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Abstract

In order to fully examine the breadth of possibility in sports data

analysis, we look at two areas of differing scope.

The first is scalable and generalizable, exploring the expected per-

formance of athletes in track and field events by means of a data-

centric model. It takes Athletic.net data using an in-house web

scraper and fits past results against a corpus in order to predict

future results in the same race distance. Furthermore, it builds a

recommendation system based on composite athlete profiles and

displays similar athletes.

The second is more specific, examining the effect of momentum

in professional NBA basketball with respect to both players and

teams. Momentum is defined via a set of enumerable conditions

and its model is created by means of a variation of the same in-

house web scraper.

Together, these experimental analyses are represented in the same

user interface. As such, they demonstrate the usefulness and appli-

cability of predictive modeling across many subfields within sports-

data science.
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1 Introduction

1.1 Our Project

Our project investigates the realms of predictive modeling, recommen-

dation systems, and statistical analysis within sports.

The first two areas are covered using track and field data from Ath-

letic.Net, since track and field lends itself to structured data and tangible

predictions by its very nature. Furthermore, because there are no set sim-

ilarity measures between track and field athletes, it becomes an intriguing

challenge to produce clusters of similar athletes. In both cases, k-means

clustering and significant preprocessing is used as the underlying mecha-

nism. The predictive model is evaluated through actual fourth-year personal

records, while the recommendation system is evaluated through question-

naires completed by actual varsity track and field high school and collegiate

athletes.

The third area is explored through basketball data from BasktballRef-

erence.com. It analyses the effect of momentum in professional basketball

games at both the player and team levels. The performances of players

and teams in games is contextualized against their overall field-goal levels,

among other statistical measures. Regressions are performed that examine

whether a player performs better or worse after making consecutive shots,

and after missing multiple shots in a row.

Together, these three components are wrapped up in a single user in-
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terface that prescribes to modern design principles. It is flat, sleek, and

minimalistic, and illustrates the feasibility of making sports data analytics

tools accessible to parties worldwide.

1.2 Background

The field of sports data analytics has a wide range of use cases, from

evaluating player performances to predicting the likelihood of injury. Recent

celebrated work includes Michael Lewis’s book Moneyball, which addresses

the question of how the Oakland Athletics baseball team achieved such great

success with one of the league’s smallest bankrolls. One of the key conclu-

sions was that players are often credited for things outside of their control.

For example, a pitcher’s win-loss ratio is largely an indicator of how well his

surrounding teammates perform, but this fact is often overlooked [Dav06].

There is also a significant amount of available data by virtue of the statis-

tics collected and tracked by third parties. For example, the National Bas-

ketball Association (NBA) records basic information such as player points

per game, number of assists, and number of minutes per game, but also

more advanced statistics like evening home game wins, net points scored

while on the court, and player efficiency ratings. This is particularly true in

the United States, but is also becoming a factor overseas in places such as the

English Premier League (EPL), where player pass accuracies are recorded

alongside visual depictions of shots taken, and by whom.

Another breakthrough in advanced analytics has recently occurred due
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to the installation of cameras in arenas, currently used in both the NBA

and EPL. Players’ x and y coordinates and the ball’s x, y, and z coordinates

are tracked by cameras from a number of angles, and their locations are

tracked at very high speeds (twenty-five frames per second in the NBA and

ten frames per second in the EPL). This allows for the game to be analyzed

in ways not previously possible with only box score and play-by-play data

[Dav14].

Analytical strategies are shared between different teams largely due to

the high turnover rate among coaches and managers. This allows for rapid

progression and implementation of various statistical analyses, which is par-

tially responsible for the boom in the sports analytics industry over the past

decade. One example that illustrates this lies in the MIT Sloan Sports An-

alytics Conference, an annual event that discusses recent developments in

sports data analytics. In 2007, there were 175 attendees. However, in 2013,

there were over 2200 attendees; this is an increase of over 1200 percent

[Wil14].

Historically, predictive sports modeling has been accomplished through

mathematical, theoretical models, based on human intuition and other prim-

itive means. However, with the recent technological advances in modern an-

alytics, opportunities have arisen for a transition into data-driven modeling.

1.2.1 Player Analytics

Performance modeling and analysis have a vast number of capabilities,

namely for player evaluation. With this knowledge, a player can be examined
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within the context of his or her team and league. Managers and coaches can

subsequently use this information to make educated decisions.

One such use case is regarding the optimization of salary for a given

player. That is, given a player’s yearly performance, has he or she met

expectations? Is he or she a financially viable investment? In order to

answer these questions, it is necessary to develop metrics through which to

compare and measure players.

Another feature is player evaluation for the draft. In leagues such as the

the National Football League (NFL), the National Hockey League (NHL),

and the NBA, the draft is a yearly event where players hoping to com-

pete professionally are sequentially chosen by teams from around the league.

Their history and development are scrutinized by analysts and coaches in

the months leading up to the draft. Websites such as Draft Express exist

solely to provide information about incoming talent by means of scouting

reports, statistics, blogs, and relevant announcements [Exp14].

A third reason behind player analysis is due to the usefulness of taking

opponent game tactics and finding ways to undermine and overcome them.

Optimal starting player lineups can be determined on a game-by-game basis

based on the strategies employed by particular teams. Past results can also

be analyzed in the context of utilized tactics in order to adapt and learn

from previous mistakes.

The final and most extensive area of study is descriptive player analytics,

taking players from around the league and describing them through various
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features and extensions. For example, the NFL’s quarterback passer rating

was developed by means of several existing statistics, such as yards gained,

number of touchdowns, and number of interceptions. Another metric, the

aptly-named assist-to-turnover ratio, is widely used to help illustrate a point

guard’s performance in a given basketball game [Dav14].

1.2.1.1 Fitting Performances

Current player performances help orient a team and adjust gametime

strategies and team management composition in the here and now. How-

ever, another worthwhile realm is the field of evaluating future player per-

formances. Here, it becomes possible to answer the following questions with

high probability: will this player be producing in five years time? What is

this player’s ceiling in terms of overall potential? How will this player per-

form in an alternate environment? How will some environment affect the

player or teams performance? How can we determine a player’s performance

trajectory?

This is the science of fitting athletic performances and estimating future

results. One of the most valuable aspects of predictive analytics lies in its

cost-saving ability. Players that are likely to sustain career-ending injuries

can be avoided, and low-risk players can be sought after, resulting in benefits

in the long run.

Significant time and effort has been dedicated to exploring the hypothet-

ical limitations of world-class Olympic athletes. In the 1960s, researcher

Michael Deakin presented a mathematical model in order to estimate an
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upper-bounds of athletic performance in the mile [Hea06] [Hop05]. One

decade later, Gerry Purdy formulated the Purdy Points model, which an-

alyzes athletic performances and attempts to contextualize them amongst

themselves. In other words, it looks at races of different distances and as-

signs relative values [Dea67].

More recently, work has been done not to ascertain Olympian limitations,

but rather the limitations of individual athletes. This often involves taking

performances of similar athletes and formulating a model in order to make

sound predictions [Whi07]. Given the statistical nature of track and field,

where results are cleanly measured in meters, minutes, and seconds, how

can we measure the progression of athletes?

Over the years, there have been many attempts to evaluate and make

predictions regarding track and field athletic performances. There are sev-

eral mathematical models that extrapolate on past marks and results in

order to predict new ones. The Riegel model is one such formula [Whi07].

