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Chapter 1

Introduction

Domain specific languages, or DSLs, are programming languages tailored towards a specific appli-
cation. Musical notation has a highly structured framework, and a musical score can be thought of
as having many of the features of a language.

With these ideas in mind, we present MusAssist, a DSL devised as a compositional aid for music
notation that bridges the divide between computer science and music theory. MusAssist organi-
cally models a composer’s flow of thought by framing its syntax around the musical expressions
a composer conceives when writing. Users describe musical structures in MusAssist’s simple and
straightforward syntax much in the same way they would when composing. In other words, users
describe a composition in MusAssist, and MusAssist writes out the music via these instructions.
Users can compose notes (including rests) and custom chords (i.e. any desired collection of notes)
in the octave and key of choice, as well as change the key signature or start a new measure at any
point. Furthermore, MusAssist is unique in that users can also describe complex musical templates;
specifically, templates for chords (all types of triads and seventh chords in any inversion), cadences
(perfect authentic, imperfect authentic, plagal, half, deceptive), and harmonic sequences (ascending
fifths, descending fifths, ascending 5-6, descending 5-6) of a desired length.

The level of abstraction of a template in MusAssist matches that of the musical structure it
describes (e.g. the user can describe a harmonic sequence without needing to lower the level of
abstraction to chords and notes). This allows the user to write out a specification precisely at the
level of abstraction of the musical structure. The musical expression described by this specification
will then be completely expanded out (i.e. the level of abstraction will be fully lowered) by the
MusAssist compiler, which is written in Haskell.

The target language of the MusAssist compiler is MusicXML, itself a DSL that is an extension of
XML (Extensible Markup Language), a markup language similar to HTML. MusicXML is accepted
by most major notation software programs (such as MuseScore). Thus, once a user has described
a composition in MusAssist, they can open the resulting MusicXML file in MuseScore or another
program for further customization and editing. MusAssist does not attempt to replace existing
DSLs. Rather, it assists users in music composition by providing them with a set of easy-to-use
instructions and musical templates that would otherwise be tedious to write out by hand in a
musical score. This is why MusAssist is compiled to MusicXML rather than an uneditable PDF
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format. MusAssist may also be particularly helpful to music students as an educational tool where
they can easily see the relationship between a musical expression and its written form, such as a
cadence template and the chords that result from expanding it.

In order to use MusAssist, the user need not have any understanding of computing, though
they should have a solid knowledge of music theory up through chord and cadence types, as well as
harmonic sequences. In order to comprehend this paper, in addition to music theory, users should
have a background in basic programming languages theory and compilers. MusAssist’s source code
repository can be accessed here.
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Chapter 2

Background

DSLs are a fascinating area of inquiry that explore the expressive power of languages and pushes the
boundaries of computational creativity. Formally, a DSL is defined as “a computer programming
language of limited expressiveness focused on a particular domain.” This definition encompasses four
critical features: (1) the computer programming language (PL) itself, (2) a “language nature” (i.e.
a sense of fluency from the way individual expressions can be combined), (3) limited expressiveness
(since the purpose of a DSL is to be used in an particular domain, it should not have the complexity
of a general purpose language, or GPL), and (4) domain focus (the motivation to create the DSL
in the first place). Note that domain focus is simply a consequence of the limited expressiveness of
the DSL (Fowler and Parsons [2011]).

DSLs can generally be placed into three categories: external DSLs, internal DSLs, and language
workbenches. An external DSL is a PL that is separated from the primary PL of its application.
It normally uses a custom syntax, but sometimes borrows the syntax of an existing PL. The code
for an external DSL is conventionally parsed by code of the host application using text parsing
methods. Common external DSLs include regular expressions, SQL, and Awk (Fowler and Parsons
[2011]). MusAssist is also an external DSL.

An internal DSL is embedded in an already existing GPL, making use of its syntax and
semantics. A program written in an internal DSL is already valid code in the host GPL, but only
makes use of a small subset of the GPL’s powerful expressive features in order to handle a specific
aspect of the domain. Thus, a “custom feel” is achieved using the GPL. Lisp is the hallmark GPL for
creating internal DSLs, but Ruby is also common. Rails, one of Ruby’s best-known frameworks, is
frequently considered to be a collection of internal DSLs (Fowler and Parsons [2011]). Furthermore,
MusicXML, the target language of the MusAssist compiler, is an internal DSL embedded in XML.

Finally, a language workbench is a customized IDE for building and defining DSLs, and is not
discussed in this paper (Fowler and Parsons [2011]).

With the increased flexibility afforded to a DSL via its limited expressiveness, it can be much
more effectively tailored to the application (i.e. music) than an GPL could be. Thus, depend-
ing on the goals of the programmer, a music DSL can be tailored towards notation, algorithmic
composition, signal processing, live coding with music performance, and more.
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The era of music DSLs began in 2008 with Ge Wang’s invention of the ChucK audio processing
language. ChucK is actually a GPL broadly tailored towards music, as it spans the application
domains of “methods for sound synthesis, physical modeling of real-time world artifacts and spaces
(e.g., musical instruments, environmental sounds), analysis and information retrieval of sound and
music, to mapping and crafting of new controllers and interfaces (both software and physical)
for music, algorithmic/generative processes for automated or semi-automatic composition and ac-
companiment, [and] real-time music performance.” With ChucK, Wang developed a language that
is “expressive and easy to write and read with respect to time and parallelism,” thus providing
users with a “platform for precise audio synthesis/analysis and rapid experimentation in computer
music.” (Wang [2008]).

A multitude of programming paradigms have been used for music DSLs, including declara-
tive programming, functional programming, object-oriented programming, synchronous program-
ming, and subcategories of synchronous programming called strong-timed programming and mostly-
strongly-timed programming. The choice of programming paradigm for a music DSL depends on
the specific musical subdomain the language targets. For instance, a DSL intended to handle mu-
sical signal processing or live coding (i.e. applications that have to do with the time dimension of
music) would benefit from using one of the synchronous programming paradigms.

Notably, though, the choice to make a DSL external or internal is not related to the choice of
programming paradigm. In general, according to Cuadrado, Izquierdo, and Molina, internal DSLs
are preferred over external DSLs when there is no significant tradeoff in performance, the runtime
infrastructure of the parent language is easily reused, and the target audience is comfortable using
the parent language. Otherwise, an external DSL would most likely be a better choice. These same
considerations apply when designing a DSL for music. Since MusAssist is intended to be accessible
to an audience who does not necessarily know how to code, it was thus designed as an external
DSL. (Cuadrado et al. [2012]).

This chapter serves as a review of the existing literature on the better-known DSLs for music.
The chapter is organized as follows. Section 2.1 examines the programming paradigms commonly
utilized in DSLs for music. Section 2.2 is a review of some common external DSLs for music,
and Section 2.3 looks at examples of existing internal DSLs for music. Finally, Sections 2.4 and
Section 2.5 consider applications of music DSLs in the fields of algorithmic composition and human-
computer interaction (HCI), respectively.

2.1 Programming Paradigms Used in Music DSLs

2.1.1 Declarative Programming

In contrast to the more commonly encountered paradigm of imperative programming, declarative
programming is a programming model that eliminates control flow in favor of simply stating, or
declaring, what the desired action or result is. Declarative programming is commonly used by
DSLs in database management, and relies on pre-existing language features to execute the desired
action without relying on control flow structures such as conditional logic and loops. In other words,
declarative programming emphasizes what the final result is, while imperative programming focuses
on how to get there. As an analogy, if someone hails a taxi, they declare to the driver where they
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wish to go – they do not give him turn-by-turn (i.e. imperative) directions. (Bertram [2021])

Musical markup languages such as Michael Good’s MusicXML and LilyPond fall under this
category. MusicXML is derived from XML (itself a DSL), and seeks to solve the music interchange
problem between the various musical representation formats. Good [2013] LilyPond is not XML-
based. Rather, it has its own syntax, and compiles to a PostScript or PDF format that can be
printed or uploaded on the Internet. MusAssist also falls into this general category of musical
markup languages, and is thus declarative.

2.1.2 Functional Programming

Functional programming is a programming paradigm centered around building functions for im-
mutable values. It emphasizes pure functions, or functions that never alter variables but instead
produce new ones as output. Pure functions can also be thought of as functions without side
effects, or when the function neither relies on nor modifies anything outside of its parameters.
The GPL Haskell is perhaps the most famous example of a functional PL (Joury [2020]).

Du Bois and Ribeiro describe HMusic, a DSL for music programming and live coding that is
embedded in Haskell (thus giving HMusic the power of functional programming). HMusic provides
abstractions for patterns and tracks, defined inductively. The inspiration behind HMusic was to let
artists express themselves through software. The abstractions for patterns and tracks in HMusic
greatly resemble grids from sequencers, drum machines, and digital audio workstations (Bois and
Ribeiro [2019]).

2.1.3 Object-Oriented Programming

Rather than functions, object-oriented programming (or OOP) is centered around the objects that
the developers want to create and use. The building blocks of OOP are classes (blueprints for
objects), objects (instances of classes with custom-defined data), methods that describe an object’s
behavior, and attributes that reflect the state of the object. OOP’s main principles are encapsu-
lation (i.e. data-hiding – all important information is hidden within an object with only the most
important data exposed), abstraction (objects only expose internal mechanisms that are useful and
generalizable for other objects), inheritance (in which classes reuse code from other classes), and
polymorphism (in which objects can share behaviors and assume many forms) (Gillis and Lewis
[2021]).

Nishino et al describe LC, an external DSL with dynamic and strong typing for computer music.
LC is an object-oriented PL and is prototyped − based (as opposed to class-based) (Nishino et al.
[2013]). In a prototype-based language, “each object defines its own behavior and has a shape of its
own.” This is in contrast to class-based languages like Java, where “each object is an instance of a
specific class.” In particular, prototype-based languages allow for slots (i.e. fields/methods) to be
added to an object dynamically, after it has been created. Prototype-based languages therefore open
up large amounts of flexibility and tolerance in relation to the dynamic modification of the system
at runtime. LC adopts prototype-based programming at the levels of compositional algorithms and
sound synthesis (specifically, the user can build and modify a unit-generator graph dynamically)
(Nishino et al. [2014]).
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2.1.4 Synchronous Programming

Synchronous programming is a programming paradigm in which operations take place sequentially,
or linearly, as opposed to asychnronous programming, where operations occur in parallel. This
means that in synchronous programming, long-running operations can be “blocking” – i.e. the
program cannot proceed to the next operation until the current operation has completed and
returned some outcome (DeepSource). Synchronous PLs are often aimed towards programming
reactive systems (Petit and Serrano [2020]).

Petit and Serrano describe Skini, a programing metholodogy and execution environment they
created for “interactive structured music,” where the composer would program their scores in the
HipHop.js synchronous reactive language. The scores are then executed (i.e. played) live, and
involve audience interaction. The purpose of Skini is to help composers create a balance between the
precise determinism of written composition and the nondeterminism of social interaction. Skini uses
synchronous DSLs rather than GPLs as the “temporal constructs” of synchronous PLs (parallelism,
sequence, synchronization, and preemption) can directly represent musical scores, and their relative
flexibility allows composers to easily try out different ideas (Petit and Serrano [2020]).

2.1.5 Strongly-Timed Programming

Strongly-timed programming is a type of synchronous programming first introduced by Ge Wang in
2008 in his development of the ChucK audio programming language. He defines it as “well-defined
separation of synchronous logical time from real-time” which helps the user to debug, specify, and
reason about programs written in the language. Thus, one can create programs without having
to consider external factors like “machine speed, portability and timing behavior across different
systems.” The powerful deterministic concurrency offered by this model allows for extremely tightly
woven control and audio computation, thus giving rise to a DSL that allows the programming to
transition seamlessly from digital signal processing, at the sample level, to more “gestural levels of
control.” (Wang [2008]).

Nishimo et al. build upon Wang’s work in strongly-timed programming. They further refine the
definition of strongly-timed programming to be a variation of synchronous programming integrating
explicit control of logical synchronous time into an imperative PL in order to achieve precise timing
behavior that is predicated on the “ideal synchronous hypothesis,” in which that “all computation
and communications are assumed to take zero time (that is, all temporal scopes are executed
instantaneously).” Nishimo et al.’s DSL LCSynth, the parent language of their object-oriented DSL
LC, uses strongly-timed programming address the issue of imprecise timing behavior in microsound
synthesis (Nishino [2012]).

Nishino et al. go on to introduce yet another paradigm called mostly-strongly-timed programming
that is an extension of strongly-timed programming. In mostly-strongly-timed programming, in
addition to the principles of strongly-timed-programming, there is also support for explicit context
switching between synchronous (i.e. non-preemptive) behavior and asynchronous (i.e. preemptive)
behavior whose execution can be suspended at any arbitrary time. Nishino et al.’s object-oriented
DSL LC makes use of mostly-strongly-timed programming (Nishino [2012]).
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2.2 Survey of External DSLs for Music

2.2.1 LilyPond

Recall from Section 2.1.1 the DSL LilyPond, an external declarative DSL created by Han-Wen Nien-
huys, Jan Nieuwenhuizen that originally began as their personal project. It features a ”modular,
extensible and programmable compiler” to generate music notation of excellent quality. It supports
the mixing of text and music elements. Like MusicXML and MusAssist, it is a DSL aimed towards
music notation. Unlike MusicXML, LilyPond does not consider the music interchange problem.
Rather, it focuses on automated music printing. Furthermore, LilyPond and MusAssist are both
music notation languages intended to be accessible to a non-programming audience. However, they
differ in two fundamental areas: (1) MusAssist is more expressive than LilyPond as it supports
complex music templates at the levels of abstraction of the musical structures they represent and
(2) the output of the MusAssist compiler is intentionally editable (unlike LilyPond’s compiler, which
produces a static, printable PostScript or PDF file by taking in a file with a formal representation
of the desired music).

The implementation of LilyPond’s compiler uses the language Scheme (a LISP language).

The LilyPond compiler has four steps:

1. Parse into an abstract syntax tree
2. Musical elements are translated (i.e. interpreted) into graphical elements in an unformatted

score
3. Format the score
4. Write the formatted score to an output file

The input to the first step is a series of text-based musical expressions, or fragments of music
with set durations. Simple music expressions are combined to make more complex ones. The input
format also supports identifiers that allow the user to re-use an expression multiple times.

In the second step, which the authors call “interpreting”, a plugin architecture with plugins
called engravers performs the conversion. Each engraver handles a single specific task, creating a
modular architecture that allows for ease of maintaining and extending the program. This is the
step in which context sensitive information, like key signature and current beat in the measure, is
handled so that barlines and accidentals are printed correctly.

In this third step, the layout is determined. The input to this step is the unformatted score,
or a collection of graphical objects. Tags called abstract graphical objects store information about
constrainment, alignment, and element spacing. Nienhuys and Nieuwenhuizen [2003].

