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Overview

I Action videogames have common structures
I Character moving in space
I Between discrete rooms
I Among other characters

I MappyLand interprets live game play to discover these
structures
I With an overhead of one millisecond per frame

I New opportunities for game-aware AI
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This Talk

I What Mappy

I How Mappy

I Why Mappy



A Few Years Back

I We showed Mappy's predecessor at PCG'17
I Batch-mode only
I Not fast
I Room merging by visual similarity

I Then we �nished grad school and got jobs



Mappy → MappyLand

I Last year we Rewrote It In Rust

I On-line
I Recorded or live play traces
I (So it could �t into any AI pipeline)

I 1000x faster, vastly less RAM usage

I Merges rooms by tile similarity measure
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What do we learn?

I What are the contents of rooms?

I Which tiles can turn into which other tiles?

I Which objects start where in the rooms?

I Which rooms are connected to which other rooms?

I What parts of the world have not yet been explored?



Limitations

I NES only (for now)
I Working on CV models

I 2D, �at maps only
I No layers, no parallax
I Game Boy OK, Super NES not so much



Instrumentation

I Running an emulator means we can. . .
I Read scroll register changes
I Read sprite locations from OAM
I Speculatively execute di�erent input sequences



Implementation

I The screen is a grid of Tile IDs
I Plus an "unobserved" tile ID 0

I Maps are grids of Tile Changes
I "Observed a change from ID A to ID B at (x,y)"
I Maps start out with 0 → 0

I We remember how often a Tile ID transitions to another
I We remember how often a Tile Change is swapped with a

successor Tile Change

I Compact, memory-e�cient representation



Implementation

I The tricky new part: Room merging

I We often revisit the same room in a game
I In the same playthrough or in multiple plays
I Maybe we just see pieces of a room

I Must align and match the pieces
I Currently use a soft template matching algorithm

I Some essential ambiguities in non-Euclidean spaces
I Same room, or confusing maze?
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Good for AI players

I Feature extraction
I Tiles over pixels
I Sprites

I Combine with e.g. CHARDA for richer data

I High-level planning (maps!)

I Measure for novelty



Good for AI research

I More levels in corpora

I Pull more data from play traces
I Combine data from several traces

I Automated exploration



Good for human players

I E.g. speed-runners, randomizers

I Add mapping feature to old games

I Accessibility (Aytemiz et al.)
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