variables per
proposition, this is a necessity for CSPs and will allow us to properly set
up our constraints. We may optionally have a sixth variable, emax, which
specifies when the proposition is due.

So, what might a domain look like for our CSP? In the context of our
problem, the domains for each s and e will represent some range of time,
while the domains for d, ps, and pe will be discreet, static values representing
time durations. As for the former variables, we might be inclined to follow
the classic TCSP definition and utilize continuous domains. However, a
finite-domain approach might better suit our needs, as it will ensure all
propositions are scheduled on clean, five-minute intervals. We can manifest
this by interpreting each increment of 1 in our domain as a 5-minute interval.
Assuming we desire to schedule propositions from, say, 8:00 a.m. to 8:00
p.m., we can represent our domain as ranging from 0 - 144. If we desire
to schedule a week at a time, we simply set our domain to be 0 - 1008,
and constrain each proposition’s start and end times to fall within the same
multiple of 144 (more on that later). Thus, fd will be our domain-type of
choice.

Thanks to the table above, we already have a strong understanding of
how to constrain our propositions’ start and end boundaries (excluding our
padding). However, there is more we must do to ensure each variable in our
quintuple is handled properly. We’ll discuss constraints in the context of an
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proposition Ei = 〈si, ei, di, psi, pei〉 where there are n− 1 other propositions
in our CSP. The following constraints will set our up proposition:

1. ei − si = d
Ensures our start and end bounds match the length of the proposition.
Can loosen this to≥ if we desire our d to represent a minimum duration
instead.

2. ei + pei ≤ sk − psk ∨ ek + pek ≤ si − psi, ∀k ∈ {1, ..., i− 1, i + 1, ..., n}
Essentially using Before from the table above, but including padding,
this will constrain our proposition to occur before or after all other
propositions, prpropositioning any unwanted overlap. We can, of
course, utilize any qualitative interval constraint for specific cases as
well, if we desire an overlap, finish, etc.

3. si ÷ 144 = ei ÷ 144 (optional)
Constrains the start and end times of the proposition to be on the
same day based on relevant 5-minute intervals, assuming an. This
constraint is only needed for problems in which the time domain is
divided into multiple even subsections, such as 12-hour days in this
case.

4. ei ≤ emax (optional)
Constrains the proposition to conclude at or before the time in which
it is due. This is not needed for propositions without emax values.

We now have our variable, domains, and constraints structures defined.
Come time to generate our CSP in practice, we can have our program wrap-
ping our ASP program execute follow below steps:

1. For each pre-existing calendar event from the user’s personal calen-
dar, create each corresponding variable for the quintuple 〈s, e, d, ps, pe〉.
Create variables to hold s− ps and e+ pe for use in constraint 2 down
the line.

• We consider pre-existing calendar events to be conflicts we must
schedule around. Therefore, we add them to our CSP first, setting
each variable’s domain to be a singleton with its existing value,
so that this value does not change.

2. For each event from our front-end to be scheduled, create each corre-
sponding variable in the quintuple 〈s, e, d, ps, pe〉. Create variables to
hold s− ps and e + pe for use in constraint 2 down the line.
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3. For each variable in our CSP, apply constraints 1, 2, and 3 above.

4. Solve via ASP solver.

2.3.2 Answer Set Programming: Basics

I’ve elected to use Answer Set Programming (ASP) to implement and solve
the personal scheduling CSP. ASP is particularly useful as it is a declarative
language. Due to this, I will be able to specify the variables, domains, and
constraints of the CSP as I normally would. However, unlike more tradi-
tional procedural languages, I will not have to implement any kind of search
algorithm to solve it, as the language itself requires the user to define what
to solve, rather than how to solve it. Once all rules have been defined, they
are fed into a solver. Should the problem be satisfiable, the solver provides
an output with stable model (answer set) semantics, specifying all atoms
which make up the stable solution. I plan to use Potasco’s clingo grounder
+ solver for this, and thus will utilize their syntax in the explanations below.

Building Blocks

In ASP, our problem takes the form of Prolog-style rules. Let’s dive into the
basics.

The most foundational building block of ASP is called a rule. A rule is
a statement which has one of the following forms:

a :- b.

a :- not b.