2.2.2 PyTabs

Simic et al. present PyTabs, a DSL they designed and created for simplified musical notation.
PyTabs allows the user to describe a composition comprising many sequences that can be provided
in tablature or chord notation. PyTabs also provides functionality for playing a piece written in it.
The authors propose a solution via PyTabs to problems in simplified music notation (specifically,
the visual problem of tablature notation, and the lack of standardization of how to specify note
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duration in tablature notation) by standardizing these issues into a formal language. Thus, PyTabs
focuses on a different area of music notation than MusAssist does; i.e. guitar tablature rather than
standard Western music notation.

Simic et al. used Python to implement PyTabs, but PyTabs is not embedded in Python; it is
an external DSL. In PyTabs, the logic for parsing tablature notation is extracted into a generic
parser, and then per-instrument parsing is defined later in the concrete implementation. Chord
construction consists of one of the 12 semitones, a number representing octave, and a decoration
(i.e. major, minor) that indicates the quality of the chord. In the future, the authors plan to add
support for more instruments, as well as the ability to generated standard musical notation from
PyTabs, and vice versa (Simić et al. [2015]).

2.2.3 LCSynth

Recall from Section 2.1.5 that the DSL LCSynth, created by Nishimo et al, was inspired by Wang’s
strongly-timed GPL ChucK. In the background information to LCSynth, Nishimo discusses the
unit-generator concept, a software module from 1960 that uses “conceptually similar functions to
standard electronic equipment used for electronic sound synthesis.” He also talks about microsound
synthesis techniques, which differs from the traditional unit-generator concept in that it does not
originate in electronic sound synthesis where the signal is a function of time. Instead, microsound
synthesis involves many short sound particles (microsounds) that overlap to create the total sound.
The current issue with microsound synthesis is that most computer music PLs are not capable of
handling the precise timing behavior required (for instance, most general purpose PLs cannot do
this) (Nishino [2012]).

Nishimo et al. came up with a novel abstraction of the sound synthesis framework, as well as
a new programming concept for computer music. Nishimo et al. also consider the difficulty of
microsound synthesis to be an issue in the abstraction of the underlying sound synthesis software
framework in the PL’s design, i.e. an incompatibility between the abstractions and the user’s
understanding of the domain, which they call the “usability problem.” (Nishino [2012]).

LCSynth integrates counterpart entities to the user’s perception of microsound synthesis tech-
niques. This helps remove the structural misfits between the representations implemented in the
design of currently used music DSLs and the user’s individual understanding of microsound synthe-
sis techniques. However, LCSynth is not a stand-alone PL and works solely in the sound-synthesis
domain. This is where Nishimo et al.’s DSL LC comes in. It fully integrates LCSynth into its
design. (Nishino [2012]).

Though a music DSL, LCSynth’s application domain differs significantly from MusAssist as it
focuses on the signal processing, rather than notation, aspect of computer music.

2.2.4 LC

Recall from Section 2.1.3 Nishino et al’s DSL LC, a strongly-timed prototype-based language of
dynamic and strong typing that was originally intended to be a control language for LCSynth. LC
supports lexical closure, lightweight concurrency (i.e. lexically scoped name binding in a PL with
first-class functions), and live computer music. These features enhance dynamism in the language,
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such as through live coding and rapid prototyping, in order to assist the artistic endeavors of the
user. Live coding is “a computational arts practice that involves the real-time creation of generative
audio-visual software for interactive multimedia performance.” Interpreted scripting languages are
preferable for live coding, but DSLs specific to music are often even better (Nishino et al. [2013]).

Nishino et al. discusses the static-typing vs dynamic-typing issue for such DSLs. Dynamic typing
is preferred as it is “ideally suited for prototyping systems with changing or unknown requirements”
and “indispensable for dealing with truly dynamic program behaviors.” Nishimo et al. also chose to
make LC strongly, rather than weakly, typed, in order to avoid random bugs arising from implicit
type casting. LC is also an object-oriented PL and is prototyped−based (as opposed to class-based).
LC is also duck− typed – i.e. it features a framework for “truer polymorphic designs based on what
an object can support rather than that object’s inheritance hierarchy”). Furthermore, LC supports
lightweight concurrency, which enables features such as quick creation/destruction of threads and
less memory usage (Nishino et al. [2013]).

LC performs sound synthesis and program execution in logical synchronous time as strongly-
typed programs in a single virtual machine. This allows for precise timing behavior. In addition,
LC allows for a great amount of flexibility for runtime modification, which makes it suited for
applications like live-coding performances on laptops (Nishino et al. [2013]).

Through LC, Nishino et al. also successfully address three current issues in music DSL design:
(a) lack of support for dynamic modification of a computer music program, (b) lack of support
for precise timing behavior and other time-related features, and (c) the difficulty in microsound
synthesis programming. These issues will correspond to the three core features of LC: (1) proto-
type based programming, both for algorithmic composition and for sound synthesis, (2) the use
of the “mostly-strongly-timed programming” concept, and (3) the integration of objects and func-
tions that represent microsounds with the corresponding operations for microsound synthesis. The
first two of these features were discussed in Sections 2.2 and 2.4. The third feature utilizes algo-
rithmic scheduling of microsound objects for its microsound synthesis framework. Every sample
within a microsound object can be accessed directly, and utility methods are provided in order
to manipulate multiple samples simultaneously. Unlike previous work with microsound synthesis,
LC’s microsound synthesis does not depend on the unit-generator concept, and it also provides a
generalized programming paradigm for real-time interactive computer music DSLs (Nishino et al.
[2014]).

Like LCSynth, LC’s application domain differs MusAssist, instead focusing on live coding and
signal processing.

2.2.5 mimium

Matsuura and Jo describe a novel full-stack DSL called mimium (an acronym for minimal −
musical−medium) that combines temporal-discrete control and signal processing in a single PL.
It can describe everything from low-level signal processing, all the way to discrete event processing in
unified semantics. mimium is user-friendly; it has intuitive imperative syntax and supports stateful
functions as Unit Generators just as one would normally define and apply functions. The LLVM
compiler infrastructure is used so that the runtime performance equals that of lower-level languages.
mimium adds the least possible number of features related to sound, and it also implements a
general purpose functional PL. Thus, compiler implementation is simplified, and language self-
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extensibility is increased (Matsuura and Jo [2021]).

Though mimium is an external DSL, its syntax is modeled after that of Rust due to the shorter
reserved words (suitable for fields) that can perform fast prototyping like music. The basic syntax
includes function definitions and calls as well as conditionals (if-else statements). mimium also
uses the functional model. For instance, a single if statement can be used as an expression that
can directly return a value (Matsuura and Jo [2021]).

The architecture of mimium’s compiler resembles that of a general purpose functional language.
It is based on the mincaml compiler and is implemented in C++. Recall that the compiler uses
the LLVM infrastructure. In mimium, the only compiled functions of the LLVM intermediate
representation that depend on the runtime system are one for task registration, and one for getting
the internal time. Essentially all other code is compiled on memory and subsequently executed.Thus,
mimium can achieve similar execution speed to low-level languages like C (Matsuura and Jo [2021]).

Two essential features of mimium allow the description of continuous signal processing as
well as discrete control processing in unified semantics. The first is the syntax for determinis-
tic task scheduling at the sample level, as well as the implementation of the schedule. For instance,
mimium’s @ operator can specify the time at which to execute a function. In mimium, @ is
combined with the temporal recursion design pattern that describes repetitive event processing as
a function that calls itself recursively with a time delay. @ is used to increase readability in the
implementation of temporal recursion. The second feature is a description of the semantics that are
utilized to define the Unit Generator for signal processing. This is achieved by hiding state variables
and combining only feedback connections and limited built-in functions with states (Matsuura and
Jo [2021]).

Like LC and LCSynth, mimium is tailored towards signal processing, rather than notation like
MusAssist is.

2.3 Survey of Internal DSLs for Music

2.3.1 MusicXML

Recall from Section 2.1.1 the declarative DSL MusicXML. MusicXML was created by Michael Good,
and is an Internet-friendly XML-based DSL capable of representing Western music notation and
sheet music since c. 1600. It acts as an ”interchange format for applications in music notation,
music analysis, music information retrieval, and musical performance,” thus enhancing existing
specialized formats for specific use cases. Notable, MusicXML does not attempt to replace other
formats tailored even more exactly to such use cases; rather its goal is to support sharing between
these applications. Good [2013]

Good created MusicXML in an attempt to emulate for online sheet music and music soft-
ware what the popular MIDI format did for electronic instruments. Good further chose to derive
MusixXML from XML in order to help solve the music interchange problem: to create a standard-
ized method to represent complex, structured data in order to support smooth interchange between
”musical notation, performance, analysis, and retrieval applications.” XML has the desired qualities
of ”straightforward usability over the Internet, ease of creating documents, and human readability”
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that translate directly into the musical domain, and it has the capacity to be both more powerful
and more expressive than MIDI format. Good [2001]

Good was inspired by MuseData and Humdrum, two extremely powerful academic music nota-
tion formats, for the design of MusicXML (though he went on to add additional features in order
to accurately represent music from c. 1850 - present). He was particularly attracted to Humdrum’s
two-dimensional conception of music by part and time. Unfortunately, the hierarchical structure of
native XML is not capable of supporting such a lattice structure, so Good developed an alterna-
tive by creating an automatic conversion between the two dimensions. This was achieved by using
Extensible Style Sheet Transformations (XSLT) programs. Thus, automatic conversions are sup-
ported between part-wise scores (in which measures are nested within parts) and time-wise scores
(in which parts are nested within measures). Good [2013]

As the target language of the MusAssist compiler, MusicXML is even more expressive than
MusAssist. However, the level of abstraction of all the musical elements in MusicXML is extremely
low; i.e. chords must be written out as collections of individual notes. Furthermore, MusicXML
is very difficult and tedious to write by hand. With MusAssist’s user-friendly syntax and musical
structure templates, it therefore possesses unique features that MusicXML does not, and MusicXML
makes for an excellent target compilation language for MusAssist.

2.3.2 HMusic

Recall from Section 2.1.2 that the DSL HMusic is embedded in the functional PL Haskell. On a
more technical level, HMusic is an algebra (i.e. a set and its associated functions) for creating music
patterns. The set of all possible patterns is defined inductively as an ADT (algebraic data type) in
Haskell. The user can write recursive Haskell functions to operate on patterns, as patterns them-
selves are a recursive datatype in HMusic. HMusic also defines the ADT Track, which associates an
instrument to a pattern. Tracks can be the parallel composition of two existing tracks, and HMusic
has support for multi-tracks consisting of tracks of varying size composed in sequence. Finally,
HMusic defines a set of primitives for playing tracks and live coding. Users can play songs written
in HMusic, loop tracks, and modify tracks while they are being played. Live coding is implemented
through a simple UI based on the concepts of looping and function application (Bois and Ribeiro
[2019]).

HMusic and MusAssist are similar only that MusAssist’s compiler (and therefore its abstract
syntax) and HMusic are both written in Haskell. HMusic focuses on synthesizing multiple instru-
ments and live coding, while MusAssist works with Western music notation.

2.3.3 T-calculus

The T-calculus is a more mathematical approach to an external music DSL design presented by
Janin in 2016. He describes a new algebraic model for music writing and programming based on
separating the contents of music objects (i.e. what music they define) and the usage of music
objects (i.e. how they could be combined). He approaches this from a mathematical perspective.
Specifically, he models music objects with a “tiled music graph” that can be combined using the
“tiled sum” operator, which is both sequential and parallel. The resulting algebraic structure is an
inverse monoid (a monoid is a set with an associative binary operation and an identity element, and
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an inverse monoid is a monoid where each element in the set has a unique multiplicative inverse). To
implement this, Janin developed a high level DSL called T-calculus embedded in Haskell. T-calculus
is reactive, hierarchical, and modal.(Janin [2016]).

Janin discusses how every music program can itself be viewed as a music score detailing the
music to be played. From the perspective of music representation formalisms, music PLs must also
be abstract enough to account for the composer’s creativity. Janin feels that classical western music
notation can itself be seen as a music PL, but with the limitation that it only encodes music but
cannot create it. In order to handle all such necessary elements of music representation as well
as software engineering requirements, a unified theory of musical objects with algebraic properties
must be described. A music algebra defines (1) the basic music objects to be used and (2) the
combinators that allow the creation of complex music objects via simple ones. Janin’s goal is to
define a music algebra from which he will derive a PL and a representation formalism. He does
so by using timed graphs (directed acyclic graphs with labeled edges) that can then be combined
via tiled composition. The vertices of timed graphs represent synchronization points, and the edge
labels represent the duration of to-be-determined music objects or rests. Tiled composition involves
the combining of two musical objects via the synchronization step (gluing the input root of the
first object to the input root of the second) and the fusion step (removing potential ambiguity
from the synchronization step). The resulting music algebra is created by adding additional edge
attributes to the tiled timed graphs, which preserves the inverse monoid structure. (Janin [2016]).

Like MusAssist, T-calculus attempts to represent complex musical structures at a higher level of
abstraction. However, the T-calculus focuses on unifying the space and time dimensions of music,
while MusAssist focuses on the notation aspect only of musical objects.

2.4 Applications in Algorithmic Composition

2.4.1 Skini

Unlike MusAssist, which supports user-guided composition, other DSLs are tailored towards algo-
rithmic (i.e. nonhuman) composition. Recall from Section 2.1.4 that the DSL Skini is a synchronous
internal DSL embedded in the GPL JavaScript that has intriguing applications in algorithmic com-
position. Music created in the Skini production environment is based on three principles: audience
interaction determines what gets played next, the music constitutes sequences of patterns made
up of elementary musical elements, and the music (though interactive) must still follow a rigid
structure defined by the composer beforehand, which prioritizes artistic consistency over varied
interactive performances. Skini may seem like jazz, but unlike jazz, the improvisation comes from
the audience, rather than the composer (Petit and Serrano [2020]).

A Skini composition is an example of “synthesis by concatenation” of patterns. (The music is
then produced by playing patterns according to audience selections). The composer will organize the
patterns into repetitive groups and tanks (groups without repetition). The program implementing
the score will simulate a large state machine. States correspond to group activation (i.e. the ability
for the audience to choose a group) and de-activation, and transitions will model the audience
interaction and passing time. For the program, the authors use HipHop.js, a synchronous reactive
language that is a multi-tier extension of JavaScript, in order to simplify the programming of
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the complex temporal behaviors inherent to musical scores. HipHop.js executes steps known as
reactions or instants. Steps execute statements in sequence or in parallel; statements communicate
using broadcast signals, each of which has a unique present/absent status (Petit and Serrano
[2020]).

