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Abstract

In this paper, we present and evaluate a system for conduct-
ing text simplification using crowdsourcing, employing amateur
human workers to simplify text at a sentence level. We also in-
troduce a graph-based sentence fusion system, which we use
to augment the output of the human workers. Finally, an SVM-
based reranking system is presented, which enables the user to
select the desired balance between simplification and meaning
preservation, and a number of features are introduced and ex-
amined. We use the Newsela dataset [Xu et al., 2015] as a bench-
mark, and demonstrate consistent improvements at all simpli-
fication levels. Finally, we demonstrate that the inclusion of the
sentence fusion system allows for significantly more simple out-
put.
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Chapter 1

Introduction

In this thesis, I introduce a system for crowdsourcing text simplification. Up to today, research

on text simplification has largely focused on automated systems, such as systems employing

phrase-based machine translation [Coster and Kauchak, 2011], neural network machine trans-

lation models [Nisioi et al., 2017] and even deep reinforcement learning [Zhang and Lapata,

2017].

However, there has been a dearth of research into how human text simplification might be

optimized. As automatic text simplification systems have yet to be widely adopted, and most

simplification is still conducted exclusively by humans, this represents a significant gap in the

literature. Indeed, as quality of output is very important in text simplification, due to the poor

reading skills of much of the target audience, human-based manual text simplification will likely

remain important [Siddharthan, 2014].

Therefore, we adopt a research direction which has previously been thoroughly explored

in machine translation, crowdsourcing. Research has shown that users of Amazon Mechanical

Turk are able to create high-quality translations from other languages into English [Callison-

Burch, 2009; Zaidan and Callison-Burch, 2011]. However, only limited work has been conducted

on directly crowdsourcing text simplification. Both Amancio and Specia [2014] and Lasecki et al.

[2015] conducted analysis of simplifications gathered with amateur workers on Amazon Me-

chanical Turk, but neither constructed a complete pipeline for conducting text simplification

automatically.

We do so. Moreover, we also introduce a sentence fusion system, modeled on the work of Fil-

ippova [2010], which we use to augment the simplifications produced by our amateur workers.

We then employ a number of features, including a neural language model, to train an SVM-based
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Original The infrared data, for example, revealed that interstellar space is
filled with diffuse polycyclic aromatic hydrocarbon gas.

Simplification Infrared data revealed that space is filled with hydrocarbon gasses.
Simplification Interstellar space is filled with diffuse polycyclic aromatic hydro-

carbon gas.
Simplification The heat sensor information showed that space has lots of stinky

gas.
Simplification The infrared data revealed interstellar space his filled with diffuse

polycyclic aromatic hydrocarbon gas.
Fusion Infrared data revealed interstellar space has lots of stinky gas.

Table 1.1: An example of crowdsourced simplifications, along with a fusion sentence produced
by our system. Our reranked selected the fusion sentence. Note that the fusion sentence is
qualitatively different from the human input sentences; this relationship will be examined in
depth in later chapters.

ranker [Herbrich et al., 1999; Pedregosa et al., 2012] to select among our candidate simplifica-

tions. Using this ranker, we demonstrate that we are able to convincingly beat our benchmark

of professional simplifications, Newsela [Xu et al., 2015]. We also show that our sentence fusion

system very significantly increases the ability of our system to produce simple output, at no sig-

nificant cost in meaning preservation. An example of output from our sentence fusion system,

along with crowdsourced simplifications, can be seen in Table 1.1.

Our approach has several key advantages. Firstly, it is flexible, enabling the desired attributes

of the created simplifications to be chosen. The user of the system can specify the desired bal-

ance between simplification and meaning preservation, which will then be respected by the sys-

tem. As in the crowdsourced translation system created by Zaidan and Callison-Burch [2011],

the user can choose to rely on crowdsourced human evaluations to select simplifications, which

will result in a massive improvement in quality. Use of our ranker is still required if sentence

fusion system sentences are to be included, although the ranker can serve as an intermediate

stage with human annotators having the final word; we show that this hybrid system produces a

significant improvement over only employing human simplifications.

As the sentence fusion component of our system is perhaps its largest innovation over the

previous crowdsourcing research by Zaidan and Callison-Burch [2011], we begin with an overview

of the history of sentence fusion methods and introduce the key techniques currently in use.
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Chapter 2

Sentence Fusion

Sentence fusion is, at its most general, the act of taking a number of different sentences and

creating a single sentences which combines their meaning. However, this definition is extremely

broad, and without further information sentence fusion is not a well-defined task [Daume III

and Marcu, 2004]. Unfortunately, human reviewers widely disagree about what information is

important (and should thus be included in a fused sentence) and what information should be

excluded. As a result, it is difficult to construct any human-driven, generic metric of sentence

fusion quality [Daume III and Marcu, 2004].

This fundamental fact challenges or influences all other work in the field, but it does not

mean that all work in sentence fusion is pointless. As Krahmer et al. [2008] find, generic sentence

fusion is an ill-defined task precisely because it is generic. More directed sentence fusion tasks,

such as query-driven sentence fusion, can yield better results [Krahmer et al., 2008]. There is

equal reason to believe the same to be true in domains such as machine translation, where clear

goals (i.e., ground-truth translations) are the norm.

Thus, despite the ambiguity at the heart of its existence, sentence fusion has seen a great

deal of research over the past two decades. Numerous methods have been developed, varying

from linguistics-based approaches which heavily emphasize grammatical structure to the use

of modified machine translation systems. As would be expected from the insights of Krahmer

et al. [2008], different contexts of sentence fusion are to some extent different tasks, and tend

to inspire different approaches. Nonetheless, there are clear themes which recur across many

domains, particularly the structuring of sentence fusion as a graph problem in which creating

a fusion sentence requires finding a path through the graph, or finding a subgraph. Later on,

we will also see that the use of machine translation systems themselves forms a common thread
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Domain
Approach

Graph-Based Grammatical Translation Other

Summarization [Filippova, 2010]

[Filippova and Strube,
2008] [Barzilay and McK-
eown, 2005] [Cheung
and Penn, 2014]

[Rush et al., 2015]
[Chopra et al., 2016]
[Nallapati et al., 2016]

Translation
[Bangalore et al., 2001]
[Rosti et al., 2007b] [Sim
et al., 2007]

[Zhou et al., 2017] [Firat
et al., 2016a,b] [Zoph and
Knight, 2016]

[Frederking and Niren-
burg, 1994] [Ma and
McKeown, 2015]

Table 2.1: The sentence fusion methods under consideration in this survey, divided by overall
approach and domain. Graph-based and grammatical approaches to summarization are de-
scribed in section 2.1.1, while the use of graph-based approaches to sentence fusion for machine
translation is discussed in section 2.2.2. We discuss the usage of machine translation systems
themselves for sentence fusion on machine translation-related tasks in section 2.2.3, and the
use of machine translation-based sentence fusion for text summarization in section 2.3.

in much research, even when the tasks under consideration are not linked to translation. We

will break down our examination of sentence fusion by both domain (what sentences are we

fusing, and why?) and approach (how are we fusing them?). We will begin by examining some

of the traditional methods for sentence fusion in text summarization, before continuing to con-

sider the role of sentence fusion in machine translation. Finally, we will conclude with a return

to text summarization, examining how developments from machine translation have impacted

sentence fusion techniques for summarization.