It was first introduced in an edition of the Runner’s World magazine in

1977. It was stated as follows:

new time = original time ∗( new distance
original distance)1.06

One of the reasons for the popularity of this formula lies in its clarity.

It says that doubling the distance of a race will result in a speed decrease

of approximately four percent. However, it does make several simplifying

assumptions, which are detrimental to the model. One assumption is that

the athlete is not biased towards either speed or endurance. This means that
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the model might not fit a sprinter or a marathoner as well as it would for a

five kilometer or ten kilometer runner. Another reason is that the model is

best for races of a duration between three and a half minutes to four hours.

This is a similar assumption, but better quantifies the model’s limitations.

Alternatively, the VO2 Max Model, developed by researchers Jack Daniels

and Jimmy Gilberts in 1979, uses oxygen consumption, time, and velocity

in order to predict results for distances [DG79]. Their model is as follows:

VO2 Max = −4.60+0.182∗velocity+0.000104∗velocity2
0.8+0.189e−0.0128∗time+0.299∗e−0.193∗time

Here, the greatest assumption is that the race distance is not primarily

anaerobic, since oxygen capacity and consumption relates to aerobic exer-

cise. Therefore, the model is most applicable to races over eight-hundred

meters. Since velocity is a measure of distance over time, an athlete’s VO2

Max and a new distance can be used in order to predict a duration. Other

models such as the McMillan running calculator are commonly used, but

their measures are not publicly released and therefore are less useful for our

own purposes [Whi07].

Still, the majority of these models share a common detail: they were all

developed several decades ago, and they handle extrapolating to different

race distances. As illustrated in Section 1.2, the recent abundance of data

has allowed for a new, practical approach: data-driven modeling - this will

enable us to investigate predictions on already-competed race distances using

progressions of existing athletes.
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1.2.1.2 Quantification

Quantification is the act of counting and measuring that maps human-

sense observations and experiences into members of some set of numbers

[Wiki09]. Tests in school, for example, are an attempt to quantify a stu-

dent’s performance in a given subject. Similarly, sports events quantify how

productive an individual or group of individuals is at a given activity.

Proper quantification of a given principle or concept is essential to anal-

ysis of any field. Answering compelling questions almost always involves a

non-trivial quantification process. A common problem is deciding how to

project human output. In the case of sports, this could manifest itself as

a team deciding whom to draft or for whom to trade. Regardless of the

specifics, however, there are two things that need to be defined in order to

properly evaluate these kinds of questions:

1. a set of features or criteria that are either already quantified or can be

further broken down into quantified data

2. an algorithm that takes said quantified criteria as input and returns a

value in the pre-specified domain

Momentum has been considered a significant factor in the outcome of

sports contests by players, coaches, and fans since long before the recent

big data revolution. Without underlying data to back it up, momentum

was something that was felt by viewers and athletes, but not necessarily

well-defined. After a sequence of good plays by team A and a sequence of

bad plays by team B, there is thought to be momentum in favor of team
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A. Or, after an individual player makes several consecutive good plays, he

or she is thought to be on a roll. Whether looking at it from a team’s

or individual’s perspective, acknowledging that there is momentum implies

that the expected success rate in the upcoming plays is higher than under

normal circumstances.

The notion of momentum has been explored heavily in sports. While

there is a general set of features that are universally used to determine mo-

mentum, turning these into specific criteria that everyone agrees upon re-

mains challenging. A study with certain criteria may give evidence towards

one belief, while another study with different criteria can yield potentially

contradicting results. Another issue is the existence of dependencies within

the feature set. The feature set should take a certain form if momentum

exists and take another form if momentum doesn’t exist, without being in-

fluenced by external factors. We will discuss previous research in sports

momentum further in section 1.2.2.

1.2.2 Data Sources

The digital universe contains over 4.4 trillion gigabytes of data and is

increasing at an exponential rate. In two years, this number is projected to

double [Sol14]. Therefore, data-driven modeling has become more and more

feasible as data becomes more readily available.

Websites such as Basketball Reference and Pro Football Reference are

dedicated to maintaining data stores of everything from player shots to
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points to even play-by-play notes. Hence, they possess massive databases

of statistics that can be easily utilized and repurposed by the average user

[Dav06]. In fact, Basketball Reference does not prevent web scraping and

there are numerous web scrapers on Github and other source code reposito-

ries that can accomplish most any data collection task from the website.

Still, Basketball Reference produces more than just accessible, structured

data. For example, it has an in-house calculation system that determines

similarity scores between NBA players. It does not attempt to deduce sim-

ilarities in playing style — rather, it looks at the similarity of shape and

quality between two players’ careers. In other words, if two players started

off with three productive years, followed by two years in a slump, they

are more likely to be categorized together. This classification is done in a

position-by-position basis [Ref14]. These similarity scores are made available

by the website. Yet, the majority of the website is devoted to simply com-

piling structured data on games, players, and teams. Data analysts are able

to utilize this data through methods such as web scraping and the analysis

thus becomes a more collaborative process. It is then possible to efficiently

perform more complex analyses and determine predictions and patterns.

This is the crux of data-centric modeling. There are a number of online

databases with easily obtainable content. As mentioned above, Basketball

Reference has a number of statistics and metrics that allow data analysts

to extrapolate and make groundbreaking connections. Other data sources,

such as Athletic.Net, have results for over 4.9 million high school athletes,

and are chronologically ordered in a manner conducive for predictive mod-
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eling [Ref14]. With the relative ease of data collection and the abundance

of available data points, it is feasible to formulate a model that can make

accurate predictions.

1.2.2.1 Predictions

One of our fields of study in predictive sports analytics is scalable and

generalizable, exploring the expected performance of athletes in track and

field given previous results. The second field of study examines the ef-

fect of momentum in professional basketball at both the player and team

level. From there, additional predictions can be made: for example, given

a player’s momentum at a specific point in the game, what is the likelihood

that he or she will make the subsequent shot? Together, these experimental

models demonstrate the breadth and utility of predictive analysis within

sports data science.

Athletes are constantly compared to other athletes when referenced by

commentators across all sports. Therefore, it seems logical to use the statis-

tics of many athletes in order to predict those of another. For example, if

Athlete X appears to be following in the footsteps of Athlete Y, then maybe

it would make sense to use Athlete Y’s statistics as a baseline for Athlete

X’s future performance.

In the above example, though, the sample size is small. Perhaps Athlete

Y is an anomaly – suppose he or she was severely injured later in his or

her career – and in actuality, most athletes will progress differently. Thus,

15



by using a much larger data set, we can apply simple linear regression on

subsets of the data. For example, to fit an athlete’s 200m performance,

we can use athletes with times within a certain qualifying range (meeting

predetermined heuristics) and look at their progressions in order to calculate

an expected value for the original athlete.

“Runner’s Log and Predicting Performance Analytics,” a paper by Alexan-

der White of the Worcester Polytechnic Institute, attempted to do something

similar to the above: use existing data to predict future results of track and

field athletes. White’s paper took pairs of performances with the similarity

measure being within 0.05 meters/second of the input speed and then aver-

aged the output pairs in order to produce a predicted output for a new race

distance. When compared against existing models such as Purdy Points,

Riegel, and the VO2 Max Model, this simple average beat them all, re-

sulting in an average error of 3.14% for men and a 3.57% average error for

women. For context, the Riegel model had an average error of 7.32% and

6.80% for men and women, respectively [Whi07].