Finally, the Skini execution environment of the HipHop.js program has two essential data struc-
tures: the “matrix of available groups of patterns” (which is controlled by the execution of the
HipHop.js score, and identifies at every moment which groups and tanks are activated) and “pat-
tern queues” (which are provided by the audience and subsequently used by the synthesizers). Skini
has been used in real-life live performances, in both jazz and classical settings.(Petit and Serrano
[2020]).

2.4.2 Advantages of using DSLs over Virtual Machines (VMs) for Music

It is reasonable to consider that perhaps other avenues of computation, such as Virtual Machines
(VMs), would be more effective to work with music than a DSL. However, Sulyok et al. demonstrate
otherwise. They look into the effect of embedding various levels of musical data in VM architectures,
as well as “phenotype representations” of an algorithmic music composition system. The authors
consider two distinct sets of instructions for a linear genetic programming framework: the first is
Turing-complete register machine with no knowledge of the nature of its output, and the other is
a DSL tailored to music composition, designed around awareness of its output. DSL instructions
include transfer, branching, and conditional instructions (Sulyok et al. [2019]).

The “phenotype” is the output of the VM. It comprises a sequence of notes, where a note is
defined by duration and pitch. (Linear genetic programming is a kind of genetic programming in
with the programs in the population get represented as a linear sequence of instructions from a
PL). The fitness metric for the genetic programming framework was derived by the extraction of
musical elements from a corpus of Hungarian folk songs. These same elements were extracted from
the phenotype and assessed for maximum similarity to the corpus (Sulyok et al. [2019]).

In total, the authors considered six configurations, by using two VM architectures (the is a
general-purpose von Neumann machine, or the GP machine, and the other is the DSL machine),
and three different pitch schemes. The authors found that the DSL machine outperformed the GP
machine even from early generations. Therefore, the instruction set tailed towards music increases
the chance that even a truly random genetic string would lead to a desirable output (Sulyok et al.
[2019]).

2.5 Applications in HCI

2.5.1 Computational Counterpoint Marks

Martinez presents a novel approach for extending the traditional staff domain (i.e. the domain of
Western classical music notation, also known as Common Western Music Notation (CWMN)) to the
PL domain. The syntax of his external DSL is intended to model the interaction between people
and computers in a live electronics music performance. Therefore, both humans and computers
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will be able to understand the notation. This allows for a unified music representation for live
performance that is human-readable and does not depend on technology (Martinez [2021]).

Martinez extends CWMN to the interactive domain through the creation of abstract-verbal
statements called called Computational Counterpoint Marks on the score phonetic-dimension. Com-
putational Counterpoint Marks are human-readable annotations acting as expression-marks added
to a score. They accurately describe the logic of an interaction between the performer and the
computer. This enhances the accompanied graphic signs, leading to a unified and human-readable
representation of an interactive piece’s performance logic. Furthermore, novel score annotations
can also be understood by a computer via the digital score. This means that the musical score
itself actually becomes the source code of a piece’s performance logic, which allows the computer
to perform live during a concert. Finally, Martinez considers the time domain. Specifically, he
proposes symbolic rather than absolute time representation that is based on traditional score nota-
tion. Martinez’s model maps symbolic time to absolute time through an estimate based on updates
during performance about the current symbolic time (Martinez [2021]).

Like Computational Counterpoint Marks, MusAssist seeks to bridge the divide between human
musicians and computers, though in the notation domain rather than the live performance domain.
Just like resulting musical score when Computational Counterpoint Marks are added, the compiled
MusicXML file from MusAssist’s syntax is readable by both humans and computers. In MusAssist’s
case, this divide is bridged through music notation software.

2.5.2 Research through Design

The development of Nishino et al.’s original external DSL LCSynth was approached through the HCI
method ‘Research through Design’ (RtD), in which designers and researchers develop “a product
that transforms the world from its current state to a preferred state” and “the artifacts produced
in this type of research become design exemplars, providing an appropriate conduit for research
findings to easily transfer to the HCI research and practice communities.” RtD places an emphasis
on the contribution of knowledge to academia rather than the design of a commercial product
(Nishino [2012]).

Nishimo et al. use RtD to develop a new DSL focusing on the problem of microsound synthesis.
He came up with a novel abstraction of the sound synthesis framework, as well as a new programming
concept for computer music. Nishimo et al. consider the potential incompatibility between the
abstractions and the user’s understanding of the domain that they call the “usability problem.”
They address this from a formal perspective in their paper “LCSynth: A Strongly-Timed Synthesis
Language that Integrates Objects and Manipulations for Microsounds,” which the reader may
peruse for further reading in this area. (Nishino [2012]).

2.6 Summary

DSLs are a fascinating and effective way to bridge the conceptual gap between computing and
music. Since Wang introduced ChucK in 2008, external and internal DSLs utilizing programming
paradigms including functional programming, object-oriented programming, synchronous program-
ming, strongly-timed programming, and mostly-strongly-timed programming have made advances
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in handling issues in microsound synthesis and signal processing, such as in the LCSynth, LC, and
mimium languages. On a higher level, DSLs like PyTabs, Skini, and Computational Counterpoint
Marks have addressed the areas of music notation representation and algorithmic composition, as
well as intersect with the field of HCI. Finally, the novel concepts of live coding and laptop mu-
sic are considered with the DSLs HMusic and even LC. None of these DSLs address the unique
niche in music notation that MusAssist fills that combines easy to use syntax with complex musical
templates matching the abstraction levels of the musical structures they describe.
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Chapter 3

Language Features

MusAssist allows users to write individual notes and rests, as well as chords consisting of custom
collections of notes. Drawing upon concepts from music theory, users can also describe chords
based on type, quality, and inversion (such a C augmented seventh chord in second inversion).
Furthermore, users can describe any of the four primary harmonic sequences (ascending fifths,
descending fifths, ascending 5-6, and descending 5-6) of any length and in any local key (i.e. no
matter what the current key signature is). MusAssist additionally allows users to describe any of
the five primary cadences (perfect authentic, imperfect authentic, plagal, half, and deceptive) in
any local key. Finally, users have the ability to change the key signature or move to a new measure
at any time. Currently, MusAssist only supports one clef (and one line): a single treble clef line.
MusAssist also does not currently support custom tempo or tempo changes. The tempo is set at
ˇ “ = 80bpm.

This chapter details the concrete syntax of MusAssist. In the following sections, parameters
take the following form: <PARAMETER>

3.1 Rests

The syntax for a rest is as follows

(rest <DURATION>)

where <DURATION> is taken from one of the following options:

sixteenth, eighth, dotted_eighth, quarter, dotted_quarter, half, dotted_half, whole

An example of a MusAssist rest is (rest dotted_quarter)

This expression translates to the following when compiled and loaded into the MuseScore nota-
tion software:
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Figure 3.1: Dotted quarter rest

3.2 Notes

The syntax for a note is as follows

(<NOTENAME><ACCIDENTAL><OCTAVE> <DURATION>)

where <NOTENAME> is taken from one of the following options:

F,C,G,D,E,A,B

and <ACCIDENTAL> is taken from one of the following options:

#, ##, b, bb

<ACCIDENTAL> is an optional parameter. If the user leaves it out, the note is considered natural.
Notice that double sharps are represented with ## rather than the conventional ] symbol, as this
is not an easily typed out character on a keyboard.

<OCTAVE> is taken from one of the following options:

1,2,3,4,5,6,7,8

as these are the octaves of a standard piano.

<DURATION> is taken from the same options as in Section 3.1.

Examples of MusAssist notes are (Cbb5 eighth), (D#5 eighth), and (A2 quarter)

These expressions, respectively, translate to the following when compiled and loaded into Mus-
eScore:

Figure 3.2: Eighth note C[5

Figure 3.3: Eighth note D\5
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Figure 3.4: Eighth note A2

3.3 Custom Chords

The syntax for a custom chord is as follows

([<NOTENAME><ACCIDENTAL><OCTAVE>] <DURATION>)

where <NOTENAME>, <ACCIDENTAL>, <OCTAVE>, and <DURATION> are taken from the same options as
in Section 3.2, and <ACCIDENTAL> is similarly optional, with natural implied when it is left out.

[<NOTENAME><ACCIDENTAL><OCTAVE>] indicates an arbitrarily long list supplied by the user,
where each of the values are of the form <NOTENAME><ACCIDENTAL><OCTAVE>

Examples of MusAssist custom chords are ([Bb5, Dbb6, C5] half) and ([C##1, E5] sixteenth)

These expressions, respectively, translate to the following when compiled and loaded into in
MuseScore:

Figure 3.5: Half note chord with notes BZ6, D[6, and C5

Figure 3.6: Sixteenth note chord with notes C]1 and E5
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3.4 Chord Templates

The syntax for a chord template is as follows

(<NOTENAME><ACCIDENTAL><OCTAVE> <QUALITY> <CHORDTYPE> inv:<INVERSION> <DURATION>)

where <NOTENAME>, <ACCIDENTAL>, <OCTAVE>, and <DURATION> are taken from the same options as
in Section 3.2, and <ACCIDENTAL> is similarly optional, with natural implied when it is left out.

<ACCIDENTAL> is now taken from one of the following restricted options:

#, b

This is because chords cannot be built on a double sharp or flat, as such chords may introduce
triple sharps or flats, and MusAssist does not support these elements. <ACCIDENTAL> does continue
remain optional, with natural implied when it is left out.

<INVERSION> is taken from one of the following options:

root, first, second, third

where third is only an option for seventh chords.

<QUALITY> is taken from one of the following options:

maj, min, aug, dim, halfdim

(which, as one would expect, indicate major, minor, augmented, diminished, and half diminished
qualities). Half diminished can only apply to a seventh chord, not to triads.

Finally, <CHORDTYPE> is taken from one of the following options:

triad, seventh

Examples of MusAssist harmonic sequences are (C6 min triad inv:first quarter) and
(F#4 halfdim seventh inv:third eighth)

These expressions, respectively, translate to the following when compiled and loaded into Mus-
eScore:

Figure 3.7: C6 minor triad, first inversion

Figure 3.8: F\4 half diminished seventh, third inversion
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3.5 Harmonic Sequences

The syntax for a harmonic sequence is as follows

(<HARMSEQTYPE> <NOTENAME><ACCIDENTAL><OCTAVE> <QUALITY> <DURATION> length:<LENGTH>)

where <NOTENAME>, <OCTAVE>, and <DURATION> (but not <ACCIDENTAL>) are taken from the same
options as in Section 3.2. <DURATION> and <LENGTH> are not to be confused: <DURATION> specifies
the length of each individual chord in the harmonic sequence, while <LENGTH> specifies the number
of chords in the sequence.

Unlike chord templates, here <QUALITY> is taken from one of the following restricted options:

maj, min

and <ACCIDENTAL> is taken from the same restricted options as in Section 3.4. <ACCIDENTAL>

continues remain optional, with natural implied when it is left out.

This is because together, <NOTENAME><ACCIDENTAL><OCTAVE> <QUALITY> determine the local
key (and the start octave) of the harmonic sequence. A key can only be major or minor, and a key
in MusAssist cannot be described with a double sharp or flat, as such key signatures may introduce
triple sharps or flats, which recall are not supported.

<HARMSEQTYPE> is taken from one of the following options:

AscFifths, DescFifths, Asc56, Desc56

These are the four most commonly encountered sequences. The musical theoretical aspects of
harmonic sequences are outside the scope of this paper, but a good reference for review can be
found here: https://myweb.fsu.edu/nrogers/Handouts/Diatonic Sequence Handout.pdf

Finally, <LENGTH> is any natural number (though a sequence that is too long will exceed the
octave restriction of 1 through 8).

Harmonic sequences can be written out in a variety of ways, depending on the chord inversions
chosen. Furthermore, MusAssist at this time does not support multiple clefs (i.e. lines) simultane-
ously. This means that currently, harmonic sequences cannot be written with a bass line. However,
the harmonies are preserved through the upper voices in keyboard-style voice leading. Though the
upper-voice harmonization of a harmonic sequence need not follow the direction of the sequence’s
name (i.e. a descending fifths sequences could present as a series of ascending chords in the upper
voices), MusAssist chooses a chord inversion and voice leading pattern such that each sequence does
align with the direction of its name.

The chord progressions of each sequence in MusAssist are summarized in more detail in the
following table (all in major, for the sake of example). Each of the four supported harmonic
sequences consists of fourteen chords before it repeats (albeit in a different octave), which are as
follows:

Ascending Fifths I
6
4 V ii

6
4 vi iii

6
4 viio IV

6
4 I V

6
4 ii vi

6
4 iii viio

6
4 IV

Descending Fifths I IV
6
4 viio iii

6
4 vi ii

6
4 V I

6
4 IV viio

6
4 iii vi

6
4 ii V

6
4

Ascending 5-6 I vi6 ii viio6 iii I6 IV ii6 V iii6 vi IV6 viio V6

Descending 5-6 I
6
4 V vi

6
4 iii IV

6
4 I ii

6
4 vi viio

6
4 IV V

6
4 ii iii

6
4 viio

23

https://myweb.fsu.edu/nrogers/Handouts/Diatonic_Sequence_Handout.pdf


This is demonstrated in each of the following examples, all in C major. Each has length fifteen,
to demonstrate the entire 14-chord sequences and also return to the first chord. Principles of smooth
voice leading were used for all sequences.

The following figures were created with the following MusAssist expressions, respectively:
(AscFifths C4 maj quarter length:15), (DescFifths C4 maj quarter length:15),
(Asc56 C4 maj quarter length:15), (Desc56 C6 maj quarter length:15). When compiled
and loaded into MuseScore, they look like:

Figure 3.9: Ascending Fifths Sequence

Figure 3.10: Descending Fifths Sequence

Figure 3.11: Ascending 5-6 Sequence

Figure 3.12: Descending 5-6 Sequence
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In most music theory settings, the ascending fifths sequence would terminate after five chords
(i.e. before it reaches a root position diminished triad). However, MusAssist does not stop at
this chord based on the principle that users should be able to generate sequences of any length.
Terminating this sequence after five chords is up to the user.

Furthermore, a minor descending fifths sequence would generally have the final appearance of
scale degree seven raised, since it is leading back to the tonic. However, MusAssist does not do this
based on the principle that all sequences should follow the pattern they are given, for any arbitrary
length.

3.6 Cadences

The syntax for a cadence is as follows

(<CADENCETYPE> <NOTENAME><ACCIDENTAL><OCTAVE> <QUALITY> <DURATION>)

<CADENCETYPE> is taken from one of the following options:

PerfAuthCadence, ImperfAuthCadence, HalfCadence, PlagalCadence, DeceptiveCadence

<NOTENAME>, <OCTAVE>, and <DURATION> are taken from the same options as in Section 3.2.

<ACCIDENTAL> is taken from the same restricted options as in Section 3.4 and <QUALITY> is
taken from the same restricted options as in Section 3.5.

