
MappyLand: Fast, Accurate Mapping for Console

Games

Joseph C. Osborn, Adam Summerville, Nathan Dailey,

Soksamnang Lim

September 28, 2021



Overview

I Action videogames have common structures
I Character moving in space
I Between discrete rooms
I Among other characters

I MappyLand interprets live game play to discover these
structures
I With an overhead of one millisecond per frame

I New opportunities for game-aware AI



Example



Example



Example



This Talk

I What Mappy

I How Mappy

I Why Mappy



A Few Years Back

I We showed Mappy's predecessor at PCG'17
I Batch-mode only
I Not fast
I Room merging by visual similarity

I Then we �nished grad school and got jobs



Mappy → MappyLand

I Last year we Rewrote It In Rust

I On-line
I Recorded or live play traces
I (So it could �t into any AI pipeline)

I 1000x faster, vastly less RAM usage

I Merges rooms by tile similarity measure



Pipeline

Control Inputs

Memory State

PPU Register Changes

Framebuffer

Sprite Detection

Playfield Detection

Control State 
Detection

Sprite Tracking

Read Tiles from 
Screen

Room Change 
Detection

Room Merging

Room Registration



What do we learn?

I What are the contents of rooms?

I Which tiles can turn into which other tiles?

I Which objects start where in the rooms?

I Which rooms are connected to which other rooms?

I What parts of the world have not yet been explored?



Limitations

I NES only (for now)
I Working on CV models

I 2D, �at maps only
I No layers, no parallax
I Game Boy OK, Super NES not so much



Instrumentation

I Running an emulator means we can. . .
I Read scroll register changes
I Read sprite locations from OAM
I Speculatively execute di�erent input sequences



Implementation

I The screen is a grid of Tile IDs
I Plus an "unobserved" tile ID 0

I Maps are grids of Tile Changes
I "Observed a change from ID A to ID B at (x,y)"
I Maps start out with 0 → 0

I We remember how often a Tile ID transitions to another
I We remember how often a Tile Change is swapped with a

successor Tile Change

I Compact, memory-e�cient representation



Implementation

I The tricky new part: Room merging

I We often revisit the same room in a game
I In the same playthrough or in multiple plays
I Maybe we just see pieces of a room

I Must align and match the pieces
I Currently use a soft template matching algorithm

I Some essential ambiguities in non-Euclidean spaces
I Same room, or confusing maze?



Example



Example



Good for AI players

I Feature extraction
I Tiles over pixels
I Sprites

I Combine with e.g. CHARDA for richer data

I High-level planning (maps!)

I Measure for novelty



Good for AI research

I More levels in corpora

I Pull more data from play traces
I Combine data from several traces

I Automated exploration



Good for human players

I E.g. speed-runners, randomizers

I Add mapping feature to old games

I Accessibility (Aytemiz et al.)


	Overview
	Background
	Technique
	Applications