Here, a is the head of the rule, :- is a turnstile (pronounced “if”), b or not
b is the body of the rule, a and b are all literals or atoms, and not is the
default negation. Semantically, the first rule specifies that, if b is included
in our stable model, a will also be included. In the second rule, a will be
included only if b is not. We also may use the symbols , and ; to represent
and and or, respectively:

a :- b, c; d.

The body of the rule above is equivalent to (b ∧ c ∨ d). The second rule
specifies that, if we have no indication that b is included in our stable model,
a is included in it. We may also have choice rules surrounded by two braces:

{a, b} :- c.
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In this example, if c is included in our stable model, then either a, b, neither
a nor b, or both a and b will be arbitrarily included. In other words, our
answer set could be one of {c, a c, b c, a b c}. Choice rules can also be
given heads or tails, denoted by a number to the left or right of the braces,
respectively:

1{a, b, c}2 :- d.

The above will generate an answer set containing at least one and at most
two of the atoms inside the choice rule. In this case, all possible answers
would be {a d, b d, c d, a b d, a c d, b c d}. Thirdly, we may have
what’s called a constraint :

:- a, not b.

In this constraint, the a will not be generated if b is not in our stable model.
This is helpful the amount of stable models generated. More information on
these ASP basics can be found in [Lif19].

*

Variables, Ranges, Operators We’ve now defined the basic elements of ASP.
However, it really becomes more powerful and applicable when more ad-
vanced elmenents come into play.

What enables us to make our ASP pograms more powerful? Everything
stems from the basic statement. A statement is handled the same way as any
atom literal, but has a broader meaning to it. Generally, from a semantics
standpoint, a statement might be an adjective or category, while an atom
might be a specific noun. We wrap an atom in a statement, and in doing so
we suggest this statement is true for said atom. Each statement is denoted
by a lowercase name with parentheses at the end, and the atom inside. For
example, we can say:

brown(fox).

brown(bear).

Semantically, we’ve declared that foxes and bears are brown. However,
we can’t really do much with them yet. This is where variables come in.
Variables1, denoted by a capital first character, allow us to quickly declare
multiple statements based on other knowledg we already have. This greatly

1Traditionally, ASP solvers do not allow for variables, and instead a grounding tool
must first be used before the program is fed into the solver. However, clingo is an exception
to this; it combines the gringo’s grounding functionality with clasp’s ASP solver.
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reduces the amount of code needed for setting up larger problems like CSPs.
We can also constrain our statements such that an atom must meet some
condition in order to be grounded in them. We might have something that
looks like this:

animal(bear). animal(tortoise). animal(beetle).

brown(bear).

green(tortoise).

blue(beetle).

colorful(X) :- animal(X), not brown(X).

The above logic defines X as our variable, and for each animal, states it as
colorful as long as the animal is not stated to be brown. In solving this,
we’re given an answer set ⊃ {colorful(beetle), colorful(tortoise)}.
Thus, variables are extremely useful as they allow us to replicate multiple
statements across many atoms, and greatly reduce our lines of code. Beyond
just generation though, they allow us to handle comparisons and set multiple
values dynamically, even numerical values.

Numerical values are handled similarly to traditional procedural pro-
gramming. They can be manipulated and compared, and can be the main
focus of our output. However, numbers are always wrapped in some larger
statement and thus have their meaning associated with them in that way.
We can generate ranges of numerical values quickly using the .. operator.
For example, item(1..99). expands to item(1). item(2). item(3).

... item(99). This might be particularly helpful for generating finite,
discreet constraint domains. When we’re handling numerical values, it’s im-
portant that we can compare and modify them to ensure we get the most
out of them. With clingo, we’re provided many of the standard arithmetic
and logical comparison operators:
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Logic Symbol Name

= eq

!= neq

< lt

<= leq

> gt

>= geq

Arithmetic Symbol Name

+ plus

- minus

* times

/ divide

\ modulo

|x| abs(x)

** power

& bitand

? bitor

ˆ bitxor

∼ bitneg

More information on clingo can be found in [GKK+08].

2.3.3 Implementing A CSP in ASP

Now that we’ve laid out the basics of ASP, we can begin to utilize it to
create and solve our CSP. See subsection 2 for more information on CSPs.