Together, <NOTENAME><ACCIDENTAL><OCTAVE> <QUALITY> determine the local key (and the start
octave) of the cadences. Recall that a key can only be major or minor, and a key cannot be in a
double sharp or flat due to the potential for triple sharps or flats to appear in the key.

The music theory of cadences is outside the scope of this paper, but good references for review
can be found here: https://sites.google.com/site/musictheorycheatsheet/diatonicism/ii-functional-
harmony-and-cadences and here: https://sites.google.com/site/musictheorycheatsheet/diatonicism/ii-
functional-harmony-and-cadences

Again, the cadences are written in the upper voices only, in keyboard voice leading style, due
to MusAssist’s current lack of support for multiple clefs. Principles of smooth voice leading were
applied throughout.

From a music theory standpoint, based on the principles of functional harmony, there are several
ways to represent each of these cadences. In MusAssist, the following representations were chosen.
The major version is presented first, and the minor version is after that, in parentheses.

Perfect Authentic Imperfect Authentic Plagal Deceptive Half

IV-V-I (iv-V-i) IV-viio
6
4 -I

6
4 (iv-viio

6
4 -i

6
4 ) IV

6
4 -I (iv

6
4 -I) IV-V

6
4 -vi

6
4 (iv-V

6
4 -VI

6
4 ) IV-ii6-V (iv-iio6-V)

The five possible cadence types in MusAssist are demonstrated in the following examples.

(PerfAuthCadence Eb5 min sixteenth), (ImperfAuthCadence F#5 min quarter),
(DeceptiveCadence B4 maj eighth), (HalfCadence G#5 min whole), (PlagalCadence C5 maj half)

These MusAssist expressions, respectively, translate to the following when compiled and loaded
into the MuseScore notation software. Notice the doubled root in the perfect authentic cadence
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in an attempt to simulate the 4-5-1 bass line, as well as to preserve the 2-1 downward step in the
uppermost voice required for this cadence.

Figure 3.13: Perfect Authentic Cadence in EZ minor

Figure 3.14: Imperfect Authentic Cadence in F# minor

Figure 3.15: Deceptive Cadence in B major

Figure 3.16: Half Cadence in G# minor

Figure 3.17: Plagal Cadence in C major

3.7 Labeled Expressions

A series of any of the above MusAssist expressions can be stored in a label (i.e. a string of the
user’s choice). The label must start with a letter, and can contain letters, numbers, underscores,
and single quotes. This label is thus syntactic sugar for the musical expressions it refers to. When
the label is referenced later in the program, the compiler will translate the expression it refers to.

For example,
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label123_’ = (D4 whole) (Ab4 quarter) (rest whole) ([Bbb5, Db5, C5] half)

label123_’

will translate to the following when compiled and loaded into MuseScore:

Figure 3.18: Music Translated from Labeled Expression

3.8 Key Signatures

The syntax for a key signature change is as follows

SET_KEY <NOTENAME><ACCIDENTAL><QUALITY>

where <NOTENAME> is taken from the same options as in Section 3.2, <ACCIDENTAL> is taken from the
same restricted options as in Section 3.4 and <QUALITY> is taken from the same restricted options
as in Section 3.5. Again, accidentals and qualities are restricted because keys must be major or
minor, and cannot be built on a double sharp or flat due to the problem of such keys introducing
triple sharps or flats.

A key signature also cannot have double sharps or flats, which could happen even if the key
signature is not built on a double sharp or flat note. This means that the following key signatures,
though they are built on seemingly valid notes, are actually invalid:

D#maj, E#maj, G#maj, A#maj, B#maj, Fbmaj

E#min, B#min, Cbmin, Dbmin, Fbmin, Gbmin

Notably, keys cannot be changed within a measure. If the users attempts to do this, a new
measure will automatically get started. Also, a MusAssist key signature change must occur by
itself on its own line. Finally, if the user sets a key signature to what the current key signature
already is, nothing will happen.

For example,

SET_KEY Dmin

SET_KEY Amaj

SET_KEY Amaj

SET_KEY Cmaj

will translate to the following when compiled and loaded into MuseScore:

Figure 3.19: Key Signature Changes
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3.9 New Measures

A new measure can be started at any point in the program with the command NEW_MEASURE

For example,

(D4 quarter)

NEW_MEASURE

(E4 eighth)

will translate to the following when compiled and loaded into MuseScore:

Figure 3.20: Starting a New Measure

A new measure MusAssist instruction must occur by itself on its own line.

3.10 Comments

Comments are designated with //. Any text after the comment indicator is ignored by the complier.
For instance:

// this is a comment
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Chapter 4

Lexing and Parsing

Parsing of MusAssist concrete syntax was implemented with parser combinators using parsers from
Parsec, an industrial strength parser library. Parsec’s helper module Token was used for lexing.
To combine parsers, Haskell’s Applicative module was used, and the following custom monadic
sequencing operators1

infixl 1 >>=:

left >>=: f = f <$> left

infixl 1 >>:

left >>: v = left >> return v

were defined to generate the results of the parse.

The following sections discuss the parsing of the concrete syntax from Chapter 3 into abstract
syntax. The abstract syntax was carefully designed to best model musical structures organically.
MusAssist’s parser can be found here, and its abstract syntax can be found here.

4.1 Note Names

Recall from Section 3.2 that the set of all possible values for the concrete syntax <NOTENAME> is:

F,C,G,D,E,A,B

These are parsed, respectively, into the abstract syntax NoteName (a custom Haskell algebraic
data type, or ADT, defined as follows:

1credit: Ben Wiedermann
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data NoteName =

F

| C

| G

| D

| E

| A

| B

The reason that an ADT was created for note names, rather than a simple type alias for String,
was so that (1) correctness could be enforced for the possible note names and (2) so that custom
orderings, as well as the ability to take successors and predecessors, can be defined for the note
names. As will be discussed in Chapter 5, two orderings will be needed for note names, which are
accomplished through deriving Ord and also implementing a custom instance of the Enum typeclass.
For now, simply notice that the NoteName ADT lists the notes in the order of sharps.

4.2 Accidentals

Recall from Section 3.2 that the set of all possible values for the concrete syntax <ACCIDENTAL> is:

#, ##, b, bb

These are parsed into the abstract syntax Accidental (a custom Haskell ADT) defined below.
Recall that <ACCIDENTAL> is always an optional parameter in the concrete syntax. The mappings
from concrete to abstract syntax are as one would expect semantically, and when the user leaves
out the <ACCIDENTAL> parameter after <NOTENAME>, the result of the parse is Natural.

data Accidental =

DoubleFlat

| Flat

| Natural

| Sharp

| DoubleSharp

Like notes, accidentals were not represented in the abstract syntax with a String alias in order to
(1) enforce correctness for the limited possible values and (2) enforce a custom ordering. As will be
discussed in Section 5.2.1, one ordering (as well as the ability to take successors and predecessors)
will be needed for accidentals, which is accomplished through deriving Enum.

4.3 Octaves

Recall from Section 3.2 that the set of all possible values for the concrete syntax <OCTAVE> is:

1,2,3,4,5,6,7,8

These are parsed into the abstract syntax Octave, a Haskell type alias for Int. Octave is defined
as follows:
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type Octave = Int

An Int type alias, rather than a custom ADT, was chosen for octaves as the constraint of 1-8
is simple to enforce in a later stage, and no custom ordering is needed beyond what is already
provided by Int.

4.4 Inversions

Recall from Section 3.4 that the set of all possible values for the concrete syntax <INVERSION> is:

root, first, second, third

They are parsed, respectively, into the abstract syntax Inversion, a custom Haskell ADT.
Inversion is defined as follows:

data Inversion =

Root

| First

| Second

| Third

An ADT was better than a String alias to represent inversions in order to best enforce correctness
of the data given their limited possible values.

4.5 Length

Recall from Section 3.5 that the concrete syntax <LENGTH> can be any natural number. This thus
parses to the abstract syntax Length, a Haskell type alias for Int:

type Length = Int

4.6 Labels

Recall from Section 3.7 that a the concrete syntax of a MusAssist label is simply a string of the
user’s choice that must start with a letter, and can contain letters, numbers, underscores, and single
quotes. Labels thus parse to the abstract syntax Label, a Haskell type alias for String:

type Label = String

4.7 Durations

Recall from Section 3.1 that the set of all possible values for the concrete syntax <DURATION> is:

sixteenth, eighth, dotted_eighth, quarter, dotted_quarter, half, dotted_half, whole
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They are parsed, respectively, into the abstract syntax Duration, a custom Haskell ADT.
Duration is defined as follows:

data Duration =

Sixteenth

| Eighth

| DottedEighth

| Quarter

| DottedQuarter

| DottedHalf

| Half

| Whole

Durations were not represented in the abstract syntax with a String alias in order to (1) enforce
correctness for the limited possible values and (2) enforce a custom ordering. Duration derives Ord,
which enforces the ordering of durations from smallest to largest, as seen in the data definition.
Of note, durations are not represented as floats as MusAssist does not support arbitrarily complex
durations, and ordered custom data types are easier to work with than floats.

4.8 Qualities

Recall from Section 3.4 that the set of all possible values for the concrete syntax <QUALITY> is:

maj, min, aug, dim, halfdim

They are parsed, respectively, into the abstract syntax Quality, a custom Haskell ADT. Quality
is defined as follows:

data Quality =

Major

| Minor

| Augmented

| Diminished

| HalfDiminished

An ADT was better than a String alias to represent qualities in order to best enforce correctness
of the data given their limited possible values.

4.9 Chord Types

Recall from Section 3.4 that the set of all possible values for the concrete syntax <CHORDTYPE> is:

triad, seventh

They are parsed, respectively, into the abstract syntax ChordType, a custom Haskell ADT.
ChordType is defined as follows:

data ChordType =

Triad
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| Seventh

An ADT was better than a String alias to represent qualities in order to best enforce correctness
of the data given their limited possible values.

4.10 Cadence Types

Recall from Section 3.4 that the set of all possible values for the concrete syntax <CADENCETYPE>

is:

PerfAuthCadence, ImperfAuthCadence, HalfCadence, PlagalCadence, DeceptiveCadence

They are parsed, respectively, into the abstract syntax CadenceType, a custom Haskell ADT.
CadenceType is defined as follows:

data CadenceType =

PerfAuth

| ImperfAuth

| Plagal

| HalfCad

| Deceptive

An ADT was better than a String alias to represent cadence types in order to best enforce
correctness of the data given their limited possible values.

4.11 Harmonic Sequence Types

Recall from Section 3.4 that the set of all possible values for the concrete syntax <HARMSEQTYPE>

is:

AscFifths, DescFifths, Asc56, Desc56

They are parsed, respectively, into the abstract syntax HarmonicSequenceType, a custom
Haskell ADT. HarmonicSequenceType is defined as follows:

data HarmonicSequenceType =

AscFifths

| DescFifths

| Asc56

| Desc56

An ADT was better than a String alias to represent harmonic sequence types in order to best
enforce correctness of the data given their limited possible values.
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4.12 Tones

A tone (i.e. a “sounding,” or non-rest, note) is comprised of a note name, accidental, and octave,
and is represented with Tone, a custom Haskell ADT:

data Tone = Tone NoteName Accidental Octave

The parsers for note name, accidental, and octave are thus combined to create a parser for tones:

parseTone :: Parsec String () Tone

parseTone = Tone <$> parseNoteName <*> parseAccidental <*>

(natural >>=: \octave -> fromIntegral octave)

where natural is a helper lexing function for natural numbers from Parsec’s Token module.

4.13 Intermediate Expressions

An intermediate expression describes one of two entities: a musical template that will get expanded
in Chapter 5, or a “final expression” that will not get expanded. Intermediate expressions are
represented with IntermediateExpr, a custom Haskell ADT:

data IntermediateExpr =

Note Tone Duration

| ChordTemplate Tone Quality ChordType Inversion Duration

| Cadence CadenceType Tone Quality Duration

| HarmonicSequence HarmonicSequenceType Tone Quality Duration Length

| Label Label

| FinalExpr Expr

Parsers for the musical building blocks described in the previous sections of this chapter are
combined, similar to Section 4.12, to create parsers for each IntermediateExpr

As the ADT demonstrates, the templates to expand are notes, chord templates, cadence, har-
monic sequences, and labels. In Chapter 5, they will be each expanded to a value of type Expr, a
custom Haskell ADT describing the building blocks of all musical expressions:

data Expr =

Rest Duration

| Chord [Tone] Duration

| LabeledExpr [Expr]

Any template described in IntermediateExpr will get expanded to the Exprs it contains. An-
other way of thinking about this is that IntermediateExprs get “lowered” to Exprs.

An IntermediateExpr of type FinalExpr is simply unwrapped to the Expr it contains. The
concrete syntax that parses to FinalExpr is that for rests and custom chords.
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4.14 Intermediate Instructions

An intermediate instruction describes the four possible instructions in a MusAssist program: chang-
ing the key signature, creating a new measure, writing a series of musical expressions, or assigning
a label to a series of expressions to be reused later. Intermediate instructions are represented with
IntermediateInstr, a custom Haskell ADT:

data IntermediateInstr =

IRKeySignature NoteName Accidental Quality

| IRNewMeasure

| IRWrite [IntermediateExpr]

| IRAssign Label [IntermediateExpr]

As will be discussed in Chapter 5, each IntermediateInstr is expanded in the intermediate
representations phase to a value in the ADT Instr:

data Instr =

KeySignature Int Int

| NewMeasure

| Write [Expr]

| Assign Label [Expr]

Like Expr, Instr is not included in the parse result. IRKeySignature is a template describing
a key signature that gets expanded (or “lowered”) from its description to the number of sharps and
flats held in KeySignature Every other IntermediateInstr simply maps 1-1 to its corresponding
Instr, with IntermediateExpr parameters expanded to Expr as necessary. Again, this will be
explained in great detail in Chapter 5.

4.15 Final Remarks

When writing the parser, it was important to order parser alternatives correctly due to the issue
of overlapping prefixes of identifiers in the concrete syntax. For instance, consider the parser for
intermediate expressions (i.e. that maps to the ADT IntermediateExpr)

parseExpr :: Parsec String () IntermediateExpr

parseExpr =

try parseLabel

<|> parens

(try parseChordTemplate

<|> try parseNote

<|> try parseCadence

<|> parseFinalExpr

<|> parseHarmSeq)

<?> "Expected expression"

We must call parseChordTemplate before parseNote, because parseChordTemplate will at-
tempt to parse the string “halfdim” (i.e. a quality) and parseNote will attempt to parse the string
“half” (i.e. a duration). Since “half” is a prefix of “halfdim”, this means that if we call parseNote
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before parseChordTemplate on the string “halfdim,” the parse will succeed on the prefix “half”,
which will incorrectly be parsed as a duration, and then the parse will fail on “dim.” Furthermore,
as seen in parseExpr, it is necessary to use Parsec’s “try” keyword on all parsers that succeed on
strings with overlapping prefixes, even when they are in the right order, so that when the parse
fails on the first parser alternative(s) after the overlapping prefix, no input will get consumed before
trying the next one.
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Chapter 5

Intermediate Representations

This chapter discusses the expansions (or “lowerings”) of the musical templates described in the
ADTs IntermediateInstr and IntermediateExpr. The code for the expansions can be found here

5.1 Intermediate Instructions

The intermediate instructions IRNewMeasure, IRWrite [IntermediateExpr], and
IRAssign Label [IntermediateExpr] all have straightforward conversions to Instr.