2.1 Summarization

Text summarization, and the closely-related task of text compression, are perhaps the most ob-

vious application of sentence fusion. In text summarization or compression, a large quantity

of text (from one or more sources) is reduced to only a few sentences. For example, consider

the case of Google News. Google News covers thousands of stories each day, and collects tens

to hundreds of articles on each. To unify these articles, Google would like to be able to create a

single description of each underlying news story (e.g., “John Edwards drops out of Democratic

primary after extramarital affair revealed"), which could then be shown to users. In fact, this pre-

cise example motivates a noteworthy paper in sentence fusion conducted by a research scientist

at Google, Filippova [2010].

A common approach to this task, which negates the need for sentence fusion, would be to

directly extract text from the input we are given; in this case, it might take the form of choos-
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ing one or more sentences from the collected news articles. Some reasonable methods could

be used to do so; for example, one could attempt to group sentences by semantic similarity and

choose the most representative sentence. In general, this set of solutions is often called extrac-

tive text summarization. However, this approach has historically tended to result in sentences

which require substantial modification, as their meanings may not be appropriate outside of

their original contexts [Gupta and Lehal, 2010].

An alternative to this, however, would be to attempt to create a new sentence that is better

adapted to the summarization task than any of the individual input sentences. This falls un-

der a different school of text summarization, abstractive text summarization, and faces different

challenges; now, the core issue lies in finding ways to represent natural language to allow the

creation of novel sentences [Gupta and Lehal, 2010].

2.1.1 Graph-Based and Grammatical Methods for Summarization

One approach to sentence fusion for text summarization or compression, which became popu-

lar largely in the early 2000s, is the use of sentence graphs. In effect, a group of input sentences

can be represented as a single graph, where nodes are words and edges are relations between

words in the input text. Various methods can then be used to determine the best candidate

fusion sentence from the graph.

In the simplest forms of this approach, such as in the work of Filippova [2010], edges are

simply adjacency, such that there is an edge from one word to another if the second word fol-

lows the first directly in at least one sentence. With a graph in this format, edge weights can be

chosen such that the lightest path from a sentence start token to the end token is likely to be

a good fusion, based largely on word transition frequency. An example fusion graph is shown

in Figure 2.1. This approach was originally drawn from a similar but related task, paraphrase

generation, where Barzilay and Lee [2003] introduced a very similar model. Although Filippova

[2010] does not report results on any common test benchmark, human raters confirm that the

output produced is generally grammatical and of good quality.

This approach can also be conducted with dependency trees, as pioneered by Barzilay and

McKeown [2005]. In this implementation, a dependency tree (a graph where nodes are words

and edges indicate that one word is linguistically dependent on another) are computed for each

input sentence, and then the dependency trees of the input sentences are aligned. This allows

the creation of a fusion dependency tree, which can be converted to a fused sentence. This

5



Figure 2.1: An example sentence graph reproduced from [Filippova, 2010]. The input sentences
we wish to fuse have been transformed into a graph, where words are nodes and edges between
words represent the flow of words in the input sentences. A fusion sentence can be created by
finding a path between special start (S) and end (E) nodes. The nodes in blue demonstrate a
possible fusion, “Hillary Clinton visited China last Monday.”

technique was notably extended by Filippova and Strube [2008], who build off of the work of

Barzilay and McKeown [2005] by adding an integer linear program model to create sentences

from the combined dependency graph, after finding that the original methods were inadequate

for German.

This approach was even further extended by Cheung and Penn [2014], who re-frame sen-

tence fusion as “sentence enhancement". In effect, this is simply a change of focus; they are still

using dependency-tree-based methods very similar to those of Filippova and Strube [2008], but

they seek to use a richer set of semantic information to yield better results. They also demon-

strate very good results in the news domain, showing improvement largely in the grammatical

quality of their output.

2.2 Sentence Fusion in Machine Translation

Sentence fusion has repeatedly emerged as a theme in the field of machine translation, in sev-

eral different contexts. First, sentence fusion was envisioned as a means of augmenting machine

translation systems, by enabling their outputs to be combined; this spurred the development of

6



a number of sentence fusion schemes and showed good results in translation, but most of these

sentence fusion models were broadly similar to those already in use elsewhere. Later, however,

it became apparent that it would be desirable to have machine translation systems themselves

be able to conduct sentence fusion, in order to incorporate multiple input sentences simultane-

ously, leading to substantial innovations worth considering. Before we begin, however, it will be

useful to establish some terminology for discussing machine translation.

2.2.1 Types of Machine Translation

It is important to distinguish between two different types of machine translation systems: sta-

tistical, or phrase-based, machine translation systems (SMT), and neural machine translation

(NMT) systems. Statistical machine translation systems operate by creating explicit, probabilis-

tic mappings between words or phrases in two languages, and using this mapping to determine

the most likely sentence in a target language corresponding to a sentence in a source language.

These mappings, often called phrase tables, are easily examinable by the operator of the system,

and thus make the system relatively transparent. Statistical machine translation systems have

been in use for decades, and by the 2000s were well-established and reasonably standardized

[Koehn et al., 2007].

Neural machine translation, on the other hand, is a much more recent approach, based on

the use of large neural networks with relatively sophisticated architectures. Neural machine

translation become particularly popular after Bahdanau et al. [2014] demonstrated revolution-

ary performance improvements, and has since become the de facto standard for machine trans-

lation, being quickly adopted by Google Translate [Wu et al., 2016]. Although neural machine

translation systems are still fundamentally statistical in nature, their operations are harder to in-

spect for outside users; neural machine translation systems frequently possess tens to hundreds

of millions of parameters, most of which are not directly identifiable with words in either the

source language or the target language.

The precise details of the workings of neural machine translation systems are beyond the

scope of this work, but a basic understanding will prove useful for later discussions of NMT. The

neural machine translation system introduced by Bahdanau et al. [2014] consists of three key

components, an encoder, which translates the input into a high-dimensional numerical repre-

sentation, a decoder, which produces text in the target language given an input high-dimensional

numerical representation, and an attention mechanism, which is novel in Bahdanau et al. [2014]

7
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Translation 2

Translation 1
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Sentence Fusion Final Translation

...
...

Figure 2.2: A generalized diagram of how system output combination functions. n different
machine translation systems are applied to an input sentence in parallel, and their outputs are
then combined into a single output sentence using a sentence fusion system. The methods
considered differ only in terms of how the sentence fusion step itself is conducted[Rosti et al.,
2007b; Sim et al., 2007; Zhou et al., 2017; Ma and McKeown, 2015].

and enables the decoder to examine only those parts of the encoder’s output which are relevant

to the part of the sentence it is currently translating. This basic structure will persist in all of our

discussions of NMT, but some of the papers under consideration introduce variations.

2.2.2 System Combination for Machine Translation

Sentence fusion has also been considered from the standpoint of combining the outputs of mul-

tiple machine translation systems. This is a natural consequence of the fact that it is fairly easy

to create multiple machine translation systems with different strengths and weaknesses, and

that combining their outputs (in an intelligent way) could allow for a composite system stronger

than any of its individual components. This approach was initially inspired by strong results

from composite systems in speech recognition, and research into it began even in the early days

of machine translation. A foundation was laid by Frederking and Nirenburg [1994], who take the

approach of merging monotonically aligned translations. They are able to improve their results

by employing estimates for the quality of each component of each sentence, which are generally

produced automatically by statistical machine translation tools. This initial approach showed

some promise, but it was heavily limited by the fact that the output of different machine trans-

lation systems systems frequently cannot be monotonically aligned.
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To circumvent this problem, many researchers found ways to avoid explicitly fusing sen-

tences entirely. For example, Rosti et al. [2007a] find that they are able to directly create a com-

posite machine translation system from many individual systems without actually merging out-

put sentences. This approach, however, is dependent on the use of statistical machine transla-

tion systems, as it directly modifies their phrase tables, and cannot straightforwardly be adapted

to neural machine translation.