Given ASP’s constraint-centered implementation, translating variables
and constraints from CSPs is incredibly intuitive and on its own would be
practically indistinguishable in its approach from vanilla ASP programming.
However, we also have to handle specific domains for our variables to be
instantiated within. This requires quite a bit more thoughtfulness. For
some of our basic setup, we’ll pull from the structure defined in [Bal09].
To start, we’ll plan to implement our CSP domains as finite-domain (fd)
domain, meaning each domain contains discreet values within a set range.

We can start by encoding each variable as a cspvar() statement con-
taining the triple X (ground term for the variable), L (lower bound on the
variable’s domain), and U (upper bound on the variable’s domain):

cspvar(X,L,U)

such that the domain of variable X is [L,U ]. Take the statement:

cspvar(v(1), 2, 6)

This denotes that we have some variable v(1), which has a domain of
{2,3,4,5,6}.

While the crucial parameters of a vaiable’s domain are defined in our
cspvar statement, that alone will not be enough, since we currently don’t
have any representation of the internal values within the range from L to
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U. It’s important to remember that in ASP answer sets, our solution is
communicated as a set of the individual atoms whic satisfy the problem, and
therefore our problem must be granuular to the atom. If we define domains
with just an upper and lower bound, we must provide some mechanism for
our ASP grounder to expand it into each possible value within that range,
so that our solver can then select and include the relevant value as its own
atom. This is where the below statement comes in:

1{fix(X, L..U)}1 :- cspvar(X,L,U).

There’s a fair amount going on here, but we can break it down into com-
ponents covered in the ASP basics to see why this line is so crucial to im-
plementing our CSP. As we can see, our cspvar(X,L,U) statement is now
defined as the body of a rule, and will only be defined here.2 Looking at the
head of the rule from the outside in, we first notice a choice which must be
between 1 and 1. Inside is a new statement called fix(X, L..U). Each fix

will contain a CSP vaiable name and a number. Notice that we use the same
ASP variable names inside fix as cspvar. This ensures that, for {X,L,U}
in each cspvar, there must exist a fix with the same {X,L,U}. We might
notice, however, that fix utilizes a number range. This will fill our choice
rule with {fix(X,L),fix(X,L+1),..,fix(X,U-1),fix(X,U)}. Since this
set is wrapped by a choice, we will only have one fix per cspvar in our
answer set. Thus, if we put it all together, this statement means, For a
given CSP variable cspvar(X,L,U), the answer set will contain at least one
and at most one fix(X,J), wheres J is some value within L to U, inclusive.

Now that we’ve covered all the variable and domain setup, let’s look at
the final element of the CSP triple: constraints. With the operators shown
in the above tables, constraints are simple to set up with ASP. A basic
structure we can use for constraints is something like this:

L [op] R :- [op-name](Lv, Rv), fix(Lv, L), fix(Rv, R).

This rule states that, if we declare [op-name](v(1),v(2)), and there is
some fix(v(1), L), some fix(v(2), R), the L and R in our answer set
must satisfy this logical operator. If we replace [op] with any of our stan-
dard logical operators (e.g. >), and [op-name] for a name which accurately
describes the operation (e.g. lt), we’re left with a constraint which is clean
and simple to use:

L > R :- grt(Lv, Rv), fix(Lv, L), fix(Rv, R).

2Note that when defining what our actual variables are, we will still instantiate each
literal cspvar value as we did above for v(1).
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Then, to apply this constraint to any two variables v(i) and v(j), we simply
declare grt(v(i),v(j)).

Now that we’ve covered variables, domains, and constraints, let’s look
at an example of a full CSP in ASP:

% instance

cspvar(v(1), 1, 5).

cspvar(v(2), 4, 8).

lt(v(2),v(1)).

% encoding

1{fix(X, L..U)}1 :- cspvar(X, L, U).

L < R :- lt(Lv, Rv), fix(Lv, L), fix(Rv, R).

In the encoding subsection, we create our classic cspvar rule, as well as a rule
for a less-than constraint (lt). In the instance subsection have two variables:
v(1), which has domain {1..5}, and v(2), which has domain {4..8}. We then
apply the lt constraint to our two variables. Given their domains, we know
inttuitively that our answer set should contain {fix(v(1), 5), fix(v2,

4)}. Sure enough, when running our program in clingo, the answer set is:

cspvar(v(1),1,5) cspvar(v(2),4,8) lt(v(2),v(1)) fix(v(2),4)

fix(v(1),5)

SATISFIABLE

2.3.4 Implementing a Personal Scheduling CSP in ASP

At long last, we can implement a basic scheduler in ASP. Let’s create a
simple scenario with two new events which must be scheduled around one
existing conflict to avoid. To begin, we start with our encoding. Note that
in the file itelf, encoding will be below the instance, however as we step
through in implementation order it will be above. In our encoding, we have
our usual rule to generrate one textttfix per cspvar. We then define a lte
rule, a minus rule, and a plus rule:

% encoding

1{fix(X, L..U)}1 :- cspvar(X, L, U).