IRNewMeasure simply gets translated to NewMeasure, IRWrite [IntermediateExpr] gets trans-
lated to Write [Expr], and IRAssign Label [IntermediateExpr] gets translated to Assign Label [Expr]

(The expansion of the IntermediateExprs in the lists is discussed in Section 5.2).

The only complex expansion of an IntermediateInstr in the conversion of a key signature
description (i.e. note name, accidental, and quality) to the number of sharps or flats in the key.

The expansion of template instructions occurs in expandIntermediateInstr

5.1.1 Key Signatures

The logic for the number of sharps or flats in a key signature is divided based on the two possible
key signature qualities: major and minor.

Major

In order to determine the number of sharps or flats for a major key, the possible valid keys (i.e.
keys with 0-7 sharps or flats) were listed and divided into keys with 0 or more sharps (Figure 5.1),
and keys with 0 or more flats (Figure 5.2). (If an invalid key is given, an error is thrown).
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Figure 5.1: Major Keys with 0-7 Sharps

Figure 5.2: Major Keys with 0-7 Flats

Let a flat key signature have at least one flat, and let a sharp key signature have at least one
sharp.

In Figure 5.1, we see that the number of sharps in a sharp major key signature corresponds to
the index of the note name of last sharp appearing in the key signature, in the order of sharps.

Similarly, in Figure 5.2, we see that the number of flats in a flat major key signature corresponds
to 7 − (i − 1), where i is the index of the key signature’s note name in the order of sharps. The
“seven-minus” calculation comes from the fact that the order of flats (BEADGCF) is simply the
reverse of the order of sharps (FCGDAEB), and there are seven possible sharps or flats because
there are seven possible note names.

In order to support this logic, a list of NoteNames in the order of sharps called globalOrderOfSharps

was created.

The question now becomes how to determine the last sharp in a sharp major key signature.
The first step is to determine which key signatures are flat or sharp, given only the key signature’s
description of note name and accidental. Examining Figures 5.1 and 5.2 again, we notice the
following patterns:

1. Any key signature with a flat in its name (i.e. AZ major) is a flat key signature. However,
the only valid key signatures with flats in their names (i.e. those that do not have double
sharps or flats and thus appear in Figures 5.1 and 5.2) are those whose note name n satisfies
n ≥ C in the order of sharps.

2. Any key signature with a sharp in its name (i.e. C\ major) is a sharp key signature. However,
the only valid key signatures with sharps in their names (i.e. those that do not have double
sharps or flats and thus appear in Figures 5.1 and 5.2) are those whose note name n satisfies
n ≤ C in the order of sharps.

3. C major and F major are special cases. C major has zero sharps or flats, and F major has
one flat.

4. Any other key signature (which must have a natural in its name, i.e. G major) is a sharp key
signature.

If we are in a sharp key signature, the rule from music theory is that the last sharp is half
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a step down from the tonic (i.e. key) note name. However, to determine the name of the note
below a given note, we must define a second ordering of the ADT NoteName. Recall that NoteName
already derives Ord, but uses the order of sharps for this. Thus, to order note names in the order
they occur in a scale (i.e. CDEFGAB), we create a custom instance of the Enum typeclass for
NoteName (see: here). Notably, making NoteName an instance of Enum does not define a second set
of comparison definitions that defy NoteName’s derivation of Ord (i.e. F is still less than C), but
it gives us access to the functions succ and pred that will return the previous or next NoteName

based on the scale ordering CDEFGAB. In NoteName’s custom instance of Enum, succ and pred are
both defined circularly. Thus, succ B is C, and pred C is B.

Thus, if we are in a sharp key signature, to determine the name of the last sharp in the key, we
can simply call pred on the tonic (i.e. key) note name. To get the index of this resulting NoteName

in the order of sharps, we simply look up its index in the list globalOrderOfSharps (accounting
of course for the zero-indexing of lists).

To summarize, the logic of determining the number of sharps or flats in a major key is:

1. Any key signature with a flat in its name, and whose note name n satisfies n ≥ C in the order
of sharps, is a valid flat key signature. We look up the index of n in globalOrderOfSharps

(accounting for the zero-indexing of globalOrderOfSharps) to get i, and the key thus has
7− (i− 1) flats.

2. Any key signature with a sharp in its name, and whose note name n satisfies n ≤ C in the
order of sharps, is a valid sharp key signature. pred n gives us n′, the note name of the
last sharp in the key signature. The index of n′ in globalOrderOfSharps tells us how many
sharps the key signature has (accounting for the zero-indexing of globalOrderOfSharps)

3. Any key signature with a natural in its name is a key signature. C major (zero sharps or
flats) and F major (one flat) are special cases. All other such key signatures are sharp key
signatures, and the number of sharps is determined in the same way as just discussed.

Minor

Rather than go through the logic of determining the number of sharps or flats in a minor key
signature, we convert each minor key signature to its relative major, and apply the logic from the
previous section.

Consider the following mapping of valid minor key signatures (i.e. those without double sharps
or flats) to their relative major key signatures. Recall that to get the relative major of a minor key,
we go up a minor third in from the tonic of the minor key.

Figure 5.3: Relative Major Name Accidentals of Minor Keys with Sharp in Name
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Figure 5.4: Relative Major Name Accidentals of Minor Keys with Sharp in Name

This allows us to notice the following patterns. Each of the following diagrams shows the
accidental in the name of the relative major key signature of each of the minor keys in the list.
Notice that the minor keys are ordered in the order of sharps.

Figure 5.5: Relative Major Accidentals for Minor Keys with Sharp in Name

Figure 5.6: Relative Major Accidentals for Minor Keys with Flat in Name

Figure 5.7: Relative Major Accidentals for Minor Keys with Natural in Name

Minor keys in red are invalid (i.e. contain double sharps or flats). However, these will be
identified as invalid later, when they have subsequently been processed as major keys after being
converted to the relative major. Thus, we can simply determine the accidental of the relative major
key by ignoring invalid keys for now. Given a minor key with note name n and accidental a, the
accidental of its relative major can be determined by D as a “pivot.”

1. If a = Z, then if n ≥ D in the order of sharps, the accidental of its relative major is \.
Otherwise, it is ^.

2. If a = Z, then if n ≥ D in the order of sharps, the accidental of its relative major is Z.
Otherwise, it is [.

3. If a = Z, then if n ≥ D in the order of sharps, the accidental of its relative major is ^.
Otherwise, it is Z.
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Finally, since we go up a minor third from n, the tonic of the minor key, to get the note name
of the relative major, we simply call succ twice on n to get the note name of the relative major.

5.2 Intermediate Expressions

The intermediate expressions FinalExpr Expr, Note Tone Duration, Label Label have relatively
simple expansions.

For FinalExprs, the Expr parameter is simply returned (think of this as “unwrapping” FinalExpr Expr).

A Note will get expanded to a single-tone Chord.

In terms of Labels, when the intermediate instruction IRAssign Label [IntermediateExpr]

gets translated to the intermediate instruction Assign Label [Expr], the list of expanded Exprs is
stored in a symbol table mapped to the label name. Then, when expanding Label, the label name
is simply queried in the symbol table, and the list of expanded expressions for that label is returned
to replace the label reference. This desugaring step must occur in the intermediate representations
stage of the compiler rather than the code generation stage for reasons that will be discussed in
Chapter 6.

All the other templates described in IntermediateExpr have more complex expansions. On
a high level, a ChordTemplate will get expanded to a multi-note Chord, and Cadence and a
HarmonicSequence each will get expanded to a list of multi-note Chords.

The expansion of template expressions occurs in expandIntermediateExpr.

5.2.1 Chord Templates

Recall that a chord template contains information about its root note, quality, type, inversion, and
duration. It will get expanded to the list of notes (i.e. tones) that it describes.

Expansion of chord templates begins with validity checks: that (1) the chord root is not a double
sharp or flat (MusAssist does not support this), and (2) that the chord is not a half diminished triad
(impossible according to music theory). After this, each of the notes of the chord are determined.

To do this, a helper function called generateToneWithinScale was created. This function, given
the tonic tone and quality (either major or minor), will generate the tone within that diatonic scale
given the desired interval from the tonic (must be between 0 and 6, i.e. within one octave of the
tonic).

In generateToneWithinScale, determining the note name of the desired tone within the scale
based on interval is straightforward: simply apply succ to the tonic note n times, where n is the
interval from the tonic. Recall that succ is defined in the custom Enum instance of the NoteName

ADT and is based on the order of notes in a scale, not the order of sharps like the Ord derivation
is.

Notably, generateToneWithinScale also takes in the parameters specialOctaveCases and
octFunc. The default octave of the tone is the same as the tonic, but generateToneWithinScale

will apply the custom function (e.g. succ or pred) to the default octave if the computed note
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name is in specialOctaveCases. This allows the octave to be customized as needed. The logic of
specialOctaveCases and octFunc is implemented in the chord template expansion function, and
will be revisited when we return to this function.

The most difficult part of generateToneWithinScale is determining the accidental of the tone.
To work out the logic behind this, the following figures consider all single-accidental key signature
names (even invalid ones that contain double sharps or flats, in order to establish the pattern).
The diagrams group the key signature names under the accidental of the note that is the specified
interval from the tonic. For instance, in both AZ major and minor (since all major or minor scales
have a major second), the major second interval from the tonic (AZ) is BZ. The accidental of BZ isZ, so in Figure 5.8, AZ falls under the Z column.

Figure 5.8: Accidental of Major Second from Tonic per Key

This allows us to ascertain that in any key, the note that is a major second above the tonic has
the same accidental as the tonic, except for keys that have the note name E and B. (Namely, these
keys are E and B major or minor, EZ and BZ major or minor, and E\ and B\ major or minor). In
these cases, the accidental is “lifted” once (i.e. Z becomes ^, ^ becomes \, and \ becomes ]). This
is where the ADT Accidental’s derivation of Enum comes in. In order to lift or lower an accidental,
we can simply apply succ or pred. Thus, if the note name of the scale key is E or B, we apply
succ to the accidental in the key name (i.e. the accidental of the tonic) to get the accidental of the
note a major second above the tonic.

We can proceed in a similar fashion for all other imperfect intervals. In the case of thirds, it
turns out that the pattern emerges for minor thirds, rather than major thirds.
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Figure 5.9: Accidental of Minor Third from Tonic per Key

We see that for any key, the note that is a minor third above the tonic has the same accidental
as the tonic, except for keys that have the note name F, C, or G. In these cases, the accidental is
“lowered” once (i.e. Z becomes [, ^ becomes Z, and \ becomes Z). Just like with major seconds,
now, if the note name of the key is F, C, or G, we apply pred to the accidental in the key name
(i.e. the accidental of the tonic) to get the accidental of the note a minor third above the tonic.

Subsequently, the case of sixths, it turns out that the pattern emerges for major sixths, rather
than minor thirds.

Figure 5.10: Accidental of Major Sixth from Tonic per Key

We see that for any key, the note that is a major sixth above the tonic has the same accidental
as the tonic, except for keys that have the note name A, E, or B. In these cases, the accidental is
“lifted” once, like with major seconds. Thus, if the note name of the scale key is A, E, or B, we
apply succ to the accidental in the key name (i.e. the accidental of the tonic) to get the accidental
of the note a major sixth above the tonic.

Finally, the case of sevenths, it turns out that the pattern emerges for minor sevenths, rather
than major sevenths.

43



Figure 5.11: Accidental of Minor Seventh from Tonic per Key

We see that for any key, the note that is a minor seventh above the tonic has the same accidental
as the tonic, except for keys that have the note name F or C. In these cases, the accidental is
“lowered” once, like with minor thirds. Thus, if the note name of the scale key is F or C, we apply
pred to the accidental in the key name (i.e. the accidental of the tonic) to get the accidental of the
note a minor seventh above the tonic.

We finally consider the perfect intervals: fourths and fifths. By thinking about these intervals
for a moment, it becomes clear that perfect intervals always have the same accidental as their tonic,
except in those rare cases when we get a tritone. There is only one case that this occurs for each
of these intervals: for perfect fourths, keys with F in the key name, and for perfect fifths, keys with
B in the note name. The logic for this can be seen by visualizing a piano. B is a tritone above
F because B is only a half step (rather than a whole step) below C, and F is a tritone above B
because F is only a half step (rather than a whole step) above E.

All of these conclusions allow us to summarize our findings in the following map (defined here):

globalStepsFromTonicToAccInfoMap :: Map Int ([MusAST.NoteName],

MusAST.Accidental -> MusAST.Accidental,

Maybe MusAST.Quality)

globalStepsFromTonicToAccInfoMap = Map.fromList

[(0, ([], (succ . pred), Nothing)), -- root

(1, (drop 5 globalOrderOfSharps, succ, Nothing)), -- seconds

(2, (take 3 globalOrderOfSharps, pred, Just MusAST.Minor)), -- thirds

(3, ([MusAST.F], pred, Nothing)), -- fourths

(4, ([MusAST.B], succ, Nothing)), -- fifths

(5, (drop 4 globalOrderOfSharps, succ, Just MusAST.Major)), -- sixths

(6, (take 2 globalOrderOfSharps, pred, Just MusAST.Minor))] -- sevenths

globalStepsFromTonicToAccInfoMap maps the interval from tonic (beginning with 0, or the
tonic itself) to information about the note at that interval from tonic. In the tuple on the right
side of the map, the first element is the list of “special case” notes from that interval from the tonic
(i.e. notes that do not have the same accidental as the tonic). The second element is the function
to apply to the tonic accidental in order to get the correct accidental for these special case notes.
The third and final element is the key quality that the accidental pattern is valid for (i.e. major,
in the case of sixths, or minor, in the case of thirds and sevenths). Notice that although, based on
the pattern discovered in Figure 5.8, we would think initially that seconds should only be valid for
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major keys, this is not the case because both major and minor keys have their supertonic a major
second above the tonic. Thus, the valid key quality is Nothing, since this does not apply here.
Similarly, key quality affects neither perfect intervals, nor the tonic itself.