There seems to be significant value in utilizing a data-centric model in

order to predict athletic performances in track and field. However, White’s

model only incorporated 186,687 running performances (a later version em-

ployed almost 325,000 performances). It also only used athletes from spe-

cific states, mainly the New England region, and gathered data from a sin-

gle source, DirectAthletics. Our project will synthesize data from multiple

sources, take data from a wider breadth, and use well-defined heuristics in

order to increase the quantity and quality of the data set and attempt to
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reduce error. However, it will investigate predictions for already-competed

distances instead of extrapolating for new ones.

1.2.2.2 Evaluation of Qualitative Concepts

In the context of data modeling, it is generally sufficient to develop a set

of criteria or threshold as a definition of a qualitative concept. For example,

given the qualitative notion of a “clutch” basketball player, the requisite

criteria might be as follows:

1. a clutch instance begins with five minutes remaining in a game if

(a) the score differential is at most ten points

(b) the player is in the game for 70 percent of the remaining game

time

2. The clutch instance is deemed positive when occurs when the player

(a) successfully makes at least seventy percent of his or her shots

(b) scores at least six points

(c) commits at most one turnover

3. A clutch player is a player who

(a) has a positive clutch instance in at least 60 percent of all possible

clutch instances

It then becomes fairly straightforward to develop an algorithm that ex-

amines the available data in search of possible clutch instances that fit the
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criteria above. The player’s achieved clutch instances can then be counted

and an overall determination of clutchness can be accomplished.

However, it is imperative to develop criteria that are in line with the qual-

itative definition of a given term. For example, if we defined “clutchness”

to be simply scoring twenty points in a game, then it would be difficult to

get any outside approval of the study. Clutchness has a timing factor (must

be at the end of games) and an importance factor (must be high-stakes).

Any study performed without these two criteria would not be getting an

accurate reading on the essence of clutchness.

Momentum is another notion that fits this general model. It is commonly

believed to have a real effect in individual and team performance in sports.

This is especially true in basketball, in which the notion of a “hot-hand” is

thought to exist by players and fans alike. We define hot-hand to be the idea

that a player’s likelihood of making his/her next shot is higher following a

made shot than following a missed shot.

The hot-hand has spurred a lot of research and experiments in the fields

of both data analysis and psychology. In one of the foundational papers in

this field, Gilovich et al. [GVT85] tracked the performance of basketball

players at Cornell University in controlled shooting experiments. They also

incorporated a betting component to their experiment, where the partici-

pants could either bet high or bet low immediately preceding shot attempts.

In this way, they could quantify a perceived momentum effect, even if the

actual shooting data did not back up any such actual effect.
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Gilovich et al. used conditional probabilities to determine how well a

player shot given previous performance — after either 1, 2, or 3 makes or

1, 2, or 3 misses. Furthermore, they tracked the number of runs — defined

as each streak of consecutive makes or misses — that a player had, and

determined how different this number was from its expected value given the

number of shots taken.

They concluded that while the players did believe in the hot-hand, as

evidenced by their betting throughout the experiment, there was corrob-

orating evidence in the actual shooting data. This falls in line with the

consensus among research in this field — that the hot-hand is a cognitive

illusion that has no real effect outside of human perception.

However, a basketball game is much more complex than just shooting.

There are other types of plays that can have profound effects on, at the

very least, within which team the perceived momentum lies. Such events

that positively affect momentum include 3 point shots (and 2 point shots to

a lesser extent), steals and turnovers for the other team, while events that

negatively affect momentum include missed shots and turnovers [BBJ99].

Mace et al. [MLSN92] performed a study which had trained observers

watch several basketball games and track three types of events: reinforcers,

adversities, and response to adversities. We may define reinforcers as pos-

itive events, adversities as negative events, and response to adversities as

the result of the first offensive possession after an adversity. Mace et al. de-

termined that a team’s response to an adversity generally increased as the

19



rate of reinforcement increased in the time (specifically 3 min) preceding the

adversity. This shows that, although the sample size was small, momentum

had a notable effect performance, at least when taking other events into

account beyond just shooting.

However, more recently, the hot-hand effect has been found to exist even

in an isolated shooting environment [MS14]. While this isn’t enough to

render irrelevant decades of other research, it does show that there is clearly

more work to be done on this topic and that new methods of quantification

are worthy of exploration. This project will deal only with actual NBA

game data and try to determine how players and teams react to positive

and negative stimuli in games. It will attempt to answer questions such

as: to what extent does momentum affect the performance of players or

teams? Is there any correlation between players and teams that bounce

back effectively from negative momentum and the success of those players

and teams?

We will look at these questions in two different ways: once in the context

of only shooting data and another in the context of all positive and negative

events— shooting, steals, turnovers, etc.
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1.3 Contributions

This project achieved significant results in each of its three components

— predictive modeling, recommendation, and statistical analysis. Through

data-driven modeling, we achieved both a quality prediction system and

recommendation system in track and field. Through the k-means clustering

algorithm, we were able to achieve accurate predictions while gleaning a

number of insights regarding track and field performances, regarding areas

such as gender, event, and race frequency. Most notably, the prediction

system achieved an average percent of error of 1.38% in the mens 400 meter

dash in outdoor seasons. The recommendation system also performed ad-

mirably with k-means clustering, yielding an average user satisfaction rating

of 7.79/10 as well as a high innovation rating, with 89.5% of the survey par-

ticipants stating that they have never seen another recommendation system.

This begs the question of when a tool will occupy this space, and to what

extent this recommendation system is a step in the right direction.

In terms of statistical analysis in basketball, while some of the results

were promising, there was not enough corroborating data to make any strong

claims about the effects of momentum on in-game shooting. However, anal-

ysis on certain players supports the notion that shooting efficiency may

actually drop after making previous shots. Yet, it is possible this result

came about due to a flaw in the model - not accounting for shot distance or

difficulty. This can now be quantified by metrics using player-tracking data

such as closest defender distance and closest defender height.
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Regardless, there is room for further development. With track and field,

higher-quality results could been seen with a larger data set. Other data

sources such as TFRRS (Track and Field Results Reporting System) would

also be an ideal source, given permission. In addition, cross-country would

be a feasible sport to extrapolate towards. Finally, there are more sophisti-

cated machine learning techniques that could prove useful.

For basketball, other factors such as time passed between shots and

substitutions could be potential catalysts for momentum. Adding a machine

learning element of results clustering in order to group basketball players

with similar shot streaks and patterns could also prove fruitful, as well as

increasing the size of the dataset by scraping and analyzing additional NBA

seasons.

Altogether, we have produced work in three areas - predictions, recom-

mendations, and statistical analyses - utilizing solely freely available data,

and our success indicates that there is a wealth of potential for future work.
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2 System Overview

Our system involved several different phases to get from the data collec-

tion stage to being ready for analysis. The basketball data and track and

field data were extracted from BasketballReference.com and Athletic.net,

respectively. Then, before it could be fed into our analysis, the data had

to be parsed, cleaned, normalized, and stored in a database. Each phase is

described in detail below.