L <= R :- lte(Lv, Rv), fix(Lv, L), fix(Rv, R).

D = R - L :- minus(Lv, Rv, Dv), fix(Lv, L), fix(Rv, R), fix(Dv,D).

D = R + L :- plus(Lv, Rv, Dv), fix(Lv, L), fix(Rv, R), fix(Dv,D).
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Now that our CSP encoding is set up, we can utilize its structure to de-
fine our problem. To make it more interesting, let’s begin by defining our
our time domain to be a very tight window which can still fit our events:

% instance

csptimedomain(1,35). % 8-hour day

Next, we instantiate the first event. It will have a length of 15 minutes,
and a padding of 15 minutes following the end. We designate each variable
name as t(x) to allow us to more easily add constrains to all variables of
type t and all CSP variables of identifier x. Notice we also create vari-
ables for swp to signify the event’s start with padding, and ewp to signify the
event’s end with padding. We’ll late constrain these to equal s - ps and e

+ pe respectively.

cspvar(s(1), L, R) :- csptimedomain(L,R).

cspvar(e(1), L, R) :- csptimedomain(L,R).

cspvar(d(1), 3, 3). % 15-minute event

cspvar(ps(1), 0, 0).

cspvar(pe(1), 3, 3).

% vars for padded start and end values

cspvar(swp(1),L,R) :- csptimedomain(L,R).

cspvar(ewp(1),L,R) :- csptimedomain(L,R).

The second event has a length of 1 hour, and a padding of 10 minutes
prior to the start:

cspvar(s(2), L, R) :- csptimedomain(L,R).

cspvar(e(2), L, R) :- csptimedomain(L,R).

cspvar(d(2), 12, 12). % hour-long event

cspvar(ps(2), 2, 2).

cspvar(pe(2), 0, 0).

% vars for padded start and end values

cspvar(swp(2),L,R) :- csptimedomain(L,R).

cspvar(ewp(2),L,R) :- csptimedomain(L,R).

The third event (our supposed pre-existing “calendar event”) has a singleton
domain for both its start and end times, and a fixed length of 1 hours. It
has no padding:
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cspvar(s(3), 16, 16).

cspvar(e(3), 27, 27).

cspvar(d(3), 12, 12). % hour-long event

cspvar(ps(3), 0, 0).

cspvar(pe(3), 0, 0).

% vars for padded start and end values

cspvar(swp(3),L,R) :- csptimedomain(L,R).

cspvar(ewp(3),L,R) :- csptimedomain(L,R).

With our variables all set up, we can define our constraints. The first con-
straint, for each variable X, imposes Constraint 1 from our constraint list in
subsection 4.1. The next two constraints prepare the values of swp and
ewp, so that the final constraint can utilize them for Constraint 2 from the
aforementioned constraint list3:

% adding constraints

minus(s(X),e(X),d(X)) :- cspvar(s(X), , ).

minus(ps(X),s(X),swp(X)) :- cspvar(s(X), , ).

plus(e(X),pe(X),ewp(X)) :- cspvar(e(X), , ).

lte(ewp(X1),swp(X2)) | lte(ewp(X2),swp(X1)) :-

cspvar(s(X1), , ),cspvar(s(X2), , ),X2 != X1.