Thus, a more general solution is needed, one which can also accommodate neural machine

translation systems – and this comes at the cost of returning to sentence fusion as a task. After all,

if translation systems are treated as black boxes, then their outputs must be combined after it has

been produced, which requires sentence fusion. Development of such general methods began

early, with the work of Bangalore et al. [2001]. Bangalore et al. [2001] used simple graph-based

methods reminiscent of those used by Filippova [2010], where output sentences from machine

translation systems (referred to as “hypotheses”) are combined into a directed acyclic graph of

words. As in Filippova [2010], the task of creating an output sentence can then be reduced to

finding the best path through the graph. Bangalore et al. [2001] consider various metrics for

doing so, such as simply choosing the most common path, or employing a language model to

rank paths by the fluency of their resulting sentences. Although the approach of Bangalore et al.

[2001] is much narrower than that of Fillipova, it still demonstrated an ability to produce output

superior to that of the best translation system it was based on.

The graph-based approach of Bangalore et al. [2001], which has come to be known as “con-

sensus networks”, has proved a fertile ground for further research. For example, both Rosti et al.

[2007b] and Sim et al. [2007] develop methods to determine the best possible path through a

consensus networks, and show improved performance on the machine translation metric BLEU

on translation benchmarking datasets. Rosti et al. [2007b] includes improved statistical meth-

ods for path choice as does Sim et al. [2007]. Interestingly, however, Sim et al. [2007] also test a

method in which they refuse to conduct any word-level sentence fusion at all; instead, they rank

the hypotheses by their similarity to what would have been the chosen path, and choose the

most similar hypothesis. This effectively chooses the median hypothesis, and has the advantage

of not breaking up phrases, and was found to produce the best results of all tested methods on

a machine translation benchmark. In effect, we can think of this as a reprise of extractive text

summarization methods (as no new sentence is created), but applied in machine translation

and using a sentence fusion system as an extraction tool.

Other, non-graph-based methods have also been considered. For example, Ma and McKe-
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Figure 2.3: An example consensus network, reproduced from Rosti et al. [2007b]. Three possible
translations are equally likely, “cat sat on the mat”, “cat on the mat” and “cat sitting on the mat”.
The consensus networks generated by Sim et al. [2007] and Bangalore et al. [2001] are visually
very similar.

own [2015] augment graph-based methods similar to those of Bangalore et al. [2001] by intro-

ducing a paraphrase-based model, extracting paraphrase likelihoods from aligned monolingual

(i.e., target language) data. This paraphrase model is used in parallel with the more traditional

graph-based method to generate a set of candidate output sentences, from which a consen-

sus sentence is chosen based on its (weighted) similarity to other sentences. Individually, the

paraphrase-based method is only at best comparable to previous methods, but it produces a

substantial boost on Chinese-English and Arabic-English benchmarks when used in combina-

tion with graph-based approaches.

Even more radical departures from the graph-based approaches of the past exist, however.

Neural machine translation systems themselves have been considered as a tool for system out-

put combination. Zhou et al. [2017] modified the classic neural machine translation architecture

to permit the simultaneous use of multiple inputs, by creating a unique encoder and attention

mechanism for each input, and then adding an additional attention mechanism which deter-

mines which of the inputs the decoder will use. When used for machine translation system

combination, this showed strong improvements in translation quality provided that the systems

used as input are not too correlated, which is likely to occur in the case of combining outputs

from statistical and neural machine translation systems. This is, however, not a general neu-

ral sentence fusion system, as it is dependent on learning the relative strengths of each system

(Zhou et al. [2017] in fact cite this as a strength), and does not automatically generalize out to an

arbitrary (and varying) number of input sentences.
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Figure 2.4: A neural sentence fusion model, as introduced by Zhou et al. [2017]. Here, n different
systems (not shown) are translating a single source sentence. Their outputs are then given to
the neural sentence fusion model, which reads in each as though it attempting to translate from
each of them simultaneously. This would occupy the slot of sentence fusion model in Figure 2.2

2.2.3 Sentence Fusion During Translation

In the previous examples, sentence fusion was a step conducted after machine translation sys-

tems had already acted. However, there are also situations where it would be desirable to create

machine translation systems themselves capable of directly conducting sentence fusion. For

example, consider the case of exploiting data from multiple languages; if multiple source sen-

tences are known (for example, in a case where parallel French and English versions of a doc-

ument exist, and the target language is German), then they may help to disambiguate each

other. In practice, however, cross-linguistic versions are rarely perfectly-literal translations of

each other, making this is a sentence fusion task, as decisions must be made about what content

is kept and what content is dropped.

Of course, it is possible to exploit data from multiple languages without explicitly conduct-

ing sentence fusion, but such methods are limited. Some progress can be made by exploiting the

transparency of statistical machine translation, as by Cohn and Lapata [2007], but this is not ob-

viously relevant in an era when neural machine translation dominates. Alternative methods for

leveraging cross-linguistic data with neural machine translation without conducting sentence

fusion are largely based on creating systems capable of translating between different languages
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pairs, considered one at a time, as by Google in Johnson et al. [2016]. Although this approach has

yielded substantial benefits, it is still limited, as it would be desirable to simultaneously employ

multiple source sentences in different languages when they are available 1.

Fortunately, methods for doing so have been created by multiple research groups. A sys-

tem fully capable of conducting translation using source sentences in different languages was

introduced by Zoph and Knight [2016], while Firat et al. [2016a,b] introduced a system capa-

ble of translating between many different language pairs, and then extended it to enable the

simultaneous use of multiple source sentences. Both systems are roughly comparable; the core

difference between them lies in how they merge information from the multiple input sentences.

In brief, Zoph and Knight [2016] introduce a novel combination unit which serves to merge the

outputs from different encoders, while Firat et al. [2016b] consider either explicitly averaging in-

formation at either the input to the decoder, or training two separate models and averaging their

predictions at a word-by-word level. Both systems show promise in improving results when par-

allel source text is available.

2.3 Translation and Summarization Together

The potential of neural machine translation systems for sentence fusion has led researchers to

consider their use in text summarization. This is helped by the fact that summarization can,

with relatively little difficulty, be rephrased as a machine translation problem; given a set of

input sentences, likely in sequence, produce (“translate” to) an output sentence or sentences

which capture its meaning. Initial work on applying neural machine translation to abstractive

text summarization was carried out by Rush et al. [2015], who apply modified forms of neural

machine translation systems to text simplification. Interestingly, however, they choose not to

use the standard formulation of neural machine translation system laid out by Bahdanau et al.

[2014]. Instead, they replace the encoder defined by Sutskever et al. [2014], considering several

candidate encoding systems rooted in more traditional natural language processing approaches,

such as “bag of words"-based encoding, in which only the identities of the words present are

considered and word order is ignored. They also use a non-standard type of decoder, although

they apply an attention model very similar to that of Bahdanau et al. [2014].

