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Abstract

In order to solve the puzzle of child language acquisition, re-
searchers have developed a number of metrics. All of these
metrics involve examining a transcript of utterances, and pro-
ducing a score that corresponds to language development.
The most commonly used metrics rely on surface-level fea-
tures, which are used due to computational ease and avail-
ability. An alternative approach is to, given a transcript,
produce a number corresponding to the age of the child ex-
amined in the transcript. Using this approach, we can track a
child’s linguistic development based on age—a number easily
understood without intimate knowledge of the process. This
age prediction task has been approached from a Machine
Learning perspective, involving the extraction of features
from transcripts and using these to predict age [SS12, LS14].
This research has shown that simple features correlate well
with age; however, it has only been done for English-speaking
children.

In this paper, we explore this age prediction approach for lan-
guage development to children speaking other languages. Us-
ing transcripts of children speaking Spanish, Japanese, and
Hebrew from the CHILDES database, we examine the age
prediction task using similar simple syntactic feature tem-
plates as those that were used in previous research in En-
glish. We find that approaches using only syntactic features
perform at comparable levels to those using more language-
specific, content-based features. Our best results show the
ability to predict a child’s age based on syntactic features
from transcripts within two months of their actual age, with
strong correlations between predicted and actual age for the
data set. Additionally, we compare performance to content-
based features and find no significant improvement over syn-
tactic features. We suggest future experiments in order to
determine the best feature sets for a given language, and
call for increased data collection in this area. With the
increased availability of child language transcripts, such a
cross-linguistic data-driven approach has the ability to influ-
ence, motivate, and assist the research area of child language
development.
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horizontal groupings are significantly different at a level of p < 0.001. . . . . 21

5.8 Results of the prediction task for Emilio from the Vila corpus. All horizontal
groupings are significantly different at a level of p < 0.005.
2This feature template is included in this grouping because it is not signifi-
cantly different from the features in this grouping or the one above. . . . . . 21

5.9 Results of the prediction task for Spanish. All horizontal groupings are
significantly different at a level of p < 0.05. . . . . . . . . . . . . . . . . . . 21

ix



5.10 Results of the prediction task for Nina from the Suppes corpus. All hori-
zontal groupings are significantly different at a level of p < 0.05.
3This feature template is repeated here because it is not significantly differ-
ent from others in this group or the group above. . . . . . . . . . . . . . . . 22

5.11 Results of the prediction task for Naomi from the Sachs corpus. All hori-
zontal groupings are significantly different at a level of p < 0.001.
4This feature template is repeated here because it is not significantly differ-
ent from others in this group or the group above. . . . . . . . . . . . . . . . 22

5.12 Results of the prediction task for English. All horizontal groupings are
significantly different at a level of p < 0.01. . . . . . . . . . . . . . . . . . . 22

x



Chapter 1

Introduction

The way to measure a child’s language development is not uniform. Though psychologists
and linguists have agreed that children follow similar developmental paths (e.g. one-word
utterances, then two-word utterances, some types of phrases before others, etc.), there
is no easily-accessible, reliable, and explicit way of measuring and calibrating this level
of development. Several intermediary metrics have been proposed, such as Mean Length
of Utterance, or MLU [Bro73]. This is a metric that is easily computed, and outputs the
average number of morphemes, which are the smallest units of linguistic meaning in a word,
per utterance for a transcript of a child’s speech. However, the reliability of MLU has been
questioned, since at a certain age, utterances stop getting longer (and thus the number of
morphemes contained in them stops increasing) but the utterances still get internally more
complex due to their grammatical structure.

This led to the proposal of metrics based more on internal grammatical structure,
involving a predefined set of grammatical structures that correlate with linguistic devel-
opment and are used to calculate a score of grammatical complexity. An example of such
a metric is the Index of Productive Syntax, or IPSyn [Sca90]. This metric is calculated
by examining a child’s transcript and awarding points if certain structures are encoun-
tered. At the end of an 100-utterance transcript, the totaled number of points is used as
a representation of that child’s language development. However, such a metric requires
a previously existing and agreed upon set of grammatical structures that correspond well
with language development, and also the necessary amount of people trained and versed
in such a metric in order to evaluate transcripts manually and use results appropriately.
Additionally, the evaluation is mostly manual, though some Natural Language Processing
techniques have helped to automate parts of the process [SLM05, HLI+13, LS14].

This lack of an automatic, accessible, understandable, and universal metric prevents
the study of child language research from making conclusions and comparisons about how
exactly children acquire language. The ability to track child language development auto-
matically and reliably could allow researchers to learn more about the human language
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faculty in general. We lack knowledge of how first language acquisition works because we
are not able to access the internal system that allows a child to speak. For the time being,
we cannot see inside a child’s mind and examine their firing synapses as a series of clearly
labeled bells and whistles. Instead, we only have access to the output of this system–
the actual speech they generate. To extract something meaningful from this output, it is
necessary to have a general metric to apply as a measure of language development.

Instead of examining a transcript and scoring it based on some abstract and obscure
point system, it might be most helpful to examine a transcript and label it with the
“developmental age” corresponding to what age the child speaking is thought to be, based
on the given transcript. The question then becomes how one predicts a developmental age
for the speech of the child. After all, this is why abstract metrics have been proposed and
used previously–as intermediaries in correlating the changes in score with changes in age.