Encoding, variables, and constriants set up, all that’s left to do is feed
it into our grounder and solver. Running clingo on this, we get our final
answer (added notes are italicized , rearranged for easier reading):
csptimedomain(0,35)

fix(s(1),29) fix(e(1),32) (Event 1 start and end time )

fix(s(2),2) fix(e(2),14) (Event 2 start and end time )

fix(s(3),16) fix(e(3),28) (Event 3 start and end time )

Definitions of cspvar, constraints, remaining variables, and everything

else:

fix(d(1),3) fix(pe(1),3) fix(ewp(1),35)

fix(d(2),12) fix(pe(2),2) fix(ewp(2),16)

fix(d(3),12) fix(ps(3),0) fix(pe(3),0) cspvar(d(1),3,3) cspvar(ps(1),0,0)

cspvar(pe(1),3,3) cspvar(d(2),12,12) cspvar(ps(2),2,2) cspvar(pe(2),2,2)

cspvar(s(3),16,16) cspvar(e(3),28,28) cspvar(d(3),12,12) cspvar(ps(3),0,0)

3In the current problem, we’re dealing with a time range smaller than a day; therefore,
we do not need Constraint 3 from the constraint list.
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cspvar(pe(3),0,0) cspvar(s(1),0,35) cspvar(s(2),0,35) cspvar(e(1),0,35)

cspvar(swp(1),0,35) cspvar(ewp(1),0,35) cspvar(e(2),0,35) cspvar(swp(2),0,35)

cspvar(ewp(2),0,35) cspvar(swp(3),0,35) cspvar(ewp(3),0,35) minus(s(3),e(3),d(3))

minus(s(1),e(1),d(1)) minus(s(2),e(2),d(2)) minus(ps(3),s(3),swp(3))

minus(ps(1),s(1),swp(1)) minus(ps(2),s(2),swp(2)) plus(e(3),pe(3),ewp(3))

plus(e(1),pe(1),ewp(1)) plus(e(2),pe(2),ewp(2)) fix(ps(1),0) fix(swp(1),29)

fix(swp(2),0) fix(ps(2),2) lte(ewp(3),swp(1)) lte(ewp(2),swp(3))

lte(ewp(2),swp(1)) fix(swp(3),16) fix(ewp(3),28)

Result is deemed:

SATISFIABLE

2.4 On Scheduling Interfaces

A well-functioning algorithm does not provide much utility to the average
user without a clean, intuitive interface in front. In this subsection, we’ll
discuss some guiding principles for making an intelligent scheduler most
interactable for the average person.

Feature 1: Visualizations

In our CSP above, each proposition is made up of a handful of related but
ultimately separate variables when instantiated in the answer set output.
Even the output shown in subsection 4.4, with its manual organization of
each variable, is not abundantly clear or effective at communicating a daily
schedule to the reader. We can improve this by providing visualizations to
the user. Before we make use of them, however, we must decide how to
structure them.

There are several types of time and calendar visualizations we can im-
plement; the most common two options are the grid view and the list view.

*

The Grid View
The grid view is often regarded as the most classic calendar representa-

tion. Grid views have been a popular choice for most paper calendars as well
as calendar and scheduling software systems, making them a familiar option
for a calendar interface. They provide the advantage of having a large range
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of visible dates in one area, and compartmentalize each week into an invi-
didual row which allows for the user to better visualize their weekly load,
where they have the most vacancies, and any patterns of recurring events.

Despite these advantages, grid views are characterized by a general lack
of precision. Generally speaking, boxes within a grid are too small to fit any
rich content due to limitations in the sizes of our screens, and there being
multiple fit on each axis. So, while grid views may be more recognizable, this
medium would likely not support the functionality needed by a scheduling
tool of this nature.

*

The List View
The list view is in fact the oldest known format for calendars, dating

back to papyrus rolls in ancient Egypt [HDM14]. While, contemporarily
speaking, list views are perhaps less popular than grid views as primary
schedule interfaces, they still have a strong presense in scheduling appli-
cations, especially available as a secondary option to the grid view. List
views provide the advantage of a linear visualization of time, which more
closely aligns with how we view it ourselves. They also allow more efficient
visual search by the user; it is easier to predict an event’s physical location
when dealing with just one vertical axis. List views present many other
advantages: consistent “today” at the top, flexible and expandable layouts,
theoretically infinite range of values, more spatious cells, and so on.

However, list views also lack certain functionalities; while they are great
for detailed viewing and manipulation of a schedule, they often fail to effec-
tively show the bigger picture. They require more scrolling work to navigate,
and are less effective for dragging and dropping objects over longer time dis-
tances. That said, most scheduling done in the tool at hand will generally
encompass smaller intervals (between a day and a week) as the focus is on
immediate to-do scheduling. Thus, a list view will serve as the best tool for
the job. See Figure 5.1 for an example of an effecive list view.