1It is not difficult to see how this might be useful even in the context of Google Translate; for example, I am fluent
in English and French, and often use Google Translate to query sentences in Chinese. I would not mind the extra
effort of formulating my query in both English and French, if it resulted in an improved translation.
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Furthermore, using neural networks creates a new challenge: neural networks generally re-

quire exceptionally large amounts of data to train their hundreds of thousands or millions of

parameters, while graph-based approaches do not, as there are often nearly parameter-free. To

solve this, Rush et al. [2015] create a large training corpus from publicly available news articles,

using the first sentence of each article as the target summary and the rest of the article as in-

put. With this done, however, they find that their performance is substantially better than that

of the previous best non-neural systems on traditional benchmark text summarization datasets.

For comparison, they also test more traditional statistical machine translation systems, and find

that the neural model is significantly superior.

After the work of Rush et al. [2015], the obvious next step was to directly employ the standard

neural machine translation framework, as even Rush et al allude to. It did not take long for

work on this topic to appear, with Chopra et al. [2016] directly employing a standard neural

machine translation system on the dataset used by Rush et al. [2015] and producing superior

output. This was further extended by Nallapati et al. [2016], who augment their encoder by

providing information about part-of-speech (i.e., noun, verb, adjective, etc) and relative word

frequency, in addition to the word itself. This serves, in their phrasing, to guide the production

of a fusion summarization sentence by helping identify key words, which are likely to be nouns

that occur much more often in the input text than in ordinary English. Finally, they also include

a mechanism for gracefully handling rare words which are not known to the system, exploiting

the attention mechanism to allow the system to directly copy unknown words to the output.

With these modifications in hand, they again report substantial improvements over Rush et al.

[2015] and Chopra et al. [2016] on the same datasets.

It is important to note, however, that the abstractive text summarization methods shown

here are not truly general-purpose sentence-fusion systems. They are formulated to assume

that their input is a single stream of text, flowing logically as in a single article, while in truly gen-

eral sentence fusion multiple parallel texts should be available as input. In some other respects,

however, they show remarkable potential to surpass even traditional sentence fusion systems; in

particular, the work of Nallapati et al. [2016] allows for the production of multiple-sentence out-

puts. If this trend continues, it could eventually allow sentence fusion to broaden into paragraph

or even document fusion, creating entirely new applications.
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2.4 Summary

Sentence fusion methods have evolved greatly over the past decade, repeatedly re-emerging

to confront new challenges as the need for sentence fusion appears in different domains. Al-

though graph-based approaches have historically been dominant, especially in areas related to

text summarization, developments in neural machine translation have recently provided a new

avenue forward, creating entirely new systems bearing little resemblance to previous methods.

Indeed, given the numerous successes of neural models in performing sentence fusion in var-

ious specific contexts, such as the work of Zoph and Knight [2016] for multi-source translation

and Nallapati et al. [2016] for abstractive text summarization, it might be tempting to say that a

truly general neural sentence fusion system is just around the corner. Nevertheless, the message

of Daume III and Marcu [2004] should not be forgotten — generic sentence fusion is, in fact, not

a well-defined task, and any neural model ultimately created will have to exist in the context of

a smaller, better-defined subtask of sentence fusion.
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Chapter 3

Methods

Having introduced sentence fusion, we will now discuss our approach to crowdsourcing text

simplification with sentence fusion. We will begin with an overview of the domain, including

our data and evaluation metrics, before proceeding to discuss how we gathered crowdsourced

human simplifications. We will then introduce our sentence fusion system, which is modeled

on that of Filippova [2010], and discuss how we choose between

3.1 Data

We used data from the Newsela dataset Xu et al. [2015] as our source data. This dataset consists

of a corpus of 56,037 sentences from news articles, along with their corresponding simplifica-

tions. Each article was hand-simplified by experts to one of four different levels (referred to

as V1, V2, V3 and V4, in order of increasing simplicity). Each original sentence in the corpus

is aligned with one or more of these simplified sentences, and alignments between simplified

sentences at different levels of simplification are also provided.

To conduct our initial training, we used a set of 119 original sentences, drawn randomly. For

our testing set, we chose 200 other random sentences, separately from the training set, subject

to the restriction that each was aligned with a sentence of each level of simplicity in the Newsela

corpus. Furthermore, in the case that any chosen original sentence was aligned to multiple

simplified sentences at a given simplification level (representing a case of sentence-splitting),

these sentences were appended together, creating a single multi-sentence simplification.

15



Figure 3.1: An example prompt used to solicit judgments of adequacy. The simplicity prompt
was similar.

3.2 Evaluation

We assessed each simplification using human evaluation, across two different metrics, simplic-

ity and adequacy, both of which are standard metrics for human evaluation for text simplifica-

tion [Xu et al., 2016]. Simplicity is defined as the change in simplicity between a simplification

and its corresponding original sentence, and was solicited using the prompt “How much sim-

pler is sentence 2 than sentence 1”. Simplicity was assessed on a five-point scale ranging from

−2 (much less simple) to 2 (much simpler).

Adequacy is defined as the degree to which a simplification preserves the meaning of its cor-

responding original sentence, and was solicited using the Likert-scale prompt “Sentence 2 pre-

serves the meaning of sentence 1”. It was assessed on a five-point scale ranging from 1 (strongly

disagree) to 5 (strongly agree). An example prompt for adequacy is visible in Fig. 3.1

For each metric and for each sentence, we collected annotations from three separate human

annotators on Amazon Mechanical Turk. These annotations were then averaged together.
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Figure 3.2: An example prompt used to gather human text simplifications from workers on Ama-
zon Mechanical Turk.

3.3 Human Simplification

The core of our approach is composed of gathering a number of sentences from inexpert re-

viewers, via Amazon Mechanical Turk (an example prompt can be seen in Fig 3.2). We had four

humans simplify each sentence in our testing and training sets, yielding a total of 319 ·4 = 1276

human simplifications gathered. Users were required to be in the United States (to ensure En-

glish proficiency), and to have a historical 97% task acceptance rate and at least one previously

accepted task, to prevent bots or otherwise undesirable workers from attempting our task. How-

ever, no requirements were placed on education level, English proficiency or previous simplifi-

cation experience. This was done intentionally; our goal was to demonstrate that true amateurs

can perform simplification excellently.
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3.4 Sentence Fusion

To perform sentence fusion, we used a graph-based sentence fusion system derived from the

work of Filippova [2010], which was briefly introduced in Section 2.1.1. We will now describe

this sentence fusion system in more detail, before proceeding to introduce our modifications to

the model.

The sentence fusion system designed by Filippova [2010] is based on the creation of word

graphs, in which sentence fusion is performed by finding paths. In Fig. 3.3, we can see an ex-

ample of such a graph, created from the sentences The words highlighted in blue represent the

shortest path through the graph, which would create the sentence “Hillary Clinton visited China

last Monday”. This graph was created from the following sentences:

• The wife of a former U.S. president Bill Clinton Hillary Clinton visited China last Monday.

• Hillary Clinton wanted to visit China last month but postponed her plans till Monday last

week.

• Hillary Clinton paid a visit to the People’s Republic of China on Monday.

• Last week the Secretary of State Ms. Clinton visited Chinese officials.

This graph would lead to the immediate creation of the fusion sentence “Hillary Clinton visited

China last Monday,” which is an example of a simplifying sentence we would seek to be able to

create.

In this section, we will walk through the creation of these graphs, and then introduce the

mechanisms used to find paths in the graphs. First, we will discuss the graphs themselves. A

sentence fusion graph (henceforth referred to simply as a graph) is directed graph, consisting

of a tuple of nodes and edges (V ,E) produced from a set of input strings W = {w1, w2, . . . , wn}.

Each entry in V represents either a word or punctuation, or a special token, one of “START” (a

unique node marking the start of a path) or “STOP” (a unique node marking the end of a path).