In fact, such an approach has been explored. Sahakian and Snyder [SS12] and Lu-
betich and Sagae [LS14] demonstrated the success of data-driven approaches to predict
the age of a child, given a transcript of their utterances. However, their experiments were
conducted with only English-speaking children. This ignores the possibility of acquiring
useful information from the study of acquisition of other languages, and limits our ability
to study language acquisition in general. In this paper, we explore the possibility of us-
ing a data-driven approach to this problem in non-English languages, including Japanese,
Spanish, and Hebrew. We compare the performance of a language-independent approach
based on syntactic features of a transcript to approaches based more on content features
of a specific language. We hope to introduce and validate an approach that can be used
to measure child language development cross-linguistically, providing an easily computable
and understandable metric that can guide and inform future research.
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Chapter 2

Background

The way children acquire the ability to understand and produce language is not fully un-
derstood, despite a wealth of research on the subject. From a Chomskian perspective,
there is a preexisting, native language faculty in the brain that requires external linguistic
input to set appropriate parameters [FCH+00]. From an interactionist view, children have
no preexisting language faculty, but use linguistic input from their environment to abstract
and internalize patterns [Tom03]. Both of these approaches are backed by numerous argu-
ments and supporters in the field of language acquisition research. Because we do not have
access inside a child’s mind, we cannot directly understand how they process language and
eventually acquire the ability to speak it at an adult level. In order to gain more insight
into this process, researchers have proposed several metrics of language development. Such
metrics allow us to examine the abilities of children at different ages, potentially revealing
information about how the language faculty develops.

In this chapter, we discuss approaches to measuring child language development, be-
ginning with MLU, a very common metric, in Section 2.1. We then discuss metrics relying
more on grammatical structure in Section 2.2, and the use of Machine Learning and Nat-
ural Language Processing approaches to automate some of these metrics in Section 2.3.
Section 2.4 summarizes several other metrics that aim to measure linguistic competency.

2.1 Mean Length of Utterance

Roger Brown outlined five stages of grammatical development of children, and introduced
a metric for this development known as Mean Length of Utterance, or MLU [Bro73].

MLU is based on the idea that a child’s utterances increase in length as a child gets
older and as their language skills develop. It measures the mean number of morphemes
per utterance, where a morpheme is an instance of a smallest unit of linguistic meaning in
a word. For example, “untied” contains three morphemes: the prefix “un,” the root “tie,”
and the past tense suffix “-ed.” The total number of morphemes in a transcript is divided
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by the number of “utterances,” which can be thought of as sentences, to yield the MLU
score.

However, the effectiveness of using an MLU score to model grammatical development
has been questioned, and tested in a number of papers. [KF85] found that MLU did not cor-
relate significantly with age, and also that MLU did not show differences between children
with varying profiles of grammatical development. Others have examined the application
of the MLU measurement to children with language disorders [SRTF+91]. Scarborough
et al.’s results showed that, for normally-developing preschoolers, MLU correlated well
with language development, but tended to overpredict the linguistic ability of those with
language disorders.

2.2 Grammatical Metrics

Several metrics have been proposed that use grammatical information extracted from pre-
processing to categorize the development of children. Some of these have been adapted
to use in languages other than English as well. The focus on grammatical structure is
motivated by the lack of correlation between MLU and age. At a young age, it seems valid
that longer utterances signify increased development. However, at a certain age, it has
been posited that utterances no longer increase in length, but instead increase in internal
complexity depending on the types of grammatical structures used [Sca90]; MLU does not
account for this, but grammatical metrics can.

In the next sections, we examine two such grammatical structure metrics in detail.
First, we discuss Developmental Sentence Scoring, a metric that has been adapted from
English for measuring development in Japanese and Spanish-speaking children. Then, we
discuss the Index of Productive Syntax, which has only been defined specifically for English,
but has been shown to correlate well with age.

Developmental Sentence Scoring

One such metric is Developmental Sentence Scoring, or DSS, originally proposed as a tool
to help clinicians estimate a child’s language level and plan lesson strategies for improve-
ment [LC71]. DSS filled the gap between metrics suited for spontaneous speech like MLU,
and those meant for examining utterances at a syntactic level that were not built for spon-
taneous utterances. This scoring system relies on eight previously defined grammatical
categories such as pronouns, verbs, negatives, and conjunctions, and examines only com-
plete sentences consisting of a subject and a predicate. Points are awarded if all required
syntactic and morphological rules have been observed in a given grammatical category.
This does not give information on the child’s explicit errors; that requires further analysis.

In part because of the small number of defined grammatical categories, DSS has been
adapted to measure child language development in languages other than English. De-
velopmental Sentence Scoring for Japanese, or DSSJ, required the manual redefinition of
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DSS’s grammatical categories to those corresponding to language development in Japanese
[MMO+13]. The same categories could not be used because of differences between the two
languages (for example, English is head-initial and Japanese is head-final), and adapta-
tion required a great deal of knowledge of both languages. DSSJ was used to evaluate a
number of subjects, and found to be a score that “reliably reflects the morpho-syntactic
development of Japanese children.”

The Developmental Assessment of Spanish Grammar, or DASG, is similar to DSS, but
the creators stress that it is not an attempted translation of DSS, but rather incorporates
knowledge of Spanish language acquisition [Tor76]. They present syntactic hierarchies for
six grammatical categories: indefinite pronouns and noun modifiers, personal pronouns,
primary verbs, secondary verbs, conjunctions, and interrogative words.