2.1 Scraping

We used the Node.js request module to retrieve intact HTML files, which

were then stored in raw-HTML tables for both Athletic.net and Basketball-

Reference.com so that incorrect parsing would not necessitate re-scraping

from the original websites. For track and field, athletes were conveniently

accessible through integer indexing in the URLs. For basketball, it was im-

perative to iterate through web pages, one per day in the season, and extract

links to play-by-plays, which were scraped in turn.
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Figure 2.1: A sample play-by-play, courtesy of basketball-reference.com

2.2 Parsing

Parsing involved taking the data from the raw html tables and using the

Node.js cheerio module to extract desired fields. For example, attributes

such as gender, name, season type, level, and actual performances were

taken from individual track and field profiles. A table of athlete names and

characteristics was created, alongside another table for specifically for track

and field event marks. For basketball, as shown in Figure 2.2, play-by-plays

were parsed into database-readable formats, along with game titles, event

types, team names, and player names.
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Figure 2.2: The source code for one row of a play-by-play page

2.3 Cleaning

Cleaning the data involved removing extraneous whitespace from the

parsed attributes and also removing dirty data from the parsed-HTML ta-

bles. Although BasketballReference.com contained relatively clean data,

the manual data entry format of Athletic.net yielded substantial human er-

ror. Gibberish track and field marks such as “ajjfdfsd” and clearly incorrect

marks such as 99:99.99 for a 100 meter dash were removed from the database.

Furthermore, due to the wide variation in mark submission by coaches, the

parsing occasionally returned an empty string — the error handling result

— and cleaning the data involved removing these entries as well.

2.4 Normalization

Finally, the data was normalized in preparation for feeding into the algo-

rithms and statistical analyses. For track and field, this involved converting

all marks into inches or seconds, depending on the event. Dimension ta-

25



(a) An incorrect 3200m time (b) A mistyped 4x200m mark

Figure 2.3: Dirty marks due to human or system error

bles were also created to improve query speed, holding values such as the

distinct events and mark types — automatic, converted, or wind-aided, to

name several. For basketball, this meant matching players to teams given

their first initial and last name. Once the data was normalized, the data

collection process was complete.

Figure 2.4: The normalization process for one play-by-play event
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2.5 Archiving

Data was organized in a PostgreSQL database. We employed the Node.js

pg module to manage the insertion and deletion of data, as well as table

creation and updating. For the raw-HTML table, the URLs were stored as

the primary keys, with an HTML object associated with each URL stored

as a text object since all text types in PostgreSQL are saved the same way

under the hood. For the parsed-HTML table, objects were established that

encapsulated relevant data — this process was accomplished separately for

track and field and basketball. Steps such as cleaning and normalization

were more trivial and involved direct manipulation of the parsed-HTML

tables in lieu of creating new, cleaned-HTML or normalized-HTML tables.

type gid pname team quarter time remaining is made is three

shot 11 P. Gasol Los Angeles Lakers 1 560 t f
shot 11 L. Deng Cleveland Cavaliers 1 515 t f
shot 11 N. Young Los Angeles Lakers 1 406 f t

Table 2.1: 3 sample rows from events table in database

2.6 Data Recovery

The final step in the data collection process was to perpetually store

backup copies of the database in case of hard drive failure. This was ac-

complished via the built-in PostgreSQL pg dump command, which creates

consistent backups even when the database is being accessed. For track and

field, due to the relatively large database size of 150 gigabytes, backups were
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kept on an external hard drive and replaced on a three-spot rotational basis.

For basketball, backup database copies were stored on the Cloud without

purchasing additional storage space.
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3 Track and Field

It is surprising that while the field of sports data analytics has enjoyed a

rise to the forefront in recent years, track and field, a sport that lends itself

to statistical analysis by its very nature, has remained relatively unchanged.

Perhaps the reason lies in the simplicity of the sport. In basketball, measures

such as points per game, assists, rebounds, and blocks are combined to

evaluate a player’s assets. However, in track and field, there is no confusion

— the athlete with the best record in his or her event should be valued

highest.

Still, there are multifold ways to leverage the existing structured data

of track and field performances to create practical tools. With a track and

field athlete and his or her slate of performances, there are three areas to

consider.

1. What factor(s) are responsible for the athlete’s past/present perfor-

mances?

2. Given past performances, how will this athlete perform in the future?

3. Who are athletes that have performed comparably to this athlete?

That is, based on times and marks, it is fairly straightforward to ascer-

tain a given athlete’s current performance level. Predictions and parallels,

however, are more difficult. Therefore, this paper explores how an abun-

dance of track and field performance data can be utilized in an attempt to
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garner both predictions — by means of athletes that have progressed simi-

larly — and comparisons, at the profile level. This involves examination of

athlete marks and times by event, over the span of a season, and again over

the course of an entire career. The first question, exploring what factors

may have contributed to an athlete’s performances, is not covered at this

time due to the lack of athlete metadata. The second and third questions,

though, are explored and wrapped up in a user interface to underline the

feasibility of widespread usage of this tool and others like it.

In the following sections, the design decisions of the project, the user

interface, the implementation, and the desired use cases are each considered.

3.1 Design and Interface

The track and field project addresses the two notions of generalization

and simplicity and their entwinement and tradeoffs. It is evident in both

the user interface and the algorithmic implementation itself.

For instance, the user interface follows modern design principles and

shows a flat, minimalist display. The default interface has two buttons,

leading the user to either a predictor or a comparator. If the user selects

the predictor, he or she need only input his or her gender, select between

a collegiate or high school level, choose between an indoor/outdoor season

type, and pick an event, along with his or her top eight marks in said event.

A simplified version of the predictor that solely accounts for athlete personal

records (PRs) is shown in action in Figure 3.1 below:
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Figure 3.1: Predictor user interface where the user can select desired criteria
and input PRs

Figure 3.2: A sample output from a user submission to the predictor
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The result is a predicted mark and ranges with probabilities according to

our model as shown in Figure 3.2. For example, the men’s 200m dash might

show a range of 22.51 - 23.04 with a likelihood of 90%. Alternatively, if the

user chooses the comparator, he or she then searches by name to display

his or her track and field profile from the database. The athletic profiles

of similar athletes are shown on the interface as well, with color and font

highlights representing degrees of similarity. Yellow might mean that the

athletes have run one event together with comparable marks, while orange

represents athletes with more similar events or more closely related marks.

The above functionality allows the user to experiment with the predictor

and comparator while needing relatively few clicks to do so. In this sense,

it is a simple tool with explicit instructions fitting neatly on screen at one

time. Moreover, the predictor setup is significantly generalizable as well. As

long as the user can recall his or her top eight marks in a given event over the

course of his or her first three seasons, the predictor will function normally.

There is, however, a tradeoff when considering the comparator. Here, it is

necessary to have an Athletic.net profile in the database, as the composite

history of an athlete is used to locate similar ones. While it would have

been possible to allow the user to type in his or her entire athlete profile,

this extension was not included because it would have greatly increased the

complexity of the tool. Future versions may draw from other websites’ track

and field profiles or have the option to “create a profile”.

Internally, the design principle of keeping the tool simple while keeping

it generalizable is also at play. The same algorithmic framework of k-means
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clustering is used for both predicting and recommending similar athletes.

In addition, similar feature sets are used as input for the algorithm. That

is, using the top eight marks in an event for the predictor is not event-

specific, gender-specific, level-specific, or season-type-specific. This provides

consistency for the user and a much cleaner algorithmic implementation.