We can thus use globalStepsFromTonicToAccInfoMap in generateToneWithinScale by query-
ing based on the interval from the tonic. We then adjust the accidental by applying the queried
accidental function if the note name is in the special cases list, and then we further adjust based
on the key quality the pattern is valid for. For instance, if we are in a major scale and the in-
terval value is 2 (meaning we want a major third), we need to apply succ to the accidental from
globalStepsFromTonicToAccInfoMap. (Note that we must apply this alteration AFTER we have
already applied the queried accidental function if needed). Similarly, if we are in a minor scale and
the interval value is 5 (meaning we want a minor sixth), we need to apply pred to the accidental
from globalStepsFromTonicToAccInfoMap once the queried accidental function has been applied
as needed for special octave case notes.

Thus, generateToneWithinScale returns the tone within a diatonic scale a specified interval
from the tonic, with the option to adjust the octave.

We now return to the function for expanding chord templates. We simply proceed linearly to
generate each note in the chord using generateToneWithinScale based on the interval from the
tonic. Thirds have an interval of 2 from the tonic, fifths have an interval of 4 from the tonic, and
sevenths have an interval of 6 from the tonic.

The scale is set to major for major and augmented chords, and to minor for all other chord
qualities (minor, half diminished, diminished). This means that for augmented chords, the chordal
fifth will need to be raised half a step (i.e. we need to apply succ to the accidental returned
in generateToneWithinScale), and the chordal seventh will need to be lowered half a step. For
diminished chords, both the chordal fifth and seventh will need to be lowered half a step, and for
half diminished chords, the chordal fifth will need to get lowered half a step.

The special octave cases depend on the interval. For instance, for fifths, if the chordal root
is F, G, A, or B, the chordal fifth’s octave number is one above the root, since octave num-
bers change on C. We can use the convenient function enumFromTo from our custom instance
of the Enum class for the ADT NoteName, and we get that the special octave cases for fifths are
(enumFromTo MusAST.F MusAST.B), and the octave function to get applied in generateToneWithinScale

for these cases is succ. The same logic applies to all other intervals, by simply working out which
chordal roots have the specified interval above them in a different octave. This allows us to make
all chords initially in root position. The octave function for generateToneWithinScale is always
succ in chord template expansion (i.e. all special octaves cases in any chord template will have the
associated function succ), but as we will see later in the expansion of other templates, this is not
always the case.

The final consideration to handle in chord template expansions are inversions. If the chord type
is a triad, the chord template expansion stops after generating the notes for the triad. Otherwise,
it continues on to generate the chordal seventh. In either case, inversions are handled similarly.
Recall that the chord (whether triad or seventh) starts out in root position. Let n be the inversion
value (0 for root, 1 for first inversion, 2 for second, and 3 or third). By incrementing the octaves of
the first n tones of the chord in root position, we get the correct inversion.

At this point, we have all the information we need for chord template expansion. The computed
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and adjusted note name, accidental, and octave of for each tone in the chord are zipped together
to create a list of tones, and this is passed into the data constructor Chord from the ADT Expr.
The given duration for the chord template is passed in as the second parameter for Chord, and we
are done.

5.2.2 Cadences

Recall that a cadence template contains information about its cadence type, start tone, quality, and
duration, where duration is the length of each note, and start tone and quality together determine
the local key of the cadence. It will get expanded to the list of chords that it describes.

Expansion of cadences begins a validity check: that the quality of the cadence is either major
or minor. After this, the chords of the cadences are generated.

To do this, a helper function called generateTriadWithinScale was created. This function,
given the tonic tone and quality (either major or minor), will generate the triad within that diatonic
scale given the desired inversion and interval from the tonic (must be between 0 and 6, i.e. within
one octave of the tonic) and inversion. Given the tonic quality (i.e. the quality of the scale),
generateTriadWithinScale first determines the quality of the desired chord. From music theory,
it is known that major keys contain the following chords: I-ii-iii-IV-V-vi-viio, and minor keys contain
the following chords: i-iio-III-iv-v-VI-VII. Thus, depending on whether the tonic quality is major
or minor, the quality of the triad is computed based on this information.

After this, generateToneWithinScale is called to generate the root of the chord. Following
this, a chord template for the triad is created, and passed into expandIntermediateExpr to get
expanded into a Chord containing the list of tones and durations. The result of this is the desired
triad.

Returning to cadence template expansion, generateTriadWithinScale is used to create each
triad in the cadence. Notably, none of the cadences in MusAssist utilize seventh chords.
generateTriadWithinScale is thus called to generate the chords for the given cadence type based
on MusAssist’s cadence representations from Section 3.6.

A notable edge case that occurred was when creating the V
6
4 chord for deceptive cadences. In

order for the cadence to render appropriately, the root of the V
6
4 needs to be an octave number

below the tonic of the scale. Hence, the special octave cases are (enumFromTo MusAST.C MusAST.E)

(i.e. C,D, and E, the keys whose fifth scale degree would normally be the same octave number as
the tonic), and the octave function for these cases is pred

Other edge cases included making sure that all V chords were major when calling
generateTriadWithinScale, no matter the local key quality, since in a cadence, the five chord
is always major. Similarly, we want the diminished seventh triad viio in the imperfect authen-
tic cadence no matter the local key quality (since we raise the leading tone in minor keys when
moving towards the tonic). This means that we also to pass major as the quality parameter to
generateTriadWithinScale here, in order for this chord to be built off the major seven scale
degree.

After creating all the chords for the cadence type with generateTriadWithinScale, the chords
are simply returned as a list.
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5.2.3 Harmonic Sequences

Harmonic sequences were the most complex template to expand. In order to generate a harmonic
sequence, three items need to be determined: (1) the interval of the next chord relative to the
previous, (2) the inversion of each chord, and (3) the octave number of each chord.

The following diagrams demonstrate the interval pattern for each sequence based on the chord
index. All sequences use zero-indexing. (Refer to Section 3.5 for the first description of these
harmonic progressions).

Figure 5.12: Ascending Fifths Interval Analysis

Figure 5.13: Descending Fifths Interval Analysis

Figure 5.14: Ascending 5-6 Interval Analysis

Figure 5.15: Descending 5-6 Interval Analysis

In each figure, the top row is the chord index, the second row is the chord progression, the third
row is the interval of the chord from the tonic, and the bottom row is the interval of each chord from
the previous (modulo 7). A clear pattern for both chord inversions and interval changes emerges for
each sequence based on the index. Also, recall from Figures 3.9 – 3.12 that all descending sequences
are written in a descending direction, and ascending sequences are written in an ascending direction.
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Thus, when descending sequences repeat, their octave number decrements, and when ascending
sequences repeat, their octave number increments. We can thus write Haskell code to create the
following tuples of (first chord in sequence, octave number change when the sequence repeats,
interval from previous chord when at an even index, interval from previous chord when at an odd
index, even index chord inversion, odd index chord inversion) for each sequence:

(tonicTriad, octIncVal, evenIndexIntervalChange, oddIndexIntervalChange, evenIndexInv,

oddIndexInv) = case harmSeqType of

MusAST.AscFifths -> (tonicSecondInvTriad, 1, 4, -3, MusAST.Root, MusAST.Second)

MusAST.DescFifths -> (tonicRootTriad, -1, -4, 3, MusAST.Second, MusAST.Root)

MusAST.Asc56 -> (tonicRootTriad, 1, 5, -4, MusAST.First, MusAST.Root)

MusAST.Desc56 -> (tonicSecondInvTriad, -2, -3, 1, MusAST.Root, MusAST.Second)

The next step is to determine the octave number of each chord. Recall that the octave number of
a chord in the sequence is given by the octave number of the chordal root (no matter the inversion).
Also, the octave number of each chord depends only on the note name, not the accidental (since all
an accidental does is alter the same note in the staff). By going through each sequence for each of
the seven possible notes in a key name (i.e. CDEFFGAB), we determine the octave number of each
chord relative to the octave of the first chord in the sequence. To do this, all chords were converted
to root position for the sake of the analysis. For instance, consider Figure 5.16.

Figure 5.16: Descending 5-6 Octaves Example

The chordal roots in blue are an octave number above the first chord in the sequence, the chordal
roots in yellow are an octave number below, and the chordal root in red is two octave numbers
below.

By doing this analysis for each key name, per sequence, the following information was gathered
for each sequence, revealing patterns based on the chord indices in the sequences.

We begin by considering ascending fifths. For each possible key name (i.e. each possible note
name), Figure 5.17 shows the function that relates the octave number of the chord at that index
in the sequence to the octave number of the first chord in the sequence (assuming zero-indexing of
chords). For instance, given an ascending fifths sequence with C in the key name (i.e., CZ, C^, or
C\ major or minor), then the chords at indices 7,9,11, and 13 in the sequence (using zero-indexing)
will be an octave number above the first chord in the sequence.
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Figure 5.17: Ascending Fifths Octave Table

Figure 5.17 was then transposed and reorganized in Figure 5.18 to relate indices to key names.
Note that succ2 is shorthand for succ . succ

Figure 5.18: Ascending Fifths Octave Analysis
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As demonstrated in the figure, this allows us to create rules based on chord indices in the
sequence. For each function (here, succ and succ2) that relates chord octave numbers to the
octave number of the first chord the sequence, the indices were “chunked” into groups that can
each be described by a single function, whose input is the index and whose output is the key name.
For instance, all even-indexed chords in an ascending fifths sequence may need to have their octave
number increased relative to the first chord, depending on the key name. For any such even index
i, we can determine which sequence key names must have the octave number of their ith chord
increased relative to the first chord by taking the first i−1

2 key names (i.e. note names) from the C
major descending scale (B,A,G,F,E,D,C).

This allows us to write the following code to determine the octave number of each chord in the
ascending fifths sequence, relative to the first chord. Given the chord index in the sequence, we
generate a pair relating the special octave cases (i.e. key names) with their associated alteration
functions so that we correctly alter the octave number of the first chord to obtain the octave number
of the chord at the desired index. For instance if we were at index 1 in a sequence, we would get
([F,G,A,B], succ), since sequences in any of these keys have their index 1 chord an octave number
above the first chord.

if even nextIndexInSeq

then (take (nextIndexInSeq ‘div‘ 2) cMajScaleNotesDesc, succ)

else if nextIndexInSeq <= 7

then (take ((nextIndexInSeq - 1) ‘div‘ 2 + 4) cMajScaleNotesDesc, succ)

else let (succ2Cases, succCases) = splitAt ((nextIndexInSeq - 7) ‘div‘ 2) cMajScaleNotesDesc

in if tonicNoteName ‘elem‘ succ2Cases

then (succ2Cases, succ2)

else (succCases, succ)

Unfortunately, however, the relations from chord index to special octave cases are not always
functions, unless we restrict their use cases. Let f(i) = i−7

2 Returning to Figure 5.18, we see that,
for instance, f(9) = {C,D,E,F,G,A} for succ, but also f(9) = {B} for succ2. A similar issue occurs
for f(11) and f(13). In order to make f a function, we need to determine which result set it maps
to (i.e. to the set of key names for succ, or the set of key names for succ2).

For i ∈ {9, 11, 13}, let f(i) be the resulting set of key names for succ, and let f(i)’ be the
resulting set of key names for succ2. Fortunately, we note that f(i) ∩ f(i)′ = ∅, and f(i) ∪ f(i)′ =
C major scale (i.e. {C,D,E,F,G,A,B}). In other words, the result sets are cleanly divided by

splitting the C major descending scale (i.e. {B,A,G,F,E,D,C}) at the i−7
2

th
note (i.e. the first i−7

2
notes of this scale will map to the result set for succ2, and the remaining notes will map to the
result set for succ) This is exemplified in the following line from the ascending fifths octaves code
above:

let (succ2Cases, succCases) = splitAt ((nextIndexInSeq - 7) ‘div‘ 2) cMajScaleNotesDesc

We have thus split the result sets into (succ2Cases, succCases) In order to determine which
result set we want to f to map to, we simply see which set contains the tonic note name (i.e. the
key note name), we we call n. Since we just concluded that f covers the entire C major scale (and
thus all key names) over both its possible result sets, we know that we always have n ∈ f(i). Thus,
either n ∈ succ2Cases, or n ∈ succCases. If the former is true, then, as seen in the above code,
our result is (succ2Cases, succ2). Otherwise, we simply have (succCases, succ)
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The special octave key names and their respective associated octave alteration functions are thus
determined for the ascending fifths sequence. An identical analysis can be applied to the remaining
sequences to determine their octave information.

For the descending fifths sequence, Figures 5.19 and 5.20 similarly describe the relationship
between chord index and octave number relative to the first chord in the sequence. Notice here
that rather than succ and succ2, we have pred and pred2 (shorthand for pred . pred), indicating
that octave numbers are lowered by one or two from the first chord, depending on the chord index.

Figure 5.19: Descending Fifths Octave Table
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Figure 5.20: Descending Fifths Octave Analysis

Like the ascending fifths sequence, here we can similarly use the conclusions from Figures 5.19
and 5.20 to write the following code to determine the special octave cases (i.e. key names) and
their respective associated alteration functions for the descending fifths sequence.

if even nextIndexInSeq

then (take (nextIndexInSeq ‘div‘ 2) cMajScaleNotesAsc, pred)

else if nextIndexInSeq <= 5

then (take ((nextIndexInSeq + 7) ‘div‘ 2) cMajScaleNotesAsc, pred)

else

let (pred2Cases, predCases) = splitAt ((nextIndexInSeq - 7) ‘div‘ 2) cMajScaleNotesAsc

in if tonicNoteName ‘elem‘ pred2Cases

then (pred2Cases, pred2)

else (predCases, pred)

Notice that here we also have to split the result sets for f(i) = i−7
2 when i ∈ {9, 11, 13}. Just

like before, we have f(i) ∩ f(i)′ = ∅, and f(i) ∪ f(i)′ = C major scale. We can thus definitively
split the relation into two cases to make it a function with the following line:

let (pred2Cases, predCases) = splitAt ((nextIndexInSeq - 7) ‘div‘ 2) cMajScaleNotesAsc

and depending which result set the tonic note name is in, we know to return that result set and
its associated octave alteration function (i.e. either (pred2Cases, pred2) or (predCases, pred)).

We continue this analysis for the ascending 5-6 sequence in Figures 5.21 and 5.22.
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Figure 5.21: Ascending 5-6 Octave Table

Figure 5.22: Ascending 5-6 Octave Analysis

From these tables, we come up with the following code:

if even nextIndexInSeq

then (take (nextIndexInSeq ‘div‘ 2) cMajScaleNotesDesc, succ)

else if nextIndexInSeq >= 7

then (take ((nextIndexInSeq - 5) ‘div‘ 2) cMajScaleNotesDesc, succ)

else if nextIndexInSeq <= 3

then (take (if nextIndexInSeq == 1 then 2 else 1) cMajScaleNotesAsc, pred)

else ([], const nextTonicOctave)

Note that here, we do not need to split up the result sets for any of the relations, as they are all
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functions to begin with (i.e. each index maps to a single result set). However, we do have one new
case: the final line, ([], const nextTonicOctave), in which no special octave cases exist for that
index. Specifically, in this case, the index 5 chord in the ascending 5-6 sequence (i.e. the sixth chord
due to zero-indexing) is simply the first chord again, albeit in a different inversion, and thus always
has the same octave number as the first chord, no matter the key name. const nextTonicOctave

is therefore a placeholder for this case when there is no special octave function to be applied.