Index of Productive Syntax

Another proposed metric that utilizes grammatical information is the Index of Productive
Syntax, or IPSyn [Sca90]. IPSyn works by processing an 100-utterance transcript of child
language and awarding points based on the appearance of 60 items in a previously defined
inventory of grammatical structures. IPSyn was shown to correlate well with age, but
operates with a large structure inventory defined specifically for English, so is not easily
adaptable to other languages.

2.3 Metric Automation

One of the appeals of MLU as a metric is that it is very easy to automate and compute:
for each utterance, one must segment it and total the number of morphemes, and then
average the morpheme length of the utterances across the total number of utterances in
the transcript.

Other metrics prove more difficult to automate, as they are focused on explicitly defined
constructions that require more manual effort to define in a way that software can recognize.

Data

Before any automation can take place, machine-readable transcripts are required. As with
most research fields, considerable work cannot be done without a large, available dataset.
Brian MacWhinney and Catherine Snow established the Child Language Data Exchange
System, or CHILDES1, which is the child language component of the TalkBank system
used for sharing and studying conversational interactions [Mac00]. This online corpus
contains transcripts of child language from numerous studies, with a wide range of types
of interaction, age groups, geographic locations, socioeconomic statuses, and languages
spoken. In order for a transcript to be included, it must follow certain transcription

1http://childes.psy.cmu.edu
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and annotation formats. CHILDES additionally provides an analysis program, CLAN,
involving pattern matching and statistical tools for extracting information from transcripts.

Preprocessing

Some automated approaches may require preprocessing to identify things like grammatical
relations and part-of-speech tags; while there are a number of such programs out there,
most are suited to a specific domain–that is, whatever corpus they were trained on. Child
language data is quite different from things like United Nations transcripts and news ar-
ticles, in that it involves disfluencies, nonce words, and gaps, which can prove difficult for
standard preprocessing programs to handle.

The CHILDES database provides an analysis program, CLAN, and a morphological
analyzer, MOR [Mac00]. It also suggests the POST part-of-speech-tagger, which was
specifically defined for the CLAN software suite [PLN00]. Additionally, MEGRASP is
a parser designed for child language data that can be used to generate dependency tree
structures of child utterances [SDL+07].

Parsers are used to extract more information from text, including how the syntactic tree
is constructed, either in a branching format involving constituents or a graph-like structure
combined with grammatical relations. Because a great deal of research has been done in
NLP on English, numerous accurate and precise parsers exist for English; however, they
are not as common in less-studied languages. It is still possible to develop parsers for other
languages, which is an area of ongoing research involving competitions to test the flexibility
and adaptability of parsers on new and understudied languages [BM06]. Additionally, the
parser for child language mentioned above, MEGRASP, has been expanded to parse child
language data in Spanish [SDL+10] and Japanese [MMO+13].

Approaches

[Cha03] attempted to analyze child language in the same way a researcher would go through
and score a transcript, but with the ability to score a larger volume in a shorter amount
of time. They automated the Developmental Sentence Scoring (DSS) metric, achieving a
correlation coefficient of .97 with manually generated scores.

Another proposed metric that utilizes grammatical information is the Index of Produc-
tive Syntax [Sca90]. This has been automated by a number of researchers. One of the
approaches handles multiple transcription formats, is publicly available, and mimics the
process of a human scorer with similar levels of accuracy [HLI+13]. As a proof-of-concept
of the applications of their dependency parser, Sagae et al. briefly presented an automated
IPSyn scorer [SLM05]. Another approach achieved similar levels of accuracy with a process
mimicking human scorers, but also proposed a more data-driven perspective [LS14]. In the
data-driven approach, the authors selected non-content-based features from utterances,
and used them to predict the IPSyn score based on a corpus of annotated data. They then
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expanded this approach to the task of age prediction.
Sahakian and Snyder present another approach to measuring child language develop-

ment, forgoing any attempt at automating previously defined metrics in favor of using
machine learning techniques to extract features and predict child age [SS12].

The previous two techniques approached the idea of measuring child language in a
different way, with age. Whereas previous metrics output a score where a higher number
corresponds to greater development, these approaches output the age of a child. This
avoids the issue that metrics often run into: whether or not they correlate well with age.
Ultimately, the goal is to measure a child’s language development path. We expect that as
children age their speech will get more sophisticated and their language skills will improve.
The ability to have an accurate and meaningful representation of how well they perform at
different ages will help reveal patterns and trends for further research. Predicting a child’s
age can be easily evaluated and understood by researchers. This approach also avoids
defining a specific set of grammatical categories that a transcript must be evaluated on,
line-by-line, and instead predicts age of a child based on automatically extracted features
of a transcript.

Feature Selection

The success of the age prediction task depends heavily on which features are chosen for the
data-driven approach. Lubetich and Sagae [LS14] do not consider content features, but
instead use four simple syntactic feature templates, such as part-of-speech tags and gram-
matical relations between words. This approach was motivated by the fact that IPSyn does
not examine content, but instead the abstraction of grammatical structures. Additionally,
avoiding content features means that this approach can be applied to a transcript of any
language, given enough data to train a model for age prediction based on the features that
correspond with development in that language. The feature templates used will be the
same, but the features could be weighted differently for the prediction task, if for example,
there is a certain grammatical relation that appears in one language to correspond more
strongly with development than in another.