The tradeoff here is that using similar feature sets for every event might

slightly lower the quality of the results. Yet, given the usefulness of the

output in its current state and the increased elegance of the design process,

the simplicity remains.

In the same vein, athletes are compared using a generalized notion of sim-

ilarity that will be further discussed in the implementation section. Here,

although quality is still a factor, time plays a significant role as well. De-

termining which athletes to include in the clustering process can be a time-

consuming process if it is not kept relatively simple. Additionally, athletes

have run anywhere from one to four years in a wide capacity of events, with

notably varying marks. Finding matches for any athlete profile is therefore

an undertaking that must inherently be generalized, to an extent.

3.2 Implementation

The predictor and recommender portions of this recommendation system

both utilize k-means clustering, albeit in quite different manners. In order

to calculate predictions, athletes that meet predetermined criteria are clus-

tered together in a specific event by performances of their first three years.

The cluster that most closely aligns with the input athlete is then further

33



scrutinized: the fourth-year personal records of those athletes are averaged

in order to formulate a prediction for the athlete at hand. On the contrary,

there is no labeled data for the recommendation system in terms of prede-

fined athlete similarity. Athlete profiles are measured solely on the basis

of their content across multiple events and years. This requires significant

post-processing to further refine search results.

3.2.1 Prediction

The primary machine learning algorithm behind the predictor is the

k-means clustering algorithm. It was chosen for its ability to handle di-

verse feature sets and its potential to lump together athletes with atypical

progressions - for example, someone who improved for his or her first two

seasons, but worsened in the third season. Furthermore, while the athletes

are labeled in the sense that they have fourth-year personal records that are

used to predict the person record of an input athlete, they are not labeled

insofar as the athlete profile is concerned. K-means clustering allows for

the exploration of the effect of differing features on an athlete’s fourth-year

performance by means of grouping them together and discerning previously

hidden relationships.

For a user querying the predictor on the user interface, it is necessary

to first run the k-means clustering algorithm on the training set for the

input criteria - gender, event, level, and season type. The user’s feature set’s

euclidean distance from each centroid is then measured, with the mean of the

closest cluster’s fourth-year personal records being returned as a prediction
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for the input athlete. Then, the percent error from the testing set is used

to return a series of ranges to the user, with confidence intervals based on

the percentage of athletes in the testing set that fit within some range of

percent error.

The first major question to address was which athletes to extract from

the database, given a gender, event, level, and season type. This issue is

similar to determining which athletes to include in the training, validation,

and test sets. Due to the large quantity of athletes — around seven million

profiles — the IDs of desired athletes were stored in intermediary tables on

a gender, event, level, and season type basis. Athletes were chosen that:

1. Ran all four years in the specific event, gender, level, season type

2. Ran at least four times per year in the specific event, gender, level,

season type

The first requirement ensured that athletes in the data set would have

three years to include as characteristics of the feature set, and a fourth-year

event personal record to use for the prediction. The second requirement set

a reasonable standard of accuracy for the feature set data. For example,

an athlete’s personal record is much more likely to be reflective of his or

her capabilities if he or she has run multiple times, rather than just once.

Collectively, these requirements substantially reduced the quantity of the

data set. In the men’s high school outdoor 200 meters, for instance, there

were 1.2 million athletes than ran the 200 meters at least once, but only

7000 that ran it all four years, and merely 2000 that ran at least four times
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in each year. Setting the threshold at four instances per year allowed for

a reasonable size for the training, validation, and testing sets, split at 60-

20-20 percentages, but in order to evaluate the effect of the threshold, the

clustering analysis was also carried out on lower thresholds as well, increasing

the size of the data set but reducing the accuracy as the meaningfulness of

a personal record was diminished. These requirements are depicted below

in Figure 3.3:

Figure 3.3: The intersection between the two circles depicts the marks ex-
tracted from the database

Once the data set was established, it was necessary to realize the features

that should be included in the feature set and the optimal k clusters for

the k-means clustering algorithm. This was accomplished in a prototypical

manner by running the analysis on the validation set and using the percent
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error results as a measure when evaluating the algorithmic performance.

After trying a number of features, including a mean mark for each of the

first three seasons, median mark per season, variance per season, standard

deviation per season, and personal record per season, it was discovered that

the lowest percent error was achieved through including the athlete’s top

eight marks to-date, irrespective of season. This was confirmed on an event-

by-event basis and recalibrated slightly for events with higher margins of

error. Generally speaking, this entailed incorporating more or fewer marks

into the feature set. The k value for the k-means clustering was discerned

after the finalization of the feature set, largely due to the fact that the

feature set impacted the margin of error to a much greater extent. Here,

the k-means clustering algorithm was run through both events and genders

in intervals of two to find an optimal k value. Each possible k value was

then used ten times and its average was taken due to the intrinsic variance

present in k-means clustering. While it would have been a relatively trivial

process to choose a k value dependent on the event and gender at hand,

this process actually found that there was more generalizable relationship

between the optimal k value and the number of elements in the data set.

Setting k to (# of elements in the data set)/ 5 yielded clusters with five

elements on average whose fourth-year personal records formulated a strong

prediction for the athlete in question. Hence, k was established to satisfy

this ratio.
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Figure 3.4: An 2D simplication of the k-means clustering algorithm

Together, the data set criteria, the feature set features, and the k value

for k-means clustering were responsible for the results of the algorithm.

However, it is worthwhile to mention that there was additional preprocessing

that was done prior to the data set extraction. About one percent of the total

marks were simply erroneous and needed to be removed from the database

entirely. The most likely hypothesis for this is the manual entry of meet

results by coaches from around the country. Some fields, such as event type,
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are selected via a drop-down menu and therefore have a finite number of

possible states, but others, such as the actual mark, are typed into a blank

field and could take on any value. Notable instances include a 4x400m relay

time of 999999 and a 1600 meters time of 81:02.

Yet, the more important preprocessing regarded marks that were indeed

valid but caused noise within the dataset and should be excluded. For

example, while most track meets possess an FAT (Fully Automatic Timer)

system and hence their marks are punctuated with an ’a’, a small percentage

of meets use solely hand timers and convert the runner’s time by adding

.24, making up for the delay between starting a watch and the starter’s

pistol actually firing. This is usually a sufficient equalizer, but there are

instances where a runner has an outlying ’converted’ time that far betters

any automatic time they’ve run. In these cases, the converted time was

likely a result of human error and should not be included in any analyses.

Therefore, Wolfram Alpha’s algorithm for determining outliers was used

for removing any outlying converted times. In cases of athletes with only

converted times, the outlier algorithm was not used, since it is much more

difficult to distinguish between ’real’ outliers and ’fake’ outliers without an

FAT correlator. Through measures such as these, extensive preprocessing

was done to ensure the validity of the data set and to remove dirty marks.

3.2.2 Recommendation

For recommendation, the k-means clustering algorithm was employed

once again. Since the data is unlabeled for this process, meaning that there is
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no predetermined similarity measure between athletes, the choice of k-means

clustering as an unsupervised learning algorithm makes intuitive sense. Re-

lationships between clustered athletes can surface and it is even possible

that the clustered athletes are related in ways that reach beyond the feature

set itself. K-means clustering is a storytelling algorithm that can extract

similarities without explaining exactly what they are.