*

The Role of Visualizations
So, what will we use these list-style visualizations for? These will serve

to give the user a visual sense of how each proposition relates to one an-
other. Specifically, these will be used in the “before” screen (where the
user’s current calendar is shown without any new tasks scheduled in), the

20



preview screen (where raw, newly generated solutions are shown), the user
adjustments screen (where the user may modify the generated schedule to
their preferences), and the completed schedule screen.

Feature 2: Efficient To-Do Setup

Before a schedule can be generated, the user must have to-dos, events, or
other propositions needing to be scheduled. To handle these, a simple in-
terface should be provided for the user to input each one. Fields should be
provided for the name, frequency, desired or estimated duration, and due
date and time. Since this data entry might be a mundane task (especially
for new users), the form should be easy to access and quick to complete,
with thoughtful (and perhaps configurable) default values.

Feature 3: Pre-Schedule Generation Options

While our ASP solver can be used following the completion of data entry,
the user might also want a consistent, default structuring of their day to be
incorporated. Options for the start and end of the range of workable hours,
amount and duration of breaks throughout the day, and a lunch break range
should be configurable. Each of those may be handled as standard, static
events in our CSP. Other preferences, such as the grouping of short to-do
tasks into one 30-minute productivity sprint, should also be considered.

Feature 4: Previews and User Adjustmenets

As alluded to in the previous subsection, the ability for the user to pre-
view and adjust the generated schedules within the interface will be very
important to a positive user experience (UX).

Previews

Following the generation of schedule answer sets, it is critical that the user
can see the solution that was generated before confirming. Much like the
scheduling options which RhaiCAL proposes in its own interface (see Figure
5.1), allowing two initial list-view options for the user select between em-
powers them to choose what feels most ideal to them, also providing them
with a perhaps necessary hint of agency in determining what they’ll be doing
during the day.
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Figure 2.5: “RhaiCAL displays two different options for [user] Paula side-
by-side within the context of her calendar”. [FM05] This is an example of
a preview with two list-view options for the user to choose between.

User Corrections

Once the user has selected between the two starting off points, it’s important
to allow them the chance to make any specific edits they desire. Perhaps
they need a mental health day, or perhaps they’re feeling extra productive.
Maybe the user prefers exercising in the morning and doing chores in the
evening when their favorite television program is on. Corrections allow them
to make these necessary personal adjustments.

For these adjustments to be made, another listview visualization will be
provided with their selectd starting off point. However, each proposition
will be represented by a drag-able, resize-able box to be moved, edited, or
deleted as the user pleases. Following the completion of these, the user may
confirm and lock their new schedule in.
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3 Goals

In this chapter, I will discuss the specific goals I had for the project itself.

Events and Todos

One of the goals I’ve cared about most when brainstorming for this project is
the ability to handle to-dos and events within the same tool. Incorporating
both in a meaningful way is important. Most important is the ability to
schedule to-dos amidst existing calendar events. These two tasks oftentimes
can only be done in separate tools, hence the motivation for this project in
the first place.

Calendar Integration

Calendar integration builds upon event and to-do integration. Even if the
resulting project doesn’t schedule new events but at least pulls in existing
ones, I would consider that to accomplish this goal. In addition, local cal-
endar export (e.g. Apple Calendar) would be considered a success just as
much as remote calendar integration via api calls (e.g. Microsoft Graph with
Outlook).

Flexibility

Managing one’s time is a personal, inexact, and volatile process. A schedul-
ing tool which is too rigid has limited usability in the real world. I intend to
include intermediate steps for modification throughout the scheduling pro-
cess in the final result of the project. For example, there may be an interface
to modify the generated schedule before locking it in, allowing for the user
to make adjustments for things which a simple constraint satisfaction algo-
rithm wouldn’t account for. For example, the user might prefer exercising
in the morning before temperatures are too high. Moving an exercise todo
earlier in the day should be possible with the result.

Frame the problem as a CSP

I would like to manifest the problem as a CSP, and write and solve it in
ASP. The main motivation for this is the fact that, unlike machine learning
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algorithms which are by nature black boxes, the constraints can be governed
directly, and thus the results. This comes at a cost of rigidity and lack of
personalization, but mitigates the need for large training datasets and miti-
gates the risk of just failing to train an effective algorithm. I also considered
other artificial intelligence methods such as evolutionary algorithms, how-
ever these don’t always bring you to an ’exactly correct’ solution. ASP also
enables optimizations, which I hope to include.