Sahakian and Snyder [SS12] define a larger feature set for their age prediction task,
using a combination of features that have been shown to correlate with language develop-
ment. These include MLU, mean depth of dependency trees, D-level, counts of obligatory
morphemes, and Type-Token Ratio (TTR). D-level is a score for individual sentences based
on “Developmental Level,” which was originally proposed by Rosenberg and Abbeduto in
1987 and is a 7-point scale of complexity based on the presence of specific grammatical
constructions. The feature set used by [SS12] differs from [LS14] in that it utilizes measure-
ments that depend on carefully crafted structure inventories (D-level) and features that
are vocabulary-centric (e.g. counts of certain morphemes, TTR).

Additional features can always be incorporated and tested in such a task, and there is a
large variety available to choose from. In one of the earliest procedural books for clinically
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assessing the language production of children, Jon Miller outlines what he considers to be
a minimal set of features required to fully assess a child’s language development [Mil81].
These include vocabulary and syntax-semantics in comprehension; syntax, semantics, and
phonology in production; and communication functions and intentions in language use. He
encourages using MLU as a helpful metric, but also suggests others like TTR and multiple
procedures specifically relating to syntactic analysis.

2.4 Other Linguistic Competency Metrics

Several other research areas have approached the task of predicting the level of linguistic
competency, such as classifying the reading level of a text. Various metrics have been
proposed in this area, ranging from more superficial and easily computed to those requiring
heavy analysis [FJHE10]. The Flesch-Kincaid Grade Level Formula examines the average
number of words per sentence and the average number of syllables per word to predict
readability as a grade level [KFRC75]. The Gunning FOG index uses average sentence
length and the percentage of words with more than two syllables [Gun]. Others use word
frequency, with the idea that more infrequent words will appear only in more difficult texts.
Statistical language modeling approaches have also been applied: [PO09] uses features
from n-gram language models in combination with features from syntactic parse trees
and traditional approaches to predict readability level with a support vector machine. In
a comparison of a number of these approaches, [FJHE10] found that average words per
sentence was the best shallow feature for predicting readability level. Other well-performing
features included the presence of noun part-of-speech tags, language modeling with word
and part-of-speech tag pairs, and entity-density.
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Chapter 3

Approach

In this chapter, we explain in detail the methodologies and experiments used in our ap-
proach. The end goal involves taking a transcript of child language, extracting features
from it, and using a trained regression model to predict the age of the child from the ex-
tracted features. In order to get to that point, we must train a model using labeled data
of extracted features with the corresponding actual age.

3.1 Age Prediction as Regression

The problem of predicting a child’s age from a transcript of their speech can be set up
as a regression task in the following manner. First, given transcripts of a child’s speech
annotated with the age of that child, we extract features from the transcript and pair them
with the age in months. This annotated data is used to train a regression model using a
support vector machine. Once trained, the model can be used to predict the age of a child
given a new transcript. The same feature templates are used to extract features from the
new transcript, and then the trained model is used to predict an age in months from the
extracted features.

3.2 Feature Selection

As discussed in Section 2, previous approaches to the data-driven age prediction task have
utilized a variety of features. We take a similar approach to Lubetich and Sagae, rely-
ing on simple syntactic templates [LS14]. In order to access information relating to the
grammatical structure of an utterance, we first need a way of annotating utterances in a
child language transcript with morphological and syntactic information. Here, we turn to
several programs to assist in preprocessing. We used the CLAN tools for morphology anal-
ysis (MOR) [Mac00], part-of-speech tagging (POST) [PLN00], and parsing (MEGRASP)
[SDL+10], since it is straightforward to process CHILDES transcripts using these, and they
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n:prop v n n

Eve eat dust mop.

SUBJ

OBJ
MOD

Figure 3.1: A dependency tree generated with part-of-speech and grammatical relation
information.

provide high-accuracy analyses for child language transcripts. This results in transcripts
with utterances annotated with part-of-speech tags and dependency parse trees, a picto-
graphic example of which can be seen in Figure 3.11. Here, “Eve” is a proper noun and
the dependent of its head word “eat,” which is a verb. The grammatical relation between
these two words is labeled “SUBJ,” meaning that the dependent is the subject of the head
word; in this case, “Eve” is the subject of “eat.”

A number of different of combinations of these grammatical annotations can be used
to form feature templates.

Bag-of-words (BOW): This consists of using the actual words in the transcript. This is
heavily language-dependent and context-specific, and we use this as a comparison of
how more abstract feature templates perform in our regression task.

Part-of-speech tags (POS): Here, we simply use the part-of-speech tag of each word. This
relies on morphological information and can be thought of as a bag of part-of-speech
tags.

Grammatical relations (GR): Another feature template is a bag of dependency labels,
where each label corresponds to a grammatical relation that holds between two words
in the dependency tree (the head word and the dependent word). The full set of
grammatical relations is listed in [SDL+10].

Head-dependent part-of-speech pairs (POSPOS): Our third syntactic feature class is based
on pairs of part-of-speech tags, where each pair corresponds to a bilexical dependency
relation in the parse tree, and one of the tags comes from the head in the dependency,
and the other tag comes from the dependent.