There are two underlying questions when considering k-means clustering

and recommendation: which athletes should be included in the clustering

process, and what the feature set should be for each athlete. The questions,

although seemingly distinct, interplay to formulate a singular dilemma: how

can one create a cohesive feature set while clustering athletes that may differ

in numerous ways?

Hence, determining athletes for the clustering process is not as easy a

task as it was for prediction, as the scope is now athlete-wide instead of

event-wide. For instance, an athlete may have run the 400 meters and com-

peted in the javelin throw several times each year. Should a similar athlete

have competed in both events, or just one of them? Qualifying similar ath-

letes as only those who competed in both events would drastically reduce the

data set and hence the likelihood of finding significant matches. However,

allowing 400 meters-only runners and javelin throw-only athletes into the

data set raises an issue as well. How can a single feature set be created for

clustering when some athletes in the data set competed in disparate events?

Not only that, but it’s reasonable to assume that a similar athlete will fol-

low an analogous progression to the athlete in question. Therefore, should
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a similar athlete have run the same events in the same grade? This quickly

becomes a very complex problem. How can data sets of similar athletes be

found that retain a sizeable quantity while yielding feasible feature sets?

To resolve this, the notions of simplicity and generalizability again come

into play. A solution is needed that allows any athlete to input his or her

profile and perform some sort of clustering with a number of similar athletes

in a reasonable amount of time. The problem is circumvented as follows:

1. Select events and the number of times each event was competed in on

a per-grade basis with specific gender, level, school type 1

2. Keep events on a per-grade basis that were competed in at least 4

times

3. Take the top 8 events on a per-grade basis by number of times com-

peted

4. Similar athletes are those who competed in all 8 of the events (and

possibly others) on a per-grade basis at least 2 times

Table 4.1 below shows a sample of what would be taken from the database.

1Note that relays and splits were excluded from this selection since relay times are
more indicative of team ability rather than individual skill.
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Table 3.1: Sample Athlete Match Requirements

Count Event Grade

14 200m 12th

11 200m 11th

10 100m 12th

10 400m 10th

10 400m 9th

9 200m 10th

7 100m 10th

6 400m 11th

Events and grades that the algorithm will use for matching similar athletes.

This solution has substantial benefits, the foremost being its generality.

It allows the athlete to have competed in any number of events for any

number of years without requiring a similar athlete to have tried all of the

events. In addition, it is not event-specific but still allows for mapping

comparable progressions, since similar athletes must have run the events in

the same grade as the input athlete. It also allows similar athletes to have

competed in other events that the input athlete did not, and permits input

athletes who have run relatively infrequently.

This does, however, make the assumption that an athlete’s profile can

be summarized by merely the top 8 events on a per-grade basis, as shown in

Table 3.1. For instance, if an athlete ran the 200 meters ten times in grades

10 and 12 but only seven times in grade 11 and it did not make the list
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of top 8 events specifically for grade 11, by the above definition, a similar

athlete could well not have run the 200 meters in his or her junior year.

Still, the similar athlete must have run the 200 meters at least twice in his

or her sophomore and senior seasons, and therefore it is likely that he or she

ran the 200 meters in his or her junior season as well. It thus seems like a

reasonable hypothesis that using the top 8 events could be sufficient criteria

for similarity. 2

Finally, this solution resolves the issue of potentially differing feature

sets by only using the top 8 events on a per-grade basis as the foundation

for the feature set. Since similar athletes are guaranteed to have run those

events in the specific grades, any calculations or measures done to determine

features should work in all cases.

Since the data is no longer labeled - it is not possible to produce a margin

of error - the features from the optimal feature set for the predictor are used

for the comparator as well. Thus, the top two marks, on an event and grade

basis, are used as features for clustering the athlete profiles. In the same vein,

the optimal k value for clustering was taken to be the elements in the data set
5 .

The ability of this solution to simultaneously find similar athletes and

extract feature sets therefore allows a user to input his or her profile and

quickly receive results - athletes in the closest cluster - on average, five

athletes - by euclidean distance on the feature set. As in the predictor, the

recommender undergoes the same data preprocessing before running the

2However, if the events are too restrictive and result in an unfeasable table size, the
constraints are lessened.
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k-means clustering algorithm.

3.3 Results

Results across both the prediction and recommendation systems shared

a similar issue: a lack of data. Despite the large volume of athlete profiles,

only a small fraction of them were robust enough to warrant inclusion in the

analyses. Still, the predictor was able to receive quality results in terms of

average percent error, especially for the running events on the men side. In

that same vein, although few athletes met the matching criteria of running

certain events some number of times over the course of several seasons, the

recommendations were surprisingly accurate. This sentiment was validated

through recommendation evaluations by collegiate varsity track and field

athletes.

3.3.1 Prediction

The prediction algorithm was run independently on data sets for ten

events, by gender - the 100 meters, the 200 meters, the 400 meters, the 800

meters, the 1600 meters, the 3200 meters, the long jump, the shot put, the

javelin throw, and the pole vault. These events were chosen to include a

sampling of the different types of track and field events while allowing for

specific analyses, such as the effect of race distance on prediction margin

of error. Below is the average percent error, by event, when comparing the

prediction to the actual personal record achieved, for each data set.
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Figure 3.5: The average percent error for a variety of events separated by
gender

It is evident that the greater the race distance, the higher the margin of

error. This could possibly be attributed to the increased linearity of sprint

race progressions. Furthermore, the field events all have higher margins of

error than the track events. This is demonstrated in Figure 3.5. Potential

reasons for this include smaller data sets and the ability of field athletes to

“scratch”. For instance, long jumpers scratch their jumps if they step over

the jump board when pushing off, and it is therefore not unheard of for

jumpers to have a personal record that clearly exceeds the other marks.

In addition, the women have higher margins of error in almost all track

and field events. One possible explanation for this is the fact that women
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tend to have higher performance variability than men in both track events

and field events. Figure 3.6 shows a margin of error histogram for the men’s

1600 meters.

Figure 3.6: A histogram depicting the margin of error spread for the men’s
1600m

Figure 3.6 represents the model that was used to calculate the ranges and

confidence intervals alongside the mark predictions. Figure 3.7 is a graph

displaying the effect of minimum marks per year on the clustering analysis.
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Figure 3.7: The effect of marks per year as a criteria for athlete selection in
the dataset

As expected, the greater the number of times an athlete has run an event

each year, the better the k-means clustering algorithm performs.

Finally, a baseline comparison test was performed utilizing a least squares

regression on only the athlete’s individual performances to formulate a pre-

diction for the fourth-year personal record. The results of the k-means

clustering algorithm against the baseline test over a number of events are

shown in Figure 3.8.
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Figure 3.8: The predictor algorithm compared to a simple linear regression

The k-means clustering algorithm outperforms the baseline comparison

in all events.

3.3.2 User Study of Recommendation

Evaluation of the recommendation system was challenging due to its

novelty and lack of actual similarity labels. It appears as if there is no exist-

ing system that takes track and field athlete profiles and finds comparable

athletes. In other words, there is no baseline system to stack up against.

Hence, evaluation was accomplished entirely through questionnaires filled

out by varsity track and field athletes with profiles on Athletic.net. The

questions asked were:
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1. How satisfied were you with your recommendations (on a 1-10 scale)?

2. How similar do you believe the recommended athlete profiles were to

your profile, taking into consideration your entire profile?