Finally, we apply the analysis one more time for the descending 5-6 sequence, as see in Figures
5.23 and 5.24.

Figure 5.23: Descending 5-6 Octave Table

Figure 5.24: Descending 5-6 Octave Analysis
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Note that for the first time, we have three octave function cases: pred, pred2, and succ. This
is reflected in the following Haskell implementation.

if even nextIndexInSeq

then if nextIndexInSeq <= 6 then (take nextIndexInSeq cMajScaleNotesAsc, pred)

else let (pred2Cases, predCases) = splitAt (nextIndexInSeq - 7) cMajScaleNotesAsc

in if tonicNoteName ‘elem‘ pred2Cases

then (pred2Cases, pred2)

else (predCases, pred)

else if nextIndexInSeq == 13

then let (pred2Cases, predCases) = splitAt 1 cMajScaleNotesAsc

in if tonicNoteName ‘elem‘ pred2Cases

then (pred2Cases, pred2)

else (predCases, pred)

else if nextIndexInSeq >= 7

then (take (nextIndexInSeq - 5) cMajScaleNotesAsc, pred)

else if nextIndexInSeq <= 3

then (drop (nextIndexInSeq + 2) cMajScaleNotesAsc, succ)

else ([], const nextTonicOctave)

Here, we must split two relations, f1(i) = i − 7, where i ∈ {8, 10, 12}, and f2(i) = 1, where
i = 13, into two respective result sets in order to make them functions. Just like before, we have
f1(i) ∩ f1(i)′ = f2(i) ∩ f2(i)′ = ∅ for the respective valid values of i, as well as f1(i) ∪ f1(i)′ =
f2(i) ∪ f2(i)′ = C major scale, for the respective valid values of i. We can thus definitively split
both relations into two cases to make them each a function, with the following lines taken from the
above code:

let (pred2Cases, predCases) = splitAt (nextIndexInSeq - 7) cMajScaleNotesAsc

(for i ∈ {8, 10, 12})
and

let (pred2Cases, predCases) = splitAt 1 cMajScaleNotesAsc

(for i = 13)

Just as before, depending which result set the tonic note name is in, we know to return
that result set and its associated octave alteration function (i.e. for both f1 and f2, either
(pred2Cases, pred2) or (predCases, pred)).

Finally, notice that the const function appears once again in the final line of the above code:
([], const nextTonicOctave). This again is the situation in which no special octave cases exist
for that index. Specifically, just like the ascending 5-6 sequence, the index 5 chord in the descending
5-6 sequence (i.e. the sixth chord due to zero-indexing) is simply the first chord again, albeit in a
different inversion, and thus always has the same octave number as the first chord, no matter the
key name.

We have thus determined how to find the interval and inversion of a chord in the sequence from
the previous chord, and how to find the octave number of a chord in the sequence. Importantly,
the interval analysis holds for any representation of these harmonic sequences, as this is what
defines the sequence. However, the inversion and octave analysis holds only for MusAssist’s chosen
representation of the sequences, as a different inversion pattern would deeply alter both of these
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analyses.

We are now ready to generate the sequences. A generic sequence-generator helper function
called generateSeq n was written that, given n (the length, or number of chords) in the sequence,
generates the sequence. generateSeq n determines the next index in the sequence (resetting to zero
each time the sequence repeats after 14 chords), either increments or decrements the tonic octave
number after each cycle, determines the note name of the next chordal root based on the interval
rule from the previous chord for that sequence, and determines the inversion based on the index.
The special octave cases and associated octave functions are passed in based on the previously dis-
cussed analysis. generateSeq n now has enough information to call generateTriadWithinScale
to generate the desired chord for that index in the sequence, and then recurses to the next chord
in the sequence until n goes to zero.
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Chapter 6

Code Generation

We are finally ready to generate MusicXML code from the abstract syntax. In order to do so, we
must first comprehend MusicXML’s concrete syntax.

6.1 MusicXML Syntax

This section gives an overview of MusicXML’s syntax as pertains to translations from MusAssist.
A full and more detailed reference of MusicXML’s syntax can be found here.

Throughout the section, words in all caps (e.g. DURATION) are parameters.

6.1.1 Header Code

Static MusicXML header code is generated for all MusAssist files that handles encoding, print and
midi settings, and layout defaults. The tempo is also set to ˇ “=80bpm. The header code can be
found here. This code was generated by exporting an empty MuseScore file to MusicXML.

However, a critical part of the MusicXML header is left off the static header code until code
generation: the program attributes. (This can be found here).

<attributes>

<divisions>4</divisions>

<key>

<fifths>NUM_ACCIDENTALS</fifths>

</key>

<time>

<beats>4</beats>

<beat-type>4</beat-type>

</time>

<clef>

<sign>G</sign>
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<line>2</line>

</clef>

</attributes>

The addition of the header attributes was delayed until code generation due to the NUM ACCIDENTALS
parameter. By default, NUM ACCIDENTALS is set to zero, indicating a key signature of C ma-
jor/A minor. However, if the user’s first command is to set the key signature to something else, then
the header attributes must be adjusted accordingly. Thus, the helper function globalHeaderCode fifths

was created, that takes as a parameter the number of sharps or flats. fifths, which represents
NUM ACCIDENTALS, is an integer taken from [−7, 7]. Negative values indicate flats, while posi-
tive values indicates sharps.

As for the remainder of the attributes code, the following sets the time signature to common
time:

<time>

<beats>4</beats>

<beat-type>4</beat-type>

</time>

and the following sets the clef to treble:

<clef>

<sign>G</sign>

<line>2</line>

</clef>

Finally, notice the <divisions>4</divisions> element at the top. The <divisions> tag is crit-
ical to the representation of note durations throughout the MusicXML program. The <divisions>

value determines the numerical value of the smallest possible duration, which must always be a
positive integer. Specifically, the <divisions> value determines which division of the quarter note
should receive the duration value of one. Since the smallest duration that MusAssist supports is
sixteenth notes, <divisions> is set to four to indicate that one fourth of a quarter note will receive
the smallest possible duration of one.

6.1.2 Notes and Chords

A pitched note element in MusicXML has the following form. (The * and + symbols are not part
of the MusicXML code, and indicate optional lines. )

<note>

<chord/>+

<pitch>

<step>NOTE_NAME</step>

<alter>ACCIDENTAL</alter>

<octave>OCTAVE</octave>

</pitch>

<duration>DURATION</duration>

<tie type="start"/>*
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<tie type="stop"/>*

<voice>1</voice>

<type>TYPE</type>

<dot/>+

<notations>*

<tied type="start"/>*

<tied type="stop"/>*

</notations>*

</note>

(full details here)

The * indicate lines that create a start and/or stop tie for the note. If a start or stop tie is used,
it must be declared in the <notations> element. If the note is not tied either way, the <notations>
element can be left off completely. The + denotes the optional chord and dot tags. The <chord>

tag is included if the current note is part of a chord with the previous note, and the <dot> tag is
included when the note has a dotted duration (e.g. dotted quarter note).

NOTE NAME is taken from the set {A,B,C,D,E,F,G}, and ACCIDENTAL is taken from the
set {−2,−1, 0, 1, 2}. ACCIDENTAL indicates the chromatic alteration of the pitch in the number
of semitones. For instance, -2 indicates a double flat, and 1 indicates a single sharp. (MusicXML
also supports additional values for ACCIDENTAL, such as 0.5 for microtones, that MusAssist does
not support.) OCTAVE is an integer between 0 and 9 inclusive, though MusAssist only supports
octaves 1 through 8.

DURATION is a positive integer that indicates the number of division units this note should
have. Recall from Section 6.1.1 that in a translated MusAssist program, a DURATION value of 1
indicates a sixteenth note. Thus, a quarter note would have a DURATION value of 4, and so on.

TYPE is the graphical type of the note based on its duration (excluding dotted durations). The
possible MusAssist durations give that TYPE is taken from the set {16th, eighth, quarter, half, whole}
(“16th” is indeed represented numerically in MusicXML).

Finally, the <voice> value is set to 1 for all MusAssist elements, as multiple voicing (the ability
to have simultaneous lines occurring in a single measure) is a more advanced notation element that
MusAssist does not currently support.

6.1.3 Rests

A rest element in MusicXML has the following form:

<note>

<rest/>

<duration>DURATION</duration>

<voice>1</voice>

<type>TYPE</type>

</note>

A rest is a special kind of <note> element, with the <rest/> tag instead of pitch information.
Thus, DURATION and TYPE take on the same values as in Section 6.1.2. A rest cannot be tied,
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nor can it be part of a chord.

6.1.4 Measures

MusicXML measures are denoted by the opening tag <measure number="NUMBER"> and the closing
tag </measure>, where NUMBER is a positive integer All code within these tags belongs to
that measure.

6.1.5 Key Signatures

When the key signature is changed after the beginning of the piece, the following code is inserted
at the beginning of the measure (i.e. directly after the opening <measure number="NUMBER"> tag):

<attributes>

<key>

<fifths>NUM_ACCIDENTALS</fifths>

</key>

</attributes>

Like in the header code in Section 6.1.1, NUM ACCIDENTALS is an integer taken from [−7, 7].

6.2 MusicXML Code Generation

We are now ready to make the final translation from abstract syntax to MusicXML. The source
code can be found here.

6.2.1 State

Throughout the code generation, the state of three items needed to be maintained: (1) the current
beat in measure that we are writing to, (2) the current measure number, and (3) the current key
signature. In order for these to be globally accessible in the code generation, IORefs were used to
represent each:

type BeatCounter = IORef.IORef Int

type MeasureCounter = IORef.IORef Int

type KeySignature = IORef.IORef (Int, Int)

Here, key signature is represented as a pair of (num sharps, num flats). At least one of (num
sharps, num flats) should be zero, and each should be an integer taken from [−7, 7].

The 3-tuple of the IORefs for beat, measure, and key signature constitute the program state:

type State = (BeatCounter, MeasureCounter, KeySignature)

State is passed around to each code generation function.
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6.2.2 Instructions Translation

Code generation begins with the function transInstrs. Here, we translate the input list of in-
structions (i.e. the list of the ADT Instr) that is the result of the intermediate expansions. After
doing so, we pad the final measure with rests if needed. To accomplish the measure padding, we
create a helper function called generateNoteValueRationalDivisions. (This function will later
also be used for tied notes that spill into the next measure).

generateNoteValueRationalDivisions uses a bimap (i.e. a map that supports two-way query)
called globalDurationIntBimap that maps values from the ADT Duration to their associated
numerical duration values in the MusicXML code. Again, these numerical duration values are
based on the value given to the <divisions> element in the header. In other words, Sixteenth
gets mapped to 1, Eighth gets mapped to 2, etc. generateNoteValueRationalDivisions passes
in the numerical duration values from globalDurationIntBimap in descending order, from greatest
to least, to the helper function breakUpNoteValRationally

breakUpNoteValRationally breaks up the given duration value into “valid” duration values
(i.e. into the numerical values that map to the values in globalDurationIntBimap that are defined
in the ADT Duration). In order for this to work, breakUpNoteValRationally greedily breaks up
the input duration value: it continually attempts to fill the input duration on the current level of
recursion with the largest value from the list (i.e. the values from globalDurationIntBimap) that
is passed in. This is why the values from globalDurationIntBimap are ordered from greatest to
least before they are passed in.

breakUpNoteValRationally returns this “rational break-up” of the given duration as a list of
(Duration ADT value, duration integer value) pairs, ordered either greatest to least (if we are at
the beginning of a measure, like in the case of spilled tied notes), or least to greatest (if we are
not at the beginning of the measure, like in the cases of the first part of tied notes, or when we
generate measure padding of rests for a partially filled measure). This ordering of rest values follows
standard music notation practices.

The implementation of breakUpNoteValRationally is as follows.

breakUpNoteValRationally :: [Int] -> Int -> Bool -> IO [(MusAST.Duration, Int)]

breakUpNoteValRationally _ 0 _ = return []

breakUpNoteValRationally [] _ _ = return $ error "cannot generate accurate note divisions"

breakUpNoteValRationally (noteVal:noteVals) remainingTimeInMeasure isFromMeasStart = do

if noteVal <= remainingTimeInMeasure then do

noteDuration <- Bimap.lookupR noteVal globalDurationIntBimap

remainingPadding <- breakUpNoteValRationally noteVals

(remainingTimeInMeasure - noteVal) isFromMeasStart

return $ if isFromMeasStart

then (noteDuration, noteVal):remainingPadding

else remainingPadding ++ [(noteDuration, noteVal)]

else breakUpNoteValRationally noteVals remainingTimeInMeasure isFromMeasStart

After the duration is broken up rationally, the helper function generateRestsFromDivisions

takes in the result list from generateNoteValueRationalDivisions and generates a list of Mu-
sicXML code for rests based on the given durations.
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6.2.3 Individual Instruction Translation

Going one level down, transInstrs calls transInstr to generate MusicXML code for each Instr

in the instructions list. This means we pattern match to four cases: KeySignature Int Int,
NewMeasure, Write [Expr], and Assign Label [Expr]

As MusicXML code is generated, the current beat and measure number are handled in the
function updateBeat. Whenever updateBeat is called, the current beat IORef is incremented given
the note duration parameter passed into the function. If we have reached the end of the measure
(i.e. the updated beat count equals the time per measure) then we generate new measure code (see
Section 6.1.4), increment the IORef for measure number, and reset the current beat IORef to zero.
Time per measure is set at 16 for all programs, since the enforced time signature for a MusAssist
program is common time, which has 16 sixteenth notes.

updateBeat is called whenever a note or rest is written, and returns new measure code (which
is an empty list if we are not starting a new measure). The implementation of updateBeat is as
follows.

updateBeat :: NoteDuration -> State -> IO [CodeLine]

updateBeat noteDuration (currBeatCt, measureCt, _) = do

currentBeatCount <- IORef.readIORef currBeatCt

let updatedBeatCount = currentBeatCount + noteDuration

if updatedBeatCount == globalTimePerMeasure

then do

measureNum <- IORef.readIORef measureCt

IORef.writeIORef currBeatCt 0

let incMeasNum = measureNum + 1

IORef.writeIORef measureCt incMeasNum

let newMeasureCode =

["\t\t</measure>", "\t\t<measure number=\"" ++ show incMeasNum ++ "\">"]

return newMeasureCode

else do

IORef.writeIORef currBeatCt updatedBeatCount

return []

Returning to transInstr, the translation of the instruction Assign Label [Expr] does not
generate any MusicXML code.