Head-dependent grammatical relation pairs (GRGR): This feature class is based on pairs
of grammatical relations, where each pair corresponds to a two-level dependency in
the parse tree. That is, this pairs the label corresponding to a grammatical relation
between a dependent word and its head word in the dependency tree and the label

1For ease of understanding, this tree involves an English utterance. However, similar grammatical
information and syntactic annotations are extracted for each language.

10



of the grammatical relation between that head word and its head word. This can
be thought of as including the relationship between child node, parent node, and
grandparent node.

Head-relation-dependent triples (POSGRPOS): The last feature class is similar to the
head-dependent pairs described above, but also includes the dependency label that
indicates the grammatical relation that holds between the head and dependent words.
Features in this class are then triples composed of a head part-of-speech tag, a de-
pendent part-of-speech tag, and a dependency label.

For example, extracting the above feature sets from the utterance and its annotations
shown in Figure 3.1 would give us the following features:

BOW Eve eat dust mop

POS n:prop v n n

GR SUBJ OBJ MOD

POSPOS v_n:prop v_n n_n

GRGR OBJ_MOD

POSGRPOS v_n:prop_SUBJ v_n_OBJ n_n_MOD

These features were chosen specifically for this approach. Bag-of-words will be used
as a baseline example of using a content-specific feature in the age prediction task. Our
goal is not to model how the content of a child’s speech changes and develops, but to
model how the grammatical complexity increases. This requires the use of feature patterns
that can extract relevant and representative information from morphological and syntactic
annotations, which we attempt to do with the other patterns outlined above.
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Chapter 4

Experiments

In this chapter, we present the data used, the experimental setup, and the evaluation
metrics for performance on the age prediction task.

4.1 Data

The CHILDES database aggregates transcripts of child language from around the world
[Mac00]. The preprocessing programs that generate morphological and syntactic annota-
tions (as discussed in Section 3.2) are only available in a small number of languages. This
naturally focused our experiments on three languages: Japanese, Hebrew, and Spanish.
A number of transcripts for these languages are available in the database, but for this
approach, they must meet specific criteria.

First, because we treat age prediction as a child-specific task, we need enough data for
a single child to train a regression model across a number of age intervals. This requires
us to use children involved in longitudinal studies. Additionally, we seek spontaneous
child vocalizations. That is, we want to exclude any utterances that are imitations or
repetitions of things said by other conversational participants, as well as any reading-type
tasks. Because the author does not actually speak the languages being studied, we had to
trust in the descriptions of the data collection tasks as “spontaneous” and “natural play”
settings. Additionally, the transcription scheme used for recording child speech includes
markers for things such as imitations, and any utterances marked as such were excluded
from our experiments.

In order to normalize the amount of data available for a single transcript, we mimic
the approach of calculating IPSyn [Sca90] by splitting transcripts into separate files such
that each includes exactly 100 utterance lines from the child under study.

This resulted in a data set of over 400 transcripts of Japanese children from the Miyata
and Ishii corpora [Miy95, Ish99] (Ryo and Jun, covering ages from 9 months to 3 years
8 months), over 200 transcripts of Hebrew children from the Berman longitudinal corpus
(Hagar and Leor, including ages from 1 year 7 months to 3 years 3 months), and over 100

13



files of Spanish children from the Llinàs-Grau corpus (Irene) and the Vila corpus (Emilio,
covering ages from 1 year 8 months to 4 years [Vil90]). Additionally, we included corpora
from two English speaking children, using a data set of 350 transcripts from the Suppes
and Sachs corpora [Sup74, Sac83] (Nina and Naomi, ages 1 year 6 months to 4 years 9
months). These summaries are displayed in Table 4.1, with details of the individual child
corpora found in Table 4.2.

Japanese Hebrew Spanish English

Number of files 426 204 132 354
Start age 0y;9m 1y;7m 1y;8m 1y;6m
End age 3y;8m 3y;3m 4y;0m 4y;9m
Age range (months) 35 20 28 39

Table 4.1: Summary of corpora used per language from the CHILDES database. Ages are
formatted in “ay;bm” where the child is a years and b months old.

Japanese Hebrew Spanish English

Ryo Hagar Irene Nina
Number of files 56 90 87 271
Start age 1y;10m 1y;7m 1y;10m 1y;11m
End age 3y;0m 3y;3m 3y;1m 3y;3m

Jun Leor Emilio Naomi
Number of files 370 114 45 83
Start age 0y;9m 1y;9m 1y;8m 1y;6m
End age 3y;8m 3y;0m 4y;0m 4y;9m

Table 4.2: Details of files from individual children used from the CHILDES database. Ages
are formatted in “ay;bm” where the child is a years and b months old.

4.2 Experimental Setup

Following the example of previous studies involving the data-driven age prediction task,
we chose to approach this as a child-specific learning problem [SS12, LS14]. We take the
transcripts from a single child, train a model on them and their extracted features, and then
use this model to predict age on transcripts from the same child (but that were withheld
from the training set). Because of limited data, we used leave-one-out cross-validation. In
this experiment, our datapoints are equivalent to transcripts annotated with the age of
child at the time the transcripts were collected. The leave-one-out approach requires that
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for every datapoint d for a single child, we train a model using all other data points, and
then predict the age for d, evaluating our performance by examining the average difference
between our model’s predicted age and the actual age for this datapoint.