Each element in V representing a word corresponds to at least one word in some input string

wi , and possibly many. For any two nodes vn and vm which represent words or punctuation,

an edge from vn to vm will exist in E if and only if, in some input string wi , we have that vn

corresponds to a word immediately before a word corresponded to by vm . Thus, edges can be

thought of as word adjacencies. There will also be edges from the special “START” token to the
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Figure 3.3: An example graph created by the original sentence fusion system of Filippova [2010],
drawn from their paper.
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nodes representing the first word of each input string, and edges from the nodes corresponding

to the last word of each input string to the “STOP” token. In general, we chose to implement

these graphs using the Python graph library NetworkX [Hagberg et al., 2008].

Stopwords

Following the precedent set by Filippova [2010], we chose to treat stopwords (extremely common

words such as “the”, “and” or “at”) differently from other words. Words flagged as stopwords

were treated differently both in feature generation (see Section 3.5.1) and in graph creation (see

below). To identify stopwords, we used the list of stopwords included in NLTK [Loper and Bird,

2002], augmented with all punctuation.

String Preprocessing

Each word was annotated with its part of speech, and words were represented as (string, POS)

tuples. This serves to avoid errors such as “uniform” as a noun and “uniform” as an adjective be-

ing taken to be the same word; it would be desirable, in such cases, for our system to treat these

words as separate. To conduct part-of-speech tagging, we used the utility function included with

NLTK [Loper and Bird, 2002]. We also segmented input strings into sentences using the punkt

tokenizer included with NLTK; this tokenizer is pre-trained on an English corpus, so it could be

directly used. We inserted an “EOS” token between separate sentences in each string. This was

useful both for handling capitalization, and for interfacing with our neural language model (see

Section 3.5.1), which expected such tags to be present.

3.4.1 Graph Creation

Having introduced the basic structure of a graph, we will now discuss how graphs are created.

Graph creation is an iterative process, with input strings from W added to the graph one at a

time. In our work, the first string added to the graph always represents the original sentence,

as this is necessary for our alignment methods (see Section 3.4.1). Each word from this first

string will be mapped to a new node in the graph, and edges will be created between all nodes

representing adjacent words. We will also insert nodes representing our “START” token and

“END” token and create an edge from the “START” token to the node representing the first word

of the initial string, and an edge from the node representing the final word of the string to the

“END” token.
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Next, the remaining strings to be merged are added. When a new string is added, the sen-

tence is processed iteratively, one word at a time. For each word, if there are no possibly-corresponding

nodes (i.e., this word was not in any of the preceding strings), we create a new node. Other-

wise, all non-stopwords which correspond to nodes already in the graph will be matched with

these nodes. In cases where multiple nodes exist in the graph, all of which could correspond

to a given non-stopword, we choose the node whose neighborhood overlaps the most with the

words around the current word in the string under consideration. For stopwords, we will create

a new node unless one of the corresponding nodes in the graph shares context (i.e., a preceding

or succeeding word) with the current stopword. Next, we create an edge from the previous node

(if this is not the first word) or the “START” token (if the was the first word) to the chosen node.

If this was the last word in the string, we will additionally create an edge from this word to the

final “STOP” token. This process is then repeated for each string.

Alignment Variant

Empirically, we observed that many nonsensical synthetic sentences were being created from

the system described above, sometimes to such a degree that it was difficult to extract reasonable

synthetic sentences. To resolve this, we introduced an additional alignment step, which served

to reduce the total number of paths through the graph. We used the Berkeley aligner [Liang et al.,

2006] to create word alignments between our human simplifications and the original sentence.

These alignments are used when adding a sentence to a graph; we merge a non-stopword with

an existing node if and only if our alignment indicates that the word was aligned with its coun-

terpart in the original sentence. This has the effect of reducing the number of paths through the

graph, and we found it to have a substantial qualitative improvement.

3.4.2 Path Creation

Once a graph was created, we create sentences from it by finding paths from the “START” token

node to the “END” token node. Although in principle it would be possible to find all such paths

(so long as no cycle exists in the graph), this would impose an unreasonable computational

cost, as some reranking features (see below), particularly our neural language model (see Section

3.5.1), are quite computationally costly. As a result, we chose to generate only a limited number

of paths from each graph, imposing a cap of 1000. However, this introduces the risk that the first

1000 paths generated will all be of low quality, while a potentially high-quality path might be
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missed as it lies after our threshold.

To address this, we attempt to eliminate as many low-quality sentences as possible prior to

reranking, while finding paths from the graph in an order that corresponds to their quality. We

began by, heuristically, finding paths in the order of shortest-to-longest, again using NetworkX.

This has the advantage of ignoring fusion paths that simply consist of combining multiple sen-

tences, which might otherwise compose a large fraction of our output. We augmented this by

introducing the edge-weighting scheme described by Filippova [2010]. In this system, a weight

is associated with each edge in the graph; these weights are used in finding shortest paths. For

an edge ei , j , Filippova [2010] defined the weight w(ei , j ) as:

w(ei , j ) = f r eq(i )+ f r eq( j )∑
s

1
di f f (s,i , j )

,

where f r eq(w) is the number of times that word occurred in all of the strings used to create

the graph,
∑

s is a sum over the strings used to create the graph, and where di f f (s, i , j ) is defined

as

di f f (s, i , j ) =
pos(s, i )−pos(s, j ) pos(s, i ) > pos(s, j )

0 Otherwise

where pos(s, i ) is defined as the index of word i in string s.

This shortest-paths system, following the heuristics of Filippova [2010], has the advantage of

encouraging a shortest-paths search to find reasonable paths through the graph that respect the

original meanings of the sentences involved.

In addition to this, we also performed filtering, to further eliminate extraneous sentence fu-

sion candidates prior to including them in our reranking system (see below). To do this filtering,

we limited ourselves to considering two attributes, the compression ratio (excluding stopwords)

between the original sentence and each sentence fusion candidate, and the Siamese LSTM sim-

ilarity measure between a sentence fusion output sentence and the original sentences. To cal-

ibrate our length difference, we examined the distribution of compression rations among hu-

man simplifications in our training set, and found a mean of 0.897, with a standard deviation of

0.226. We chose to use a filtering window of one standard deviation, resulting in all sentence fu-

sion candidates with non-stopword compression ratios outside of the interval (0.671,1.12) being

rejecting.
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Meanwhile, to filter using Siamese LSTM similarity, we chose to use a dynamic threshold

based on the similarities of the human simplifications in use. For each graph, we used the mean

Siamese LSTM similarity between the human simplifications used to create a graph and the orig-

inal sentence as a threshold, meaning that only system fusion sentences more similar than this

threshold were included in our reranking. This, again, had the advantage of removing sentence

fusion candidates that deviated too much from the original sentence prior to inclusion in our

reranking.

3.5 Ranking

The sentence fusion system laid out in section 3.4 is capable of generating an extremely large

number of hypothesis sentences of widely varying quality. Moreover, the multiple sentences

produced by annotators (as described in section 3.3) are also of varying quality. As the goal of

our system is to recommend a single output sentence for each original human input sentence,

we thus create a method for selecting the “best” possible output sentence from those available,

for some criterion.

To do this, we employ a reranking algorithm based on linear-kernel support vector machines

[Herbrich et al., 1999; Lee and Lin, 2014], trained to rank sentences to maximize some combina-

tion of adequacy and simplicity (see section 3.2). This system transforms ranking into a pairwise

classification problem, which is tractable for a traditional support vector machine; we employ

an implementation provided by Pedregosa et al. [2012].