3. How similar do you believe the recommended athlete profiles were to

your profile, taking into consideration only your most frequently com-

peted event? If you did not answer ‘never’ to the previous question,

how frequently would you visit this website?

4. If this recommender were made available for free online, how likely

would you be to use it?

5. If this recommender were made available for free online, how often

would you use it?

6. How does this recommender system compare to other recommendation

systems that you’ve seen previously?

7. If this recommendation system were packaged as a tool that found

high school rivals and notified you of their recent performances, how

likely do you think athletes would be to use it?

8. Please list any desired additional capabilities or functionalities for the

recommendation tool here.

9. Please list any additional comments about the recommendation tool

here.

Figures 3.9-3.13 below display the user feedback for the recommendation

system.
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Figure 3.9: Graph showing user satisfaction with the recommendations.

Figure 3.10: Graph showing user satisfaction in relation to entire profile.
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Figure 3.11: Graph showing user satisfaction in relation to most frequent
event.

Figure 3.12: Graph showing user likelihood of using recommendation sys-
tem.
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Figure 3.13: Pie chart showing anticipated user activity with recommenda-
tion system.

Figure 3.14: Graph showing user interest in a rival-matching tool.

Overall, evaluators of the recommendation system were pleased with

their recommendations. Each of the evaluators were given somewhere be-

tween 1 and 5 matches depending on table sizes and degrees of simlarity.

Some participants expressed interest in using the recommendation tool on a
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regular basis, while others were not as intrigued by the idea. This correlated

with satisfaction rates and perceived similarity between athlete profiles on

both an event and profile basis. The final question of the survey prompted

the user to consider an extension of the tool that would allow him or her

to view recent performances of similar athletes and treat them as rivals,

receiving notifications after recent races. Evaluators were interested in this

notion and, as such, this would be an area worth pursuing and developing

further.

3.4 Discussion

Through data-driven modeling, it was possible to achieve both a quality

prediction system and recommendation system.

For the prediction system, while the analysis of this algorithm has lent

itself to a number of insights regarding track and field performances as a

whole, the ultimate aspiration is to reduce them margin of error across

all events in both genders. To this end, the first step would be to collect

significantly more data, as there were simply not enough athletes with a

sufficient number of performances to effectively cluster them.

The recommendation system would also benefit from a larger data set,

but based on the evaluations, it still performed reasonably well, yielding an

average of 7.79/10 satisfaction rate with evaluators expressing an interest

to use the tool several times per month. Regardless of its shortcomings,

considering the fact that there isn’t currently an online tool occupying this
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space, it is certainly a step in the right direction. At the very least, the

reduced simplicity of the athlete selection for clustering yielded surprisingly

effective clusters.
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4 Basketball

Previous research [GVT85] has studied momentum strictly from the per-

spective of shooting, focusing on the potential existence of the hot-hand.

This involved holding isolated shooting experiments to evaluate the effect of

streaks on field goal percentage, with the premise that a player develops a

hot-hand solely from previous made shots. Slightly more recently, though,

there have been studies ([BBJ99] and [MLSN92]) that tracked sequences

of perceived momentum in actual basketball games. A high-level overview

of their results suggest that there are many different positive and negative

events over the course of a basketball game that affect momentum. Nei-

ther study, however, tracked how these momentum-inducing events affect

shooting.

The fundamental question arising from these studies is whether the hot-

hand can be developed by these momentum-inducing events, rather than

strictly by made shots. That is, what can be learned about the hot-hand

theory by factoring in, along with made shots, other events that influence

momentum within the context of a game?

The interface for this analysis — described in more detail in section 4.2

below — gives the ability to visualize the effect of any combination of these

momentum-inducing events on in-game shooting and, more specifically, the

hot-hand theory.
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4.1 Design and Interface

The goal of the interface design was to present a very simplistic and

minimalistic display, while still allowing the user to provide input into 3

aspects of the analysis:

1. Players or Teams

2. Positive Events

3. Negative Events

A page is presented with 3 multiselect widgets: one for each of the

inputs listed above. I used David Stutz’s JQuery multiselect plugin based on

Twitter Bootstrap for its sleek appearance as well as for added functionality

such as option groups to group players by team and filtering by name. The

multiselect widgets are centered and rendered in a vertical layout to ensure

ease of use and a clean presentation.

Figure 4.1: The interface for the basketball momentum analysis
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4.2 Implementation

Once the input (players/teams, positive events, and negative events) is

selected, the analysis process consists of a pipeline of 3 phases.

The first step is using the input provided by the user to construct and ex-

ecute a database query to retrieve the necessary rows from the PostgreSQL

database. This process is performed by the Query Generator module, de-

signed to handle any combination of events. 1

The query is constructed by following this algorithm for each positive or

negative event:

1. Map the name of the inputted positive/negative event to its event type

(i.e made free throw → ft). Since the analysis involves looking at how

shooting is affected by momentum, all shots (with the exception of

free throws) are included by default.

2. Determine if there is any extraneous information that can be removed

and add where clause in query if necessary. For example, if offensive

rebounds are deemed to be positive events but defensive rebounds are

not, then the analysis is not dependent on any information regarding

defensive rebounds. Therefore, this partial query can read:

“SELECT * FROM events WHERE type=rebound AND is defensive

= FALSE”

1The schema for events (i.e. shots, rebounds, etc) in the database includes the fields
pname — which is the name of the player who performed the action, henceforth referred
to as the acting agent — and team — which is the team of the acting agent
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3. Include the player or team names that will be analyzed in where clause.

If the analysis involves players, this will be a sequence of pname=$1

OR pname=$2 OR and team=$1 OR team=$2 OR in the case of

teams. The $i syntax simply is a placeholder denoting the ith argument

in the provided values array.

These queries are combined via UNION ALL statements, and the re-

turned rows are ordered by the player/team name, game, quarter and time

remaining to maintain chronological integrity.

As explained generally in section 1.2.2.2, this analysis is highly depen-

dent on a quantitative model as a means of tangibly measuring the effect

momentum has on shooting. Therefore, we define momentum to be a streak

of consecutive positive or negative events performed by a player or team. We

further define 6 different states of momentum (ordered from most negative

to most positive):

1. 3+ negative events

2. 2 negative events

3. 1 negative event

4. 1 positive event

5. 2 positive events

6. 3+ positive events

(0. catch-all bin)
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For example, if a player is the acting agent of 3 consecutive negative

events, he is said to be in State 1. However, as soon as this player performs

a positive event, he jumps to Stage 4. To avoid streaks continuing across

games, the state is reset to 0 at the beginning of each contest, and shots that

come before any streak begins are kept in state 0, but otherwise discarded.

Using the results of the database query constructed in the previous phase,

the next phase analyzes the set of events for each player or team. After each

event, the current streak is updated based on the state transitions described

in the figure above. If the event is a shot, it is binned based on the value

of the current state of momentum. These six bins, as well as an additional

bin that serves as a catch-all, are built up with the data from the entire

season. Once these bins are populated with the proper shots, we compute

the statistics relevant to the analysis.

That is, for each bin i with 1 ≤ i ≤ 6 (bin i refers to all the shots taken

while in momentum state i), we compute:

made shots in bin i
total shots in bin i −

made shots in bin 0
total shots in bin 0

which is equivalent to the player or team’s FG% on current streak - overall

FG%.