We used the SVM Light1 implementation of support vector regression with default
parameter settings [Joa99].

Our content-based feature experiment involved using bag of words as our only feature
template, extracting all words from a child’s utterances in a transcript and using those to
train a model and predict age.

Then, we ran numerous experiments involving different combinations of more abstract,
syntactic feature templates, the building blocks of which were defined in Section 3.2. We
used POS, POSPOS, GR, GRGR, POSGRPOS, and then finally a combination of POS,
GR, POSPOS, and POSGRPOS that had been shown to perform best in English for the
age prediction task by Lubetich and Sagae [LS14].

4.3 Evaluation Metrics

To evaluate the performance of our various approaches to the age prediction task, we ex-
amined accuracy and correlation. Because we used leave-one-out cross-validation, we have
a numerous instances of resulting age predictions in months, as well as the corresponding
actual age for that prediction. In order to measure performance, we take the difference of
these two numbers (the absolute value of the difference between actual and predicted age
in months) and average this value over all datapoints. Additionally, we take these sets of
predicted age and corresponding actual age, and determine the Pearson r for this data2.
Calculating the Pearson r is a way of representing how well two variables linearly correlate.
A perfect correlation between actual and predicted age would result in a Pearson r of 1.

1http://svmlight.joachims.org/
2We use the python scipy.stats module for this calculation. More information can be found at

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
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Chapter 5

Results

In this chapter, we first summarize our overall findings, highlighting the features that
yielded the best performance on the age prediction task. We then present results for each
language, and the specific children within that language.

We preface this chapter with an observation about the claim that such a data-driven,
feature dependent approach is language independent. This language independence claim
applies only to the ability to measure syntactic development within different languages,
and direct numerical comparisons across languages are not meaningful since the available
syntactic annotations for different languages follow different conventions and syntactic
theories. Thus, we cannot directly compare the results of performance in one language to
that in another. Our experiments are meant to validate the possibility of using syntactic
feature templates for age prediction within a language, and to explore how a variety of
templates and combinations perform.

5.1 Best Features

Though we cannot directly compare one language to another, our experiments found simi-
lar intra-language results. The best feature templates consistently included part-of-speech
information, and often excluded grammatical relations. The head-dependent pair gram-
matical relations (GRGR) perform the worst for many of the children, which we conjecture
is due to the level of intricacy and detail encoded by this feature. GRGR includes the
grammatical relation between a child node and its parent in the parse tree, but also the
grammatical relation between the parent node and its parent (the original child node’s
grandparent) in the parse tree. This could become too specific as to no longer encode
relevant information. Additionally, due to the simplistic nature of child speech, a single
utterance might have no, or very few, GRGR features to extract. This problem can be
further compounded by data scarcity, giving us even fewer instances of GR and GRGR
features that correspond well with language development.
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Part-of-speech information proves to be a functional middleman between the language-
specific words and the extremely abstract grammatical relations. Part-of-speech informa-
tion includes salient facts about the words themselves without getting too specific, and also
can encode internal complexity when used in combination (such as with head-dependent
part-of-speech pairs or by including grammatical relations).

For these reasons, we find features including part-of-speech information to consistently
perform best on our age prediction task. In most cases, such features perform at similar
levels to the bag of words feature template. This demonstrates the validity of choosing to
use abstract, grammatical features instead of content-based features in an age prediction
task. This supports the hypothesis that language development is characterized not just by
the complexity of words, but also by the complexity of structures. We have shown that
this complexity can be accessed using simple feature templates involving morphological
and syntactic information.

In the following pages, we present performance results for our age prediction task in
each language, followed by an in-depth discussion.

5.2 Result Evaluation

First, we considered the data-driven approach in a child specific manner. This means that
the accuracy of performance on the task was measured for a single child’s predicted and
actual age. Each table of results is arranged such that if feature patterns are in the same
sectioned off row, then there is no significant difference in their performance on the task
based on a two-tailed t-test of significance. Feature sets that are separated by a horizontal
line in the table do perform significantly differently.

In order to observe something meaningful about the performance of this data-driven
age-prediction approach for each language in general, we then combined the predicted and
actual age datapoints for the children within a language, and recalculated the average
differences and correlation coefficients for each feature pattern. In this analysis, we ex-
cluded feature templates that performed statistically significantly worse for both children
individually.
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5.3 Tables of Results

5.3.1 Japanese

Feature Template Average Age Difference (months) Pearson r

POSPOS 2.02 0.77
POSGRPOS 2.04 0.77
BOW 2.15 0.75

GRGR 2.35 0.71
POS 2.43 0.72
COMBO 2.45 0.71

GR 2.54 0.67

Table 5.1: Results of the prediction task for Ryo from the Miyata corpus. All horizontal
groupings are significantly different at a level of p < .05.

Feature Template Average Age Difference (months) Pearson r

BOW 2.12 0.88
POSGRPOS 2.2 0.86
POSPOS 2.25 0.85

COMBO 2.45 0.85

POS 2.61 0.83

GRGR 3.1 0.77

GR 3.36 0.80

Table 5.2: Results of the prediction task for Jun from the Ishii corpus. All horizontal
groupings are significantly different at a level of p < 0.005.