3.5.1 Language Model

As our first feature, we employed a neural language model. We used the language model archi-

tecture from Kim et al. [2016], trained on the billion-word language model corpus developed by

Chelba et al. [2013]. This neural language model was trained for three days using a GTX 1070

GPU, following the methods of Kim et al. [2016]. We used three hidden LSTM layers and three

highway layers, with a vocabulary of 60,000 words, and attained a perplexity of 35 on the pro-

vided testing data. We worked in Keras [Chollet et al., 2015] and modified a publicly-available

implementation1 for use with datasets too large to fit into memory, such as the billion-word

corpus.

1https://github.com/jarfo/kchar
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To evaluate candidate sentences using the language model, we computed the negative loga-

rithmic probability of each sentence, denoted as

W = (w1, w2, . . . , wn),

measured as

N LL =−
n∑

i=1
l og p(wi |w1w2 . . . wn−1)

However, N LL is not an ideal measure of the fluency of a sentence, as it estimates the total

probability of a sentence, and thus inherently biases sentences toward brevity. A more appropri-

ate measure might be the perplexity of each sentence, defined as P = 2N LL/n , which is a measure

of the “average” probability of a sentence across its length. This formulation, however, was found

to reward sentences with more stopwords than necessary, and to cause numerical instability, as

it can have extremely large values. Empirically, we found better success employing the aver-

aged N LL formulation P ′ = N LL
/ n′, where n′ is the number of non-stopwords in sentence W (see

Section 3.4).

3.5.2 Siamese LSTM

To measure sentence similarity, we used a Siamese LSTM system [Mueller and Thyagarajan,

2016]. This consists of two LSTM recurrent neural networks [Hochreiter and Schmidhuber, 1997]

which process two sentences in parallel. These LSTMs have shared weights, allowing their hid-

den states to be compared after both sentences have been processed, directly yielding a measure

of the similarity of the two sentences. We trained our model following the methods of Mueller

and Thyagarajan [2016], on the same data that they employed. Note that as we used the Siamese

LSTM to filter output of our sentence fusion system, measures of its utility calculated across our

training set (as in Figs. 3.6 and 3.7, and Table 3.1) may understate its value.

3.5.3 Ngram Language Model

We also incorporated an ngram-based language model, employing the SRILM toolkit Stolcke

[2002]. We trained a 3-gram language model using Kneser-Ney smoothing [Kneser and Ney,

1995] on the billion-word language model corpus developed by Chelba et al. [2013]. We di-

rectly incorporated the probability estimates from the 3-gram language model as a feature in

our reranker, in the form of average logprob (defined as in Section 3.5.1) over all tokens in the
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Figure 3.4: These plots analyze the importance of the neural language model as a feature. Note
that a higher logprob indicates a less-likely sentence. Logprob has negative correlations with
both simplicity and adequacy, making it particularly useful. Correlations calculated on training
set.
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Figure 3.5: This plot shows the importance of the neural language model as a feature. Note
that a higher logprob indicates a less-likely sentence. Logprob has a very significant negative
correlation with score, making it particularly useful. Correlations calculated on training set.

Figure 3.6: These plots analyze the importance of the Siamese LSTM model as a feature. Note
that it has a strong positive correlation with simplicity while negatively correlating with ade-
quacy. Correlations calculated on training set.

26



Figure 3.7: This plot demonstrates the importance of the Siamese LSTM model as a feature. Note
that it has a only a limited correlation with score (defined as the geometric mean of adequacy
and simplicity), so its value is questionable, although we confirm in Table 3.1 that its inclusion
is apparently beneficial. Correlations calculated on training set.
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Figure 3.8: These plots analyze the importance of the ngram language model as a feature. The
assessments of the Ngram model only weakly correlate with simplicity and adequacy. Correla-
tions calculated on training set.

input sentence. Figs. 3.8 and 3.9 show that the ngram model is only a weak predictor of overall

simplification quality, although we find in Table 3.1 that its inclusion is still beneficial.

3.5.4 TFIDF Bag of Words

To measure similarity between a sentence and its original counterpart, we used a bag-of-words

similarity measure, weighted by TFIDF (term frequency-inverse document frequency). In the

bag-of-words model, each sentence is represented as a multiset of the words present in the sen-

tence, with all grammatical order discarded.

This model was weighted by TFIDF, which serves to increase the importance of uncommon

words [Sparck Jones, 1972]. TFIDF is calculated at a word-by-word level as the product of the

number of times a specific word occurs in a sentence (term frequency) and the inverse of the

number of times that term occurs in all sentences in a corpus (inverse document frequency).

We used Scikit-Learn to calculate TFIDF, which uses a slightly modified form of IDF:

IDF = l og (
nd

1+d f (t ,d)
)+1,
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Figure 3.9: This plot demonstrates the importance of the ngram language model as a feature.
Note that it has a only a limited correlation with score (defined as the geometric mean of ad-
equacy and simplicity), so its value is questionable, although we confirm in Table 3.1 that its
inclusion is apparently beneficial. Correlations calculated on training set.
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Figure 3.10: These plots analyze the importance of TFIDF as a metric. Note that it has a strong
positive correlation with simplicity while negatively correlating with adequacy. Correlations cal-
culated on training set.

where nd is the number of documents in question and d f (t ,d) is the number of documents con-

taining term t ; the addition of 1 serves to prevent divisions by zero. Scikit-learn also normalizes

the magnitude of each vector using the Euclidean norm [Pedregosa et al., 2011].

We calculated inverse document frequency based on the entire Newsela corpus [Xu et al.,

2015], treating every sentence in the corpus as an independent document for the purposes of

calculating IDF, and then applied it to produce a weighted bag-of-words multiset for each sen-

tence under consideration. This multiset was compared to the corresponding multiset for the

original sentence using the cosine distance metric, defined as

C (A,B) = 1−
∑n

i=1 Ai Bi√∑n
i=1 A2

i

√∑n
i=1 B 2

i

.

This was found to correlate strongly positively with simplicity and negatively with adequacy (see

Figs. 3.10 and 3.11), as might be expected, as a large distance indicates that many rare words

have been added or (more likely) removed.
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Figure 3.11: This plot demonstrates the importance of TFIDF as a metric. Note that it has a
strong positive correlation with overall score (defined as the geometric mean of adequacy and
simplicity), meaning that it is a useful feature in and of itself. Correlations calculated on training
set.
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Figure 3.12: These plots analyze the importance of the compression ratio as a metric. Note that
higher compression ratios indicate less length reduction. Compression ratio positively corre-
lates with simplicity and negatively correlates with adequacy. Correlations calculated on train-
ing set.

3.5.5 Compression Ratio

The difference in length between a hypothesis and its corresponding original sentence was used

as a feature. This feature, usually known as the compression ratio, was calculated as the ratio

of total number of tokens in the hypothesis sentence to total number of tokens in the input

sentence. In Figs. 3.12 and 3.13, we see that a lower compression ratio (indicating a greater

reduction in length) has a strong positive association with simplicity, and a strong negative as-

sociation with adequacy. All together, however, a low compression ratio is predictive of score,

indicating that shorter simplifications are usually better than long ones.