This formula normalizes over the player’s or team’s overall field goal

percentage in order to isolate the direct change in shooting caused by the

momentum state.
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4.3 Results

The results are presented in graph format, with the notches on the x-

axis corresponding to momentum state 1, 2, 3, 0, 4, 5, and 6 respectively.

Momentum state 0 (catch-all state) is displayed in the middle as it is the

medium between the positive states (1, 2, and 3) and negative states (4, 5,

and 6).

The interface provides x positive events to choose from and y negative

events to choose from, producing 210 ∗ 25 = 32, 768 possible combinations

of events. This is far too many combinations, as analyzing each involves

iterating through an entire season’s worth of play-by-play events for every

player and team. Therefore, for simplicity as well as feasibility issues, we

choose to further analyze the results for the following positive and negative

events:

positive events = {“made shot”}

negative events = {“missed shot”}

Figure 4.2 shows the results for an analysis of LeBron James (Miami

Heat), Stephen Curry (Golden State Warriors), James Harden (Houston

Rockets), Paul George (Indiana Pacers), and Nick Young (Los Angeles Lak-

ers).

These players were chosen for closer analysis for several reasons. Firstly,

they are prominent and well-recognized NBA players. Secondly, they are

all high volume shooters and scorers; this is important to make sure there
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is enough data to produce meaningful results. Finally, they are all streaky

shooters, especially from the perimeter. While LeBron James and James

Harden drive to the basket for easy shots with some regularity, they also

tend to score on long jump shots, especially when they have scored recently.

Generally speaking, the names chosen represent players that shoot from

the outside with regularity, and have the authority within the offense to take

quick shots in succession when they are on streaks. When players don’t have

this authority, their distribution of shots over time typically remains fairly

constant, which lessens the potential impact of momentum, or the hot-hand.

Figure 4.2: Example output of analysis for 5 high-profile NBA players. Y-
axis shows the player’s field goal percentage on a given streak compared to
his overall field goal percentage.

The results for the linear regressions of each plot of points is shown in

Table 4.1. The r values show a moderate negative correlation for Stephen
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Table 4.1: Regression Analysis

Player Regression Line R R2

Stephen Curry y = 2.352 - 1.145x -0.5618 0.3156
James Harden y = 4.819 - 1.8284x -0.6933 0.4807
Paul George y = 2.485 - 1.209x -0.7594 0.5767
Nick Young y = 5.002 - 2.128x -0.8354 0.6979

LeBron James y = 4.109 - 1.589x -0.6566 0.4311

Regression equations and r values for data from Figure 4.2

Curry, James Harden, and LeBron James, and a strong negative correlation

for Paul George and Nick Young. This demonstrates that, amongst these

players, shooting percentage drops as their momentum (streak of made or

missed shots) improves. Examining the slopes of the regression lines, as

the momentum state changes from negative to positive, shooting percentage

drops by 1.58% on average. Perhaps most striking though, are the end-

points in the plot for each player in Figure 4.2 - momentum states 1 and 6

(3 or more consecutive missed shots and 3 or more consecutive made shots,

respectively). Each player shot better than his overall field goal percentage

after missing 3 or more shots (on average 2.62% better), but shot dramati-

cally worse after making 3 or more shots (on average 9.589% worse). These

results are in opposition to the expectation of the hot-hand theory.

This, however, was not a general trend. To investigate the results for

the remaining NBA players, we constructed two graphs (Figure 4.3 and

Figure 4.4). The first plots player points per game and change in field

goal percentage while in momentum state 1 (3 or more consecutive missed

shots), while the second is the same except using momentum state 6 (3 or
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more consecutive made shots). Note that the points in red are the players

analyzed in Figure 4.2.

Figure 4.3: Plot of player points per game and change in shooting percentage
after 3 consecutive made field goals.
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Figure 4.4: Analogous to Figure 4.3 but 3 consecutive missed field goals

From the regression lines in Figures 4.3 and 4.4 (rendered in blue), there

is no discernable correlation between points per game and shooting while on

positive or negative shooting streaks.

4.4 Discussion

While some of the results did show promise, there is not enough corrob-

orating data to make any strong claims about the effects of momentum on

in-game shooting. Analyzing high profile NBA players like LeBron James,

Stephen Curry, James Harden, Paul George, and Nick Young, along with

others who showed similar results such as DeMar DeRozan, Brandon Jen-

nings, and Kobe Bryant (albeit on a limited sample size - Bryant only played
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6 games and attempted 73 shots), revealed that shooting efficiency may ac-

tually drop after making previous shots. However, more likely, this is simply

the result of a flaw in the model. The model does not currently control for

shot distance or shot difficulty in the analysis. With recently available player

tracking data, shot difficulty can now be quantified using metrics such as

closest defender distance and closest defender height. Adding this infor-

mation into the model would answer the question of whether these players

actually shot worse when they made shots, or if the drop in field goal per-

centage was due to them taking more difficult shots.

Due to this factor, we hypothesized there would be some correlation be-

tween player points per game and their change in shooting percentage after

hot or cold shooting streaks. Players with the ball in their hands a lot (typ-

ically high scorers) would be more likely to have a quick trigger if they felt

they were hot, potentially resulting in more difficult shots and therefore, a

lower field goal percentage. However, despite finding several players that fit

this trend, there were also players like Kawhi Leonard, Chris Paul, and Dirk

Nowitzki whose field goal percentage remained fairly constant regardless of

the shooting streak they were on. Therefore, it might be more reasonable

to say that this analysis, while it might not illuminate any general trend

amongst all players, does uncover different types or classes of players with

respect to how they shoot in response to positive or negative momentum.

65



5 Conclusion

Although this project achieved significant results in each of its three com-

ponents — predictive modeling, recommendation, and statistical analysis —

there are certainly areas for improvement and further development.

In terms of track and field, as previously mentioned, results could likely

be seriously improved given a larger dataset to work with. TFRRS (Track

and Field Results Reporting System) has a much greater, cleaner dataset

online and is the results host for all collegiate track and field runners in

the United States. With permission to scrape or otherwise obtain their

data, an analysis could be done on their dataset as well. Furthermore, Ath-

letic.net also has a significant database of cross-country athlete profiles and

performances. It would be relatively simple to formulate a similar predic-

tive model and recommendation system for cross-country runners with only

some minor adjustments on both the data collection and algorithmic imple-

mentation sides. Finally, it is possible that there are other machine learning

techniques that would perform better than k-means clustering, especially on

the prediction side. Perhaps experimenting with an n-dimensional regression

algorithm would yield improved results.

In basketball, it might also be relevant to look at specifically the time

that has passed between made or missed shots, not just the number of

consecutively made or missed ones. For instance, how is a streak affected

by time between shots? How can we define precisely what a streak is when

factoring in time? In the same vein, it would likely be significant to account
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for substitutions — a player sitting on the bench could possibly be analogous

to the ending of momentum. Other areas of future work include clustering

the results to ascertain similar basketball players and reasons behind the

clusters, as well as analyzing multiple seasons to increase the dataset size.

Taking a step back and looking at the bigger picture, the field of sports

data analytics is rising to the forefront of the industry. Teams from sports

worldwide are hiring data analysts to constantly remodel and reevaluate

player and team performance. We have shown that it is possible to make

predictions, recommendations, and perform statistical analysis given data

that is already available online, and that there is remarkable potential for

subsequent work.
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