Feature Template Average Age Difference (months) Pearson r

BOW 2.13 0.87
POSGRPOS 2.18 0.85
POSPOS 2.22 0.85

COMBO 2.45 0.84

Table 5.3: Results of the prediction task for Japanese. All horizontal groupings are signif-
icantly different at a level of p < 0.005.
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5.3.2 Hebrew

Feature Template Average Age Difference (months) Pearson r

POSPOS 3.04 0.75
POSGRPOS 3.05 0.74
POS 3.2 0.72

POS1 3.2 0.72
BOW 3.34 0.62

COMBO 3.62 0.74

GR 3.92 0.67
GRGR 3.92 0.55

Table 5.4: Results of the prediction task for Hagar from the Berman corpus. All horizontal
groupings are significantly different at a level of p < 0.05.
1This line is repeated here because it is not significantly different from BOW, but also not
significantly different from the feature templates in the above grouping.

Feature Template Average Age Difference (months) Pearson r

BOW 1.69 0.88

POS 1.96 0.86
POSPOS 1.99 0.85
POSGRPOS 2.04 0.84

COMBO 2.53 0.85

GRGR 2.97 0.82

GR 3.96 0.81

Table 5.5: Results of the prediction task for Leor from the Berman corpus. All horizontal
groupings are significantly different at a level of p < 0.05.

Feature Template Average Age Difference (months) Pearson r

BOW 2.42 0.76
POSPOS 2.45 0.79
POSGRPOS 2.48 0.78
POS 2.51 0.78

COMBO 3.01 0.76

Table 5.6: Results of the prediction task for Hebrew. All horizontal groupings are signifi-
cantly different at a level of p < 0.001.
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5.3.3 Spanish

Feature Template Average Age Difference (months) Pearson r

BOW 2.99 0.85

POSPOS 3.4 0.85
POS 3.43 0.81
POSGRPOS 3.45 0.85

COMBO 4.03 0.78

GRGR 4.32 0.67

GR 4.37 0.61

Table 5.7: Results of the prediction task for Irene from the Llinàs-Grau corpus. All hori-
zontal groupings are significantly different at a level of p < 0.001.

Feature Template Average Age Difference (months) Pearson r

POS 5.67 0.81

POSPOS 7.39 0.87
BOW 7.48 0.86

COMBO 7.77 0.91
POSGRPOS 7.86 0.84

POSGRPOS2 7.86 0.84
GR 8.06 0.90
GRGR 8.08 0.77

Table 5.8: Results of the prediction task for Emilio from the Vila corpus. All horizontal
groupings are significantly different at a level of p < 0.005.
2This feature template is included in this grouping because it is not significantly different
from the features in this grouping or the one above.

Feature Template Average Age Difference (months) Pearson r

POS 4.20 0.81
BOW 4.52 0.79

POSPOS 4.76 0.80

Table 5.9: Results of the prediction task for Spanish. All horizontal groupings are signifi-
cantly different at a level of p < 0.05.
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5.3.4 English

Feature Template Average Age Difference (months) Pearson r

BOW 1.83 0.90

POSGRPOS 2.39 0.85
POSPOS 2.4 0.84

POSPOS3 2.4 0.84
COMBO 2.54 0.84
POS 2.55 0.84

GRGR 2.8 0.80

GR 2.86 0.76

Table 5.10: Results of the prediction task for Nina from the Suppes corpus. All horizontal
groupings are significantly different at a level of p < 0.05.
3This feature template is repeated here because it is not significantly different from others
in this group or the group above.

Feature Template Average Age Difference (months) Pearson r

POSPOS 5.52 0.78
POSGRPOS 5.56 0.78
BOW 5.67 0.80
POS 5.9 0.80

POS4 5.9 0.80
COMBO 6.18 0.76

GR 6.75 0.73

GRGR 6.95 0.64

Table 5.11: Results of the prediction task for Naomi from the Sachs corpus. All horizontal
groupings are significantly different at a level of p < 0.001.
4This feature template is repeated here because it is not significantly different from others
in this group or the group above.

Feature Template Average Age Difference (months) Pearson r

BOW 2.72 0.78

POSPOS 3.12 0.77
POSGRPOS 3.13 0.77

Table 5.12: Results of the prediction task for English. All horizontal groupings are signifi-
cantly different at a level of p < 0.01.
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5.4 Data Analysis

5.4.1 Japanese

This section discusses the application of our approach for Japanese, an East Asian language.
Examining results individually, we see in Table 5.1 that for Ryo, our syntactic templates

predict age within two months of actual age. This is a closer prediction than for Jun, shown
in Table 5.2, but the prediction task for Jun results in stronger correlations between the
predicted and actual age overall. It is interesting to note that for both Japanese children,
the top performance on the prediction task included the same sets of features – POSPOS,
POSGRPOS, and BOW.

In the combined analysis found in Table 5.3, we find that the use of the best feature
templates results in a prediction that is just over two months off of the actual age (on
average), with a reasonably strong correlation. In their preliminary test of this task using
Japanese data, Lubetich and Sagae found that their approach resulted in a Pearson r value
of 0.82 [LS14]. Whereas these authors used the “COMBO” feature set that they found
worked best for English, our technique used a variety of feature templates, allowing us
to explore their performance and find feature templates that resulted in a statistically
significant increase in correlation between predicted age and actual age.