Robust API

In keeping with my interest in more complex software development, I would
like to build an API in Node.js to use to interface with the ASP solution.
This API should abstract out the more ambiguous aspects of the ASP prob-
lem, such as time values for todos. Ideally, this API is secured for the user
and requires an authentication token, and in turn stores the user’s todos in
a database. The API should also utilize objects with schemas which contain
all necessary fields for each todo.

Intuitive user interface

Lastly, I hope to build clean user interface to communicate with the API,
which is easy to understand and interact with. The goal is to incorporate
the list view style from my research above, and I’ll likely draw from past
scheduling-related interfaces for other aspects besides preview (e.g. todo
creation screen layout). I plan to build this for iOS with Xcode and Swift.

4 Results/Conclusion

4.1 Progress Towards Goals

Events and Todos

The project is able to handle todos and technically events, however only
with regards to data models and the front-end interface. At present, there
is no third-party integration (this required more time than I was willing to
pour in given limits of student projects), so ”dummy” calendar event data
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must be added to the database to allow for the other features surrounding
events to be shown. With that said,

Calendar Integration

As mentioned above, there is no third-party calendar integration. However,
the final schedule can be exported to Apple Calendar on the device in which
the front-end app is running.

Flexibility

As suggested in the goals section, the generated schedule can be edited by
the user before it is confirmed and exported, allowing them to modify the
ordering or included todos to their own preference. However, there is still a
lack of convenience for on-the-fly scheduling. A further shortcoming is the
lack of ability for the user to add a todo which is not accounted for in the
schedule back in. In other words, if a todo has not been included in or has
been deleted from a generated schedule, there is no way to insert it without
reverse-engineering it with API calls.

Frame the problem as a CSP

The final implementation is in fact a constraint satisfcation problem written
in answer set programming.

Robust API

The final API, written in Node.js with Express and MongoDB, abstracts
out all processes related to scheduling and CRUD operations on todos. It
also requires sensitive requests to contain an authorization token which can
be obtained by a successful request to the /api/auth/login endpoint. All
passwords are hashed with bcrypt, a secure and slow hashing library, and
stored in the user’s schema in MongoDB. Todos are also stored and have
their own object schema which contains all necessary fields for the algorithm,
plus a few extras for featuers like repetitions, should they be expanded to
in the future. And, of course, there is a scheduling endpoint from which the
user can obtain a candidate schedule.
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Figure 4.1: Final interface screenshots from the Home, Todo creation, and
Schedule Modification screens.

Intuitive user interface

The final interface is simple, yet draws upon many modern conventions for
scheduling interfaces. For example, all date-related fields either expand to
calendar views or are date spinner views, which prevent any invalid data
entry. All numerical fields (e.g. todo duration) are tied to the number pad
keyboard in iOS (though this wouldn’t be visible in the demonstration, due
to iPhone simulators defaulting to hiding the keyboard). There is a simple
screen to create new todos prior to scheduling. A screen prior to calling
the scheduling algorithm allows for time range preferences to be set. In
the schedule view/edit screen, each scheduled todo can be rearranged using
familiar gestures. To grab a todo requires a long press, and rearranging it
just requires dragging it up and down. Releasing the todo either leaves it in
its new spot, or returns it to the start if it conflicts with another scheduled
event. Double-tapping deltes the todo.

That said, there are some gaps which might leave a user frustrated. For
one, tapping a scheduled todo (as well as a todo on the home screen) does
not open any kind of expanded preview of the todo. As well as this, double-
tap to delete might be surprising without any warning of this behavior,
especially considering the lack of ability to add any todo back in. Loading
spinners are also present for feedback, however they can be small and might
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go unnoticed by some users.

4.2 Conclusion

Reaching the final product was certainly an interesting task. Going in, I
felt like the tasks at hand stuck a balance between having some aspects in
which I had prior experinece and others which would be new explorations
for me. I found that this was in fact the case, however there were some
notable reasons why that worked well for me and why that didn’t.

Lessons Learned

Time Management

As is well known by all software engineers, whatever the maximum is that
we think we can accomplish in a span of time, whether or not conditions
are perfect, rarely ends up being truly doable in the given timeframe. In
the process of setting my goals for the semester, I tried to be conservative
yet leave room for bells and whistles if time allowed. However, I of course
could not have predicted how the rest of my commitments would go, and as
a result ended up prioritizing other, more immediate deadlines. My project
by no means fell by the wayside, but I only was able to dedicate two or three
hours per week on it.