3.5.6 System Label

We also included a feature indicating whether a sentence was an original human simplification

or an output sentence from our sentence fusion system. In addition, each original sentence was

also presented to the ranker with a special feature marking its identity, allowing the ranker to

choose not to simplify a sentence in a case. This proved to be particularly valuable if adequacy
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Figure 3.13: This plot demonstrates the importance of the compression ratio as a metric. Note
that it has a strong positive correlation with overall score (defined as the geometric mean of ade-
quacy and simplicity), meaning that it is a useful feature in and of itself. Correlations calculated
on training set.
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System Accuracy Change
No sentence fusion data -0.011

No Neural LM -0.036
No Siamese -0.003

No ngram LM -0.012
No Compression Ratio -0.099

No TFIDF distance -0.006

Table 3.1: An ablation study demonstrating relative importance of our included features.

was prioritized. An analysis of how our ranker chose between human simplifications, sentence

fusion output and original unsimplified sentences is presented in Fig 4.3 in Chapter 4.

3.5.7 Feature Choice

We conducted an ablation study to assess the importance of our reranking features, calculated

for human simplifications only (Table 3.1). The baseline model had an accuracy of 0.703; note

that this is a pairwise ranking task, so random chance produces an accuracy of 50%. In no case

did excluding a feature improve accuracy, although not all features had a significant effect. A

ranker trained only on human simplifications (line 2) is worse than a ranker trained on a com-

bination of human simplifications and sentence fusion system output, so we use the ranker

trained on both for all cases unless otherwise indicated. The substantial importance of our

neural language model suggests that more advanced neural features might produce even bet-

ter results.

3.5.8 Iterative Training

Our ranker requires a dataset consisting of multiple alternative simplifications of sentences.

However, to our knowledge no such labeled training dataset exists. We were thus forced to cre-

ate our own, using our own training data. One alternative available would have been to use the

human simplifications available as a training set for the ranker. This, however, was undesirable,

as the human simplifications differed greatly from the early output from our sentence fusion

system. We thus discovered any ranker trained only with human simplifications would make

extremely poor decisions when confronted with our system output.

To circumvent this issue, we needed to score sentence fusion output sentences in order to in-

corporate them into our training set. However, resource constraints made it impossible to score
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all of the thousands of sentence fusion output sentences generated, even for a small number of

input sentences. Thus, we sought to choose a representative subset of system output sentences

to score. To do this, we employed a series of increasingly competent rankers to separate the sys-

tem output sentences into deciles based on perceived quality, and then scored a highest-ranked

example from each decile on Amazon Mechanical Turk (see Section 3.2). In this way, a dataset

was created in an iterative manner.

The initial ranker used was one based only on the neural language model feature (see Section

3.5.1). As there was only a single input feature and our ranker is a linear-kernel SVM, the only

information the ranker could learn was whether lower or higher language model probability was

desirable. We decided that sentences judged by the language model to be more probable were,

a priori, likely to be simpler, and set the ranker accordingly. We then generated deciles and had

them evaluated on Amazon Mechanical Turk.

This data was then used to train a second ranker, in which we incorporated the full set of

features used in our final model (see previous sections for details). This ranker was again used

to separate the output system into deciles, which were evaluated. These results were then used

to train a final ranker, for which the process was repeated. This ranker had approximately con-

verged in quality with the original ranker, so we halted training after evaluating its results.

35



Figure 3.14: A figure showing progress in training across iterations.
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Chapter 4

Results

We found that our system was convincingly able to beat our benchmark, Newsela, at every level

of simplification. Fig. 4.1 shows a demonstration of this, using a wide range of adequacy/simplicity

weightings. We find that our system outperforms each level of Newsela (V1, V2, V3 and V4) by a

significant margin on both adequacy and simplicity at at least one adequacy/simplicity weight-

ing point. Results for this are shown in Tables 4.1, 4.2 and 4.3.

We also examined the quality of our reranker. We first examined the difference between the

best and worst candidate human simplifications for each input sentence (Fig. 4.2) according

to our ranker, and found that there was a strong separation. This indicates that our ranker was

reasonably learning to distinguish high- and low-quality simplifications.

We also analyzed what fraction of chosen sentences were synthetic (i.e., from the sentence

fusion system), and what fraction were from amateur human simplifiers. Interestingly, this var-

ied heavily across different relative weightings of adequacy and simplicity, with higher priority

placed on simplicity leading to more synthetic sentences being chosen, up to a maximum of

System Simplicity Adequacy
Joint System 0.81 4.33
Newsela V1 0.61∗∗ 4.11∗∗∗

Newsela V2 0.65∗ 3.96∗∗∗

Table 4.1: This table shows a comparison of our system to Newsela V1 and V2, the least-
simplified two versions of the Newsela corpus, over our testing set. The version of the system
shown is that with an adequacy/simplicity weighting of 5

3 . * denotes p < 0.05, while ** denotes
p < 0.01 and *** denotes p < 0.001.
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Figure 4.1: A comparison of output from our system vs the benchmark Newsela sentences,
across a wide range of relative adequacy/simplicity weightings. Error bars are not included, for
visual clarity; significances of key comparisons are provided in Tables 4.1 and 4.3.
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Figure 4.2: An illustration of our ranker’s ability to differentiate between low- and high-quality
simplifications. Performed only for human simplifications, as the worst sentence fusion system
output would be too poor to be an interesting comparison.
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System Simplicity Adequacy
Joint System 1.06 4.08
Newsela V3 0.90∗∗ 3.83∗∗∗

Table 4.2: This table shows a comparison of our system, with and without sentence fusion sen-
tences, to Newsela V3, the second-most-simplified version of the Newsela corpus, over our test-
ing set. The version of the system shown is that where the adequacy/simplicity weighting is
1.5625. * denotes p < 0.05, while ** denotes p < 0.01 and *** denotes p < 0.001.

System Simplicity Adequacy
Joint System 1.26 3.88
Human-Only 1.19∗ 3.94
Newsela V4 1.06∗∗ 3.43∗∗

Table 4.3: This table shows a comparison of our system, with and without sentence fusion sen-
tences, to Newsela V4, the least-simplified version of the Newsela corpus, over our testing set.
The versions of the system shown are those where the adequacy/simplicity weighting is 0/1. *
denotes p < 0.05, while ** denotes p < 0.01 and *** denotes p < 0.001.

roughly 40%. In addition, we examine what fraction of chosen sentences are in fact the original,

unsimplified sentences; unsuprisingly, this goes to 1 if adequacy is given absolute priority, as

unsimplified sentences by definition have perfect adequacy. The results can be seen in Fig 4.3.

To better assess the quality of our ranker, we also considered the use of an oracle, where we

directly use human annotations for sentence selection. This is in fact analogous to the approach

taken by Zaidan and Callison-Burch [2011], and represents a practical approach when the ex-

tra expense is permissible; choosing to use human annotators instead of a ranker would result

in roughly a doubling of costs on Amazon Mechanical Turk. We first find in Fig. 4.4 that the

use of such an oracle provides large quality increases over our reranker, when only human sim-

plifications are taken into account. Intriguingly, we note that for a certain adequacy/simplicity

weighting, our oracle method produces simplifications which are both significantly more ade-

quate than Newsela V1 and significantly more simple than Newsela V4, at the same time, as can

be seen in Table 4.4.

We also examined the inclusion of sentence fusion sentences chosen by the ranker in the or-

acle study. This is analogous to using a two-stage system, where our reranker is allowed to find

cases where it predicts that a synthetic simplification will be superior to the available human

simplifications, and adding all such synthetic simplifications to the set of human simplifica-
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Figure 4.3: The fractions of output sentences coming from the sentence fusion system and out-
put sentences which are unsimplified, shown against the relative weightings of adequacy and
simplicity. Note that when only simplicity is prioritized roughly 40% of sentences are from the
sentence fusion system, illustrating that the sentence fusion system produces simple output.
Note also that high preferences for adequacy versus simplicity lead to only unsimplified sen-
tences being chosen.