Like at the end of transInstrs, the translation of NewMeasure calls generateNoteValueRationalDivisions
and generateRestsFromDivisions to pad the rest of the current measure with rests if necessary,
and then generates MusicXML code to create a new measure.

The translation of Write [Exprs] simply calls the function transExpr (which will be discussed
shortly) to unwrap and translate the expressions it contains, and concatenates the results to generate
the resulting list of MusicXML codelines.
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Key Signatures

The last case for transInstr, KeySignature Int Int, is slightly more complicated. After perform-
ing an error check that the key signature is valid (i.e. one or both of the arguments to KeySignature

must be zero, as a key signature cannot have sharps and flats, and the non-zero argument must be
an integer taken from [−7, 7]), the current key signature, beat in the measure, and measure number
are read from the IORefs in State. If the new key signature is the same as the current one, empty
code is returned, and State is not updated. Otherwise, we pad the measure with rests if needed
using generateNoteValueRationalDivisions and generateRestsFromDivisions

Then, we check if this key signature change occurs at the beginning of the first measure, which
means this is the user’s first instruction. If this is the case, we simply call globalHeaderCode fifths

from Section 6.1.1. Otherwise, we pad the current measure with rests and generate a new measure
using generateNoteValueRationalDivisions, generateRestsFromDivisions, and updateBeat.
Then, finally, we generate MusicXML code for the new key signature (see Section 6.1.4), as Mu-
sicXML does not support mid-measure key signature changes.

6.2.4 Expression Translation

Going another level down, the final recursive function in the code generation is transExpr, which
translates values from the ADT Expr to MusicXML. This means we pattern match to four cases:
Rest Duration, Chord [Tone] Duration, and LabeledExpr [Expr]. Generating MusicXML code
for LabeledExpr [Expr] is simple; we simply call transExpr recursively for the list of expressions
contained in the label. Rests and chords are more complex.

Rests

In the translation of Rests, we have two cases:

1. The rest fits in the current measure. Here, we simply generate code for the entire rest (see
Section 6.1.3).

2. The rest spills over into the next measure. Here, we break up the rest duration into two pieces
(1) what fits in the current measure (the “initial duration”), and (2) what spills over (the
“spilled duration”). Then, we break up the initial rest duration rationally, call updateBeat
to generate new measure code, and break up the spilled rests rationally. Finally, we call
generateRestsFromDivisions twice to generate rationally broken-up rest MusicXML code
for the initial duration and for the spilled duration.

3. We return a list with initial rest code, new measure code, and spilled rest code.

Chords

In the translation of Chords, we first generate code for all the pitches. Recall that if [Tone] has one
element, then this Chord is simply a note. All subsequent Tones in the list will receive a <chord/>

tag in the MusicXML code (see: Section 6.1.2). We accomplish this by using the Haskell function
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zipWith, and then concat, for all the tones in the list with their corresponding list indices. In
other words, we zip together the tones and the list [0..], which contains their indices. An index
greater than zero tells us this tone is part of a multi-note chord.

We then have two cases:

1. The chord fits in the measure. Here, we simply generate code for the entire chord (see:
Section 6.1.2).

2. The chord spills over into the next measure. Unlike rests, we now must manually handle ties.
Recall that MusicXML requires separate start and stop ties. Thus, we must do the following

(a) Break up the note duration into the initial duration (that fits in the current measure)
and spilled duration (that spills into the next measure).

(b) Call generateNoteValueRationalDivisions for the initial duration. Take the head
of the initial note divisions list, and create a chord from it with start tie only. Then,
we call the helper function generateTiedNotesFromDivisions on the remaining initial
note divisions. generateTiedNotesFromDivisions takes in a list of pitches code and a
list of (Duration ADT value, duration integer value) pairs, and generates chords from
these pitches and durations that each have with both start and stop ties.

(c) Call updateBeat to generate new measure code.

(d) Call generateNoteValueRationalDivisions for the spilled duration. Call init to take
all but the last element of the spilled note divisions, and pass this into generateTiedNotesFromDivisions
to generate chords with both start and stop ties. Finally, take the last element of the
spilled note divisions, and create a chord with stop tie only.

3. Finally, we return a list with the first initial chord code with start tie only, remaining initial
chords code with double ties, new measure code, spilled chords code with double ties, and the
final spilled chord code with stop tie only.

At this point, all the MusicXML code has been generated, and we are ready to open the program
in MuseScore or other music notation software.
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Chapter 7

Sample Programs

The following examples show MusAssist syntax, and the result of opening the compiled MusicXML
code in MuseScore. The two examples were created to demonstrate (1) the complexity that MusAs-
sist is capable of and (2) that MusAssist programs can certainly sound diatonic and pleasing to the
ear.

7.1 Example 1

SET_KEY Amaj

(D4 whole) (F#4 quarter) (Ab4 quarter) (G#4 eighth) (rest sixteenth)

// this is a comment

notes1 = (D4 whole) (F#4 quarter) (Ab4 quarter) (G#4 eighth) (rest whole)

// note without b or # is considered to be natural

chords1 = ([Bbb5, Db5, C5] half) ([C#5, E5] half) (C6 min triad inv:first quarter)

(F#4 halfdim seventh inv:second eighth)

(D4 whole) (F#4 quarter) (Ab4 quarter) (G##4 eighth) (rest sixteenth)

([Bbb5, Db5, C5] half) ([C#5, E5] half) (C6 min triad inv:first quarter)

(F#4 halfdim seventh inv:second eighth)

SET_KEY Dmin

NEW_MEASURE

(DescFifths G5 min quarter length:15) (PerfAuthCadence Eb5 min half)

notes1 chords1 (AscFifths G3 min quarter length:5) chords1

(PerfAuthCadence Eb5 min sixteenth) chords1
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Figure 7.1: Example 1

Figure 7.1 sounds rather atonal when played, but is presented to demonstrated the full complex-
ity of MusAssist’s features. Notice how MusAssist automatically breaks up the tied note rationally
in mm. 19-20.

7.2 Example 2

SET_KEY Amaj

SET_KEY Amaj

(D4 eighth) (F#4 eighth) (A4 eighth) (F#4 eighth) (D4 quarter) (D4 maj triad inv:first quarter)

(rest half) // comment!!!

notes1 = (E5 sixteenth) (B4 sixteenth) (G#4 sixteenth) (B4 sixteenth) (E5 sixteenth)

notes2 = (F5 sixteenth) (E4 maj triad inv:second eighth) (DeceptiveCadence A4 maj eighth)

chords1 = ([Bbb4, Db5, Fb5] dotted_quarter) (A4 maj triad inv:root eighth)

chords2 = ([A4, C5, D5, F5] half) (C4 aug seventh inv:third quarter)

chords3 = (C4 aug triad inv:second eighth) (B#3 maj seventh inv:third eighth)

chords1 chords2 chords3 (rest half) notes1 notes2 (rest eighth)

SET_KEY Gmin
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(DescFifths G5 min eighth length:15) (rest quarter)

(rest sixteenth) (HalfCadence G4 maj half)

Figure 7.2: Example 2

Figure 7.2 sounds much more diatonic and pleasing to the ear, but is not as complex as Figure 7.1.
Notice how the key signature at the beginning of the score does not change twice, though the
command appears consecutively in the code. Also notice how we represented the same A major
triad in m. 2 in two ways: as a custom collection of enharmonic notes, and then as a chord template.

67



Chapter 8

Future Work and Conclusion

8.1 Future Work

Ideally, in the future MusAssist would support more complex musical states and elements includ-
ing custom time signature and mid-composition time signature changes (similar to the behavior
currently implemented for key signatures), clef changes within a part, multiple-clef parts (i.e. pi-
ano), multiple voicing within a part, custom parts (i.e. instruments), and multiple parts. Custom
and changeable time signature would allow for the users to experiment with metric modulation,
something that is currently impossible with the fixed common time setup. Clef changes within a
part, both manual and automatic when a note extends too many ledger lines beyond a clef, would
allow the score to be more nicely formatted and readable for the user. Support for two-clef piano
would allow the MusAssist compiler to successfully modify how it generates cadences and harmonic
sequences to include the essential baseline, in addition to the harmonization already implemented.
Multiple voicing would allow for the user to create more complex musical lines, particularly with
counterpoint. The latter two goals (custom parts and multiple parts) are somewhat outside MusAs-
sist’s goal as a music compositional aid, as this extends beyond the realm of music theory. However,
users may enjoy this increased flexibility when composing. Furthermore, in line with its goal of
offering the user complex musical templates, it would be ideal for MusAssist to provide support for
key modulation; e.g. generating a sequence of chords that successfully modulates from one key to
another key. More complex/non-classical chords, such as all flavors of suspended, ninth, eleventh,
and thirteen chords (often seen in jazz) are a future goal as well. It would also be ideal for MusAssist
to be able to generate scales in any key, of any type (i.e. major, harmonic minor, octatonic etc),
and of any length. Finally, MusAssist would in the future support more complex rhythms where
any number of notes could be grouped over any number of beats (i.e. triplet, which is three eighths
over a quarter note, or a 4:3 rhythm of four eighths over three quarter notes).
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8.2 Conclusion

MusAssist is an external DSL whose Haskell-based compiler translates it to MusicXML that can
be loaded into a major music notation software for further editing. Its syntax is simple and models
the flow of thought a composer would have when writing music by hand. MusAssist fills a unique
niche in the realm of musical DSLs by serving as a music compositional aid that allows the user
to write specifications for complex musical templates at the levels of abstraction of the musical
structures they describe. MusAssist is not intended to allow to the user to write a fully expressive
musical piece, but rather to more easily create musical expressions that would be tedious to write by
hand. For this reason, the output MusicXML file of a compiled MusAssist program is intentionally
editable, rather than a static PDF format like a language such as LilyPond generates. MuseScore
can be further valuable as an education tool to music theory students, allowing them to visualize
musical structures from the definitions that they describe in MusAssist.

Clearly, DSLs are a powerful mechanism to push the boundaries of computational creativity in
the field of music. Scholars such as Ge Wang continue to lead research in institutions such as Stan-
ford’s CCRMA (Center for Computer Research in Music and Acoustics). By continuing to examine
the creative expressive power of DSLs in music, we can continue to increase our understanding of
the creative capabilities and extent of customization possible for a programming language.

69



Bibliography

A. Bertram. What is declarative programming?, Oct 2021. URL https://www.techtarget.com/

searchitoperations/definition/declarative-programming.

A. R. D. Bois and R. Ribeiro. Hmusic: A domain specific language for music programming and live
coding: Semantic scholar, 2019. URL https://www.nime.org/proceedings/2019/nime2019_

paper074.pdf.

J. S. Cuadrado, J. L. Izquierdo, and J. G. Molina. Comparison between internal and external
dsls via rubytl and gra2mol. Computational Linguistics, page 816–838, Nov 2012. doi: 10.4018/
978-1-4666-6042-7.ch040.

DeepSource. Synchronous programming. URL https://deepsource.io/glossary/

synchronous-programming/.

M. Fowler and R. Parsons. Domain-specific languages. Addison-Wesley, 2011.

A. S. Gillis and S. Lewis. What is object-oriented programming (oop)?, Jul 2021. URL https://

searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP.

M. Good. MusicXML: An Internet-Friendly Format for Sheet Mu-
sic. Dec 2001. URL https://michaelgood.info/publications/music/

musicxml-an-internet-friendly-format-for-sheet-music/.

M. Good. Musicxml: Introduction, Apr 2013. URL https://www.musicxml.com/publications/

makemusic-recordare/notation-and-analysis/introduction/.

D. Janin. A robust algebraic framework for high-level music writing, 2016. URL https://hal.

archives-ouvertes.fr/hal-01246584v2/document.

A. Joury. Why developers are falling in love with functional pro-
gramming, Aug 2020. URL https://towardsdatascience.com/

why-developers-are-falling-in-love-with-functional-programming-13514df4048e.

J. C. Martinez. Extending music notation as a programming language for interactive music. ACM
International Conference on Interactive Media Experiences, Jun 2021. doi: 10.1145/3452918.
3458807.

T. Matsuura and K. Jo. Mimium: A self-extensible programming language for sound and mu-
sic. Proceedings of the 9th ACM SIGPLAN International Workshop on Functional Art, Music,
Modelling, and Design, 2021. doi: 10.1145/3471872.3472969.

70

https://www.techtarget.com/searchitoperations/definition/declarative-programming
https://www.techtarget.com/searchitoperations/definition/declarative-programming
https://www.nime.org/proceedings/2019/nime2019_paper074.pdf
https://www.nime.org/proceedings/2019/nime2019_paper074.pdf
https://deepsource.io/glossary/synchronous-programming/
https://deepsource.io/glossary/synchronous-programming/
https://searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP
https://searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP
https://michaelgood.info/publications/music/musicxml-an-internet-friendly-format-for-sheet-music/
https://michaelgood.info/publications/music/musicxml-an-internet-friendly-format-for-sheet-music/
https://www.musicxml.com/publications/makemusic-recordare/notation-and-analysis/introduction/
https://www.musicxml.com/publications/makemusic-recordare/notation-and-analysis/introduction/
https://hal.archives-ouvertes.fr/hal-01246584v2/document
https://hal.archives-ouvertes.fr/hal-01246584v2/document
https://towardsdatascience.com/why-developers-are-falling-in-love-with-functional-programming-13514df4048e
https://towardsdatascience.com/why-developers-are-falling-in-love-with-functional-programming-13514df4048e


H.-W. Nienhuys and J. Nieuwenhuizen. LilyPond, A System for Automated Music Engrav-
ing. May 2003. URL https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.

6160&amp;rep=rep1&amp;type=pdf.

H. Nishino. Developing a new computer music programming language in the ’research through
design’ context. Proceedings of the 3rd annual conference on Systems, programming, and appli-
cations: software for humanity - SPLASH ’12, 2012. doi: 10.1145/2384716.2384736.

H. Nishino, N. Osaka, and R. Nakatsu. Lc : A strongly-timed prototype-based programming lan-
guage for computer music, 2013. URL https://quod.lib.umich.edu/i/icmc/bbp2372.2013.

017/1.

H. Nishino, N. Osaka, and R. Nakatsu. Lc: A new computer music programming language with
three core features, 2014. URL https://quod.lib.umich.edu/i/icmc/bbp2372.2014.237/1.

B. Petit and M. Serrano. Interactive music and synchronous reactive programming. The Art,
Science, and Engineering of Programming, 5(1), 2020. doi: 10.22152/programming-journal.org/
2021/5/2.
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