As a result, I found progress was slower than originally anticipated. And,
in the end, I spent the week prior to the presentation building the a large part
of the front-end, fixing inevitable bugs, and ultimately having to ”trim the
fat” and remove some of the important but not critical third-party calendar
integration feature. That said, I’m still proud that I was able to accomplish
what I did given the inflexible timeframe of a semester.

Avoiding Stubbornness

Some of my challenges with time management were also amplified by some
stubbornness I had with specific aspects of the project. For example, I was
passionate about creating a clean user interface, especially in the schedule
editing screen. I spent some extra time tweaking positions of lines and time
labels and colors that I could have spent on more functionalities or integra-
tions. Of course, a clean interface is important too, but it is considerably
less meaningful to the overall impact the tool can make, and leans more
towards gold plating than usefulness.
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I was also a bit stubborn with the data schemas that I first drew up, only
adding fields rather than removing or optimizing. The limitations of this
forced me to find workarounds which added some unnecessary complexity
to the implementation.

Utilize Available Support Networks

This is something I’ve historically struggled with doing, and definitely shone
through in this project. Professor Osborn as an advisor was a wonderful
resource available to me, however I did not make use of his time and exper-
tise as much as I could have. My initial implementation of the constraint
satisfaction problem in ASP, for example, was a first stab at solving any
scheduling problem algorithmically, my first stab at setting up a CSP on
my own, and my first time working with ASP. The odds that inefficiencies
due to my inexperience existed are extremely high, and a more trained eye
might be able to pick those out and advise more efficient routes. This really
showed when it came to the speed of the Clingo solver when solving gener-
ated scheduling problems over scheduling time ranges longer than a day or
so; I’m sure optimizations were possible.

4.3 Successes

Incorporating New Things

On a more positive note, I learned (or perhaps, was reminded) that it’s
always a joy to learn something new and apply it to a project in some way.
In this instance, I learned about answer set programming and applied it to
an app in platforms I’d already had experience with, which allowed me to
see new angles on familiar development stacks.

Building a Useable Product

While it fell short of my goals in certain areas, I truly believe that this app
is a useable minimum viable product. Responses from friends I’ve shown it
to have been positive and in some instances I was asked when it might be
available for download. In that sense, I’m glad that I focused enough time
on the interface to at least support the basic scheduling algorithm. As a
result, I have a great base scheduling app which I could add as many bells
and whistles to as I’d like, which alone makes it more valuable to me.
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4.4 Future Work

Third-Party Integrations

Perhaps the highest priority addition I would like to make is the ability to
pull events from, and schedule into, the user’s Outlook calendar. An app
which is able to integrate with the tools that are core to users’ existing
workflows, in this case with regards to scheduling, is much more useful than
one that lives in a vacuum.

Subdividing Todos

Specifically, this involves breaking up a time-consuming task (e.g. writing
an essay with an estimated duration of 180 minutes). Having the abil-
ity to break it up into multiple shorter parts, spread throughout the week
or scheduling period, would be very useful. Additionally, being dynamic
enough to still schedule just one subsection of the broken up event in the
event of a single-day scheduling range would be necessary.

Recurring Tasks

Support for recurring tasks would be relatively straightforward to imple-
ment and save the user a lot of time in the long-run. The schedulable data
models are already set up to hold recurrence-related fields; business logic
and support in the front-end are all that’s needed to bring recurrence in.

Grouping Small Tasks

There are often chores which may only take 5-10 minutes that we put off
(e.g. calling the dentist to set up an appointment, making the bed, drinking
water). These could be grouped into a 15-minute ”task block” which would
help the user accomplish more as well as reduce the number of 5-minute
blocks in the scheduling interface, which are thin due to their shortness and
difficult to present effectively.

Optimizations

Optimizations are possible on all fronts. As mentioned above, recurring
events would prevent the need for repeated data entry. Some data mod-
els have unnecessary fields (e.g. schedulables have a start time, end time,
and duration, when duration can be calculated from the former two fields).
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The setup of the problem in ASP could also likely benefit from optimiza-
tions of some kind; there is currently a high standard deviation of runtimes
depending on certain parameters going into solving.
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