Though BOW (bag-of-words) is a content-based, language-specific feature and per-
forms the best at our prediction task, we additionally find two other feature templates
with differences in performance that are not statistically significant from that of BOW.
This supports the hypothesis that there do exist more abstract, syntax-based, language-
independent features that can perform at similar rates to a language-specific feature on
this task.

5.4.2 Hebrew

Here we analyze results of our approach on children speaking Hebrew, a Semitic language.
Examining the individual children’s data, we find that the top features for both include

BOW, POS, POSPOS, and POSGRPOS. Similarly, in Japanese, we also found that the
BOW, POSPOS, and POSGRPOS feature templates resulted in the most accurate and
well correlated age predictions. Preliminarily, we observe that feature templates involving
part-of-speech tags and head-dependent part-of-speech tag pairs perform the best at our
age prediction task, across at least two languages.

In Table 5.6, we show the combined analysis, finding a lower correlation than other
experiments here and also cited approaches, but observe that there is a smaller available
dataset for Hebrew, which can affect performance on a data-driven machine learning task.

5.4.3 Spanish

In this section, we examine performance on Spanish, a Romance language.
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The result of training and testing a model for Irene (see Table 5.7) shows a separation in
performance between feature templates using part-of-speech information and those that do
not. Both the average age difference and correlation coefficient get statistically significantly
worse without any such part-of-speech features.

In observing the performance for Emilio (see Table 5.8), we see a larger month difference
in predicted and actual age than in any previous experiments. Our current explanation for
this returns to the need for extensive data, distributed equally over a certain age range.
Our data for Emilio covered ages 1 year 8 months to 4 years old, but only included 45
files, whereas Irene’s data included twice as many transcripts over a 12 month smaller age
range.

The combined analysis in Table 5.9 shows that, in fact, bag-of-words does not perform
better than any other feature pattern, supporting our hypothesis that abstract features
depending on morphological information can perform similarly to language-dependent fea-
tures.

5.4.4 English

The goal of this research is to compare and validate the performance of simple syntactic
feature templates in the data-driven age prediction task for children speaking languages
other than English. Though performance in English has been outlined in previous research
[SS12, LS14], these approaches used different feature templates and parameters in the
regression task. To provide a baseline for comparison we also ran our experiments on a
small English data set similar to the data sets of the other languages.

As discussed in the beginning of this chapter, it is not meaningful to compare per-
formances in one language to another. This experiment is meant to validate that simple
syntactic feature templates again, work for English, and additionally to explore a variety
of templates and combinations and examine how they perform within a language.

The individual performance of this approach for both children seen in Tables 5.10 and
5.11 shows that POSPOS, POGRPOS, and BOW are the top-performing feature templates.
This is similar to what we’ve seen in previous sections for other languages. However, we
find that performance for Naomi from the Sachs corpus has a lower correlation and greater
difference in months from the predicted and actual age than our other models. Again, a
lack of sufficient data may contribute to this level of error. We acquired 83 files for Naomi,
covering an age range of 39 months; whereas Nina’s corpus generated 271 transcripts over
16 months. Our lack of available data for Naomi across a broader range of ages can hinder
the accuracy of the learned model and performance on the prediction task.

Even though Table 5.12 combines the data from Nina and Naomi found in Tables 5.10
and 5.11 respectively, it produces average differences and correlations much better than
those found on the experiments with Naomi. Again, we conjecture that this is due to the
small number of transcripts used from Naomi over a wide range of ages; the number of
transcripts used in Nina’s prediction task is approximately three times more than those
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available for Naomi’s, covering a smaller range of ages. Thus, when all paired datapoints
are combined, the average performance is much better than the performance seen just for
Naomi.
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Chapter 6

Future Work

We have presented an approach to measuring child language development that is data-
driven and language-independent. We accomplish this by using machine learning tech-
niques and extracting morphological and syntactic features from child language transcripts.
We examined the performance of this approach in Japanese, Hebrew, and Spanish, demon-
strating its viability as a metric.

This project is one of the first to explore the possibility of applying morphological and
syntactic analyzers to languages other than English. Additionally, this application was
done on transcripts of child language.

Using the resulting morphological and syntactic information, we demonstrated the pos-
sibility of using a data-driven regression model to predict developmental age of a child.

The real limitation in this research is the availability of data. In evaluating our approach
on English-speaking children, we found that the performance of a data-driven model is
extremely reliant upon the availability of data to train that model. In the case where
there is not an abundance of training data, the predictions are understandably inaccurate.
Our results in Chapter 5 are limited by this factor. Because of the limited data, we have
only shown the application to two specific children within each language examined. The
further validation of this data-driven approach to measuring child language development
requires applying it to more children. Such experiments could help determine the best
feature templates per language, as well as parameter settings for support vector regression.
Additionally, it would be interesting to examine what features are most heavily weighted
in the trained regression model, and see how this differs between languages. This could
reveal information about types of words or grammatical structures that correspond with
linguistic development within a language, and potentially cross-linguistically.

Given enough data, we believe such an easily computable metric could help influence
and further the field of child language development and language acquisition research.

For a single language, if we have determined the best features to extract, and train
on a large corpus of children over a variety of ages, then, given the transcript of a new
child, we can predict what their expected “developmental speaking age” would be, based
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on the data of their peers. This predicted age could be used to target language areas for
improvement, or identify speech disorders early in development.
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