System Simplicity Adequacy
Oracle 1.23 4.31

Newsela V1 0.61∗∗∗ 4.11∗∗∗

Newsela V4 1.06∗∗ 3.43∗∗∗

Table 4.4: This table shows a comparison of our human simplifications, with an oracle ap-
plied, to Newsela V1 and V4. We show that, with an oracle, we are able to simultaneously out-
perform Newsela V1, the least-simplified version, on adequacy, while outperforming Newsela
V4, the most simplified version, on simplicity. The oracle shown was performed with an ade-
quacy/simplicity weighting of 1/1. * denotes p < 0.05, while ** denotes p < 0.01 and *** denotes
p < 0.001.
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Figure 4.4: An illustration of the outer bounds on ranker performance, performed by oracle (i.e.,
choosing best and worst sentences for combinations of adequacy and simplicity). Note that
this was performed only for human sentences, as annotating all synthetic sentences would be
prohibitively expensive. It can be seen that some room for improvement remains, although our
ranker is clearly quite capable.
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System Simplicity Adequacy
Joint Oracle 1.31 4.33

Human-only Oracle 1.23∗∗∗ 4.31
Newsela V1 0.61∗∗∗ 4.11∗∗∗

Newsela V4 1.06∗∗ 3.43∗∗∗

Table 4.5: This table shows a comparison of our human simplifications, with an oracle applied,
to Newsela V1 and V4. We show that, with an oracle, we are able to simultaneously outper-
form Newsela V1, the least-simplified version, on adequacy, while outperforming Newsela V4,
the most simplified version, on simplicity. The oracles shown were performed with an ade-
quacy/simplicity weighting of 1/1. * denotes p < 0.05, while ** denotes p < 0.01 and *** denotes
p < 0.001.

tions to be evaluated on by human annotators. This yields a significant increase in performance

on simplicity over only using human simplifications, as can be seen in Fig. 4.5 and Table 4.5.

Intriguingly, we found that the oracle system was even more consistent than our reranker in its

use of synthetic sentences; an analysis can be seen in Fig. 4.6.

Finally, we conducted an experiment where we also applied an oracle to Newsela, allowing

the oracle to choose between Newsela V1 through V4 simplifications just as it would choose

between human simplifications (Fig 4.7). Intriguingly, we found that including the synthetic

sentences suggesting by our ranker allowed us to maintain a complete superiority over Newsela,

even with the oracle applied, especially when the our weighting was geared to emphasize sim-

plicity over adequacy. Without the added synthetic sentences, in fact, our human simplifications

were in most cases little better than Newsela – at none of the adequacy/simplicity weightings

tested did our human-only system ever beat the corresponding Newsela oracle on both ade-

quacy and simplicity by a statistically significant margin (p < 0.05 – no multiple-comparisons

correction was used, since significance was never achieved). With synthetic sentences added to

the mix, however, our system was able to do so, as can be seen in Table 4.6.
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Figure 4.5: An illustration of the outer bounds on ranker performance, performed by oracle (i.e.,
choosing best and worst sentences for combinations of adequacy and simplicity). This was per-
formed for human simplifications and synthetic simplifications flagged by the ranker. It can
be seen that including synthetic simplifications significantly increases the maximum simplicity
achievable, at no cost to adequacy.
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Figure 4.6: The fractions of output sentences coming from the sentence fusion system and out-
put sentences which are unsimplified as chosen by oracle, shown against the relative weightings
of adequacy and simplicity. Note that when only simplicity is prioritized roughly 30% of sen-
tences are from the sentence fusion system, down from the fraction of roughly 40% chosen by
our reranker. However, the oracle does consistently choose to use sentences from the sentence
fusion system when simplicity is prioritized, again illustrating that the sentence fusion system
produces simple output. Note also that, as with our ranker, high preferences for adequacy versus
simplicity lead to only unsimplified sentences being chosen.
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Figure 4.7: A comparison of our system, with an oracle and with and without synthetic sentence
added, to an oracled version of Newsela. Note that the synthetic sentences (joint system) are
vital for maintaining our advantage over Newsela.
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System Simplicity Adequacy
Joint Oracle 1.39 4.25

Human-only Oracle 1.29∗∗∗ 4.24
Newsela Oracle 1.27∗∗ 4.12∗∗

Table 4.6: This table shows a comparison of our system, with an oracle applied with and without
sentence fusion sentences, to Newsela with an oracle applied. We show that, with the added
synthetic We show that, with sentence fusion sentences added (joint system) we are able to out-
perform Newsela on both adequacy and simplicity by a significant margin, while also beating
a version of our system which includes only crowdsourced human simplifications. The oracles
shown were performed with an adequacy/simplicity weighting of 3/5. * denotes p < 0.05, while
** denotes p < 0.01 and *** denotes p < 0.001.
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Chapter 5

Discussion

Given the ease with which we were able to outperform Newsela, a fundamental investigation

into the weakness of the Newsela dataset would be appropriate. Informally, it appears that the

sentence alignments provided by Xu et al. [2015] may be imperfect, leading to Newsela simpli-

fications having artificially low adequacy due to sentence splittings occurred during simplifi-

cation but are not respected in the alignments. We sought to counteract this by grouping split

Newsela simplifications together (see Section 3.1), but this may not have been completely suc-

cessful.

Nevertheless, we argue that the work here represents a solid foundation for text simplifica-

tion crowdsourcing research. The largest avenues for future research relate to the reranking and

sentence fusion schemes in place. As is clear from the oracle study in Fig. 4.4, there is much

room remaining for improvement in our reranking scheme. Future research could examine the

incorporation of new features (such as a custom-trained neural network feature based off of our

Siamese LSTM model [Mueller and Thyagarajan, 2016], or a convolutional model, as in the work

of Severyn and Moschitti [2015]). Additionally, it might be possible to use more capable neural

language models as a foundation for other features, as was done by Radford et al. [2017] in pre-

dicting sentiment. Outside of this, the implementation of more sophisticated reranking schemes

could also have a large impact; in particular, more sophisticated list-based ranking systems [Cao

et al., 2007] have shown good performance, and might be appropriate for this task.

Additionally, experiments could be conducted on the use of multiple synthetic sentences

in an oracle-style human evaluation sentence selection system. In this work, we only included

a synthetic sentence when it was ranked more highly than all other sentences by our ranker.

However, there is no reason besides cost not to evaluate even more synthetic sentences, as doing
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so could lead to some higher-quality sentences being found. This is limited only by the number

of annotations available, and is thus primarily an experimental concern.

Moreover, there is also room for the use of entirely different sentence fusion systems. In

this work, we examined only the model proposed by Filippova [2010], albeit with the alignment

modifications described in Section 3.4.1. That said, there is no a priori reason to hold that other

sentence fusion systems could not produce superior output. In particular, with the recent de-

velopment of neural systems for abstractive text summarization [Chopra et al., 2016; Nallap-

ati et al., 2016], a neural approach to sentence fusion in this context seems increasingly viable.

The primary concern is that such a neural model would require the existence of a supervised

dataset, but some other dataset might be adapted to suit this. Alternatively, it might be possible

to synthetically create such a dataset from the Newsela corpus; for example, one could train an

abstractive neural text summarization system to predict Newsela V4 from collections of aligned

Newsela unsimplified, V1, V2 and V3 sentences.
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