t.)

Check for
Updates

Cracking the code: Co-coding with Al in creative programming
education

Martin Jonsson
martin.jonsson@sh.se
Sodertorn University

Huddinge, Sweden

Jakob Tholander
jakobth@dsv.su.se
Stockholm University
Stockholm, Sweden

Figure 1: Participants engaged in co-creating computational graphics with the help of generative machine learning

ABSTRACT

This paper presents a study of a group of university students using
generative machine learning to translate from natural language to
computer code. The study explores how the use of the Al tool can
be understood in terms of co-creation, focusing on the one hand
on how the tool may serve as a resource for understanding and
learning, and on the other hand how the tool affects the creative
processes. Findings show how the participants search for a "correct’
syntax in their instructions to the machine learning tool, and how
the inconsistent and erroneous behavior can work as a way to
generate clues and inspiration for generating creative expressions.
The notion of friction is used to describe how systems like this can
serve to both lower thresholds for programming, and also interfere
with the creative processes, encouraging reflection and exploration
of alternative solutions.

CCS CONCEPTS

+ Human-centered computing — Interaction design process and
methods; Natural language interfaces.

This work is licensed under a Creative Commons Attribution International
4.0 License.

C&C’ 22, June 20-23, 2022, Venice, Italy

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9327-0/22/06.
https://doi.org/10.1145/3527927.3532801

KEYWORDS

GPT-3, generative machine learning, co-creation, programming,
post-human design

ACM Reference Format:

Martin Jonsson and Jakob Tholander. 2022. Cracking the code: Co-coding
with Al in creative programming education. In Creativity and Cognition
(C&C’ 22), June 20-23, 2022, Venice, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3527927.3532801

1 INTRODUCTION

In digitally mediated creative practices, such as interaction design
and various forms of digital fabrication, smart or intelligent tools
are becoming increasingly common to support the design process.
This development aligns with conceptual developments in design
research around notions such as post-anthropocentric [13] and post-
human design [37], co-performance [20], more-than-human design
[17], and machine agency [28] which all suggest a reconsideration
of the view that humans should be viewed as the only source of
creative agency, to instead see various forms of interactive and
digital technologies as having the agency to spur ideas or form a
creative expression. With recent developments in Al and generative
machine learning [12] these forms of co-creativity become even
more topical as several of these technologies are explicitly designed
to act as or resemble intelligent forms of co-actors, for instance
in producing various forms of fictional text, presentation material,
or programming code. In this paper, we present a study of how
a system for Al-generated programming code can co-exist with,
and be put to use in a higher education programming course for


https://orcid.org/0000-0003-1644-1778
https://orcid.org/0000-0002-2782-9500
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3527927.3532801
https://doi.org/10.1145/3527927.3532801
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3527927.3532801&domain=pdf&date_stamp=2022-06-20

C&C’ 22, June 20-23, 2022, Venice, Italy

interaction designers. In the study, the GPT-3 based Codex tool
[10] for generating programming code based on natural language
descriptions was introduced to a group of students attending a
course on creative programming in interaction design. The students
were asked to use the tool to work with assignments similar to those
that they had worked with previously during the course. They used
the tool to produce code that formed creative graphic expressions
and animations. The activity thus represents a form of co-creative
design activity between participants and the Al-based tool.

The study investigates questions concerned with co-creation in
the particular context of learning programming as a tool for creative
expression and design. Our findings shed light on a) traditional
obstacles of programming such as syntax and coding errors in
relation to the Al tool, b) how the participants perceived the relation
to the Al tool and its role in designing their creative expressions, and
c) how different framings of the Al-tool affect the understanding
and interpretations of the system behavior. To frame the challenges
and sometimes contradicting ways that the Al system affected the
processes of creation and sense-making among the participants,
we use and extend the notion of friction [11, 21]. This allows us to
consider the system both as a tool for learning to program and as a
co-participant in a creative process.

2 BACKGROUND
2.1 Generative machine learning

Recent development in Al research targeted at generative machine
learning, or Generative Adversarial Networks (GAN) [12] has led
to enormous improvements in the ability to generate original com-
puter generated content. GAN-technologies have been used to gen-
erate images, audio and text in numerous contexts, for example
realistic images of people that do not exist, and images based on
textual descriptions. What has been particularly successful is the
generation of textual content, primarily in the field of Natural
Language Processing (NLP), but also to generate other forms of tex-
tual content such as structured datasets, website layouts, database
queries, LaTeX equations, and not the least, programming code.
Several successful generative machine learning systems for natural
language processing (NLP) have been created in the last few years.
The study that is presented in this paper makes use of a machine
learning model called GPT-3 [7], developed by the company Ope-
nAl The GPT models are based on unsupervised learning where
a very large neural network is trained with massive amounts of
unstructured textual data scraped from the internet. GPT-3 has
been described as a "few-shot learner" [7], meaning that it is highly
versatile and can be adapted to a broad range of different domains,
by just providing a few additional training examples that direct the
model in a particular direction.

For this project, we are particularly interested in the ability of
these systems to interpret and translate natural language into work-
ing programming code. This means that you can ask the system
using natural language to produce programming code that per-
forms particular functions, such as simple cases of drawing a circle,
as well as more advanced programming expressions. This partic-
ular functionality is enabled by a variant of GPT-3, that goes by
the name Codex [10]. The GPT-3 Codex has been trained on mas-
sive amounts of examples of programming code, from large online

Martin Jonsson and Jakob Tholander

code repositories like GitHub. The GPT-3 Codex can thus perform
tasks such as translating between different programming languages,
translating from natural language to almost any programming lan-
guage, or providing natural language explanations of code snippets.
The complexity of the generated code is however limited in how
well it translates natural language expressions into working and
useful code.

2.2 Co-creation in design and programming

The idea of computers generating content in collaboration with hu-
man designers has existed for a long time. The notion of computer-
aided design (CAD) and the first CAD-software tools were created
already in the 1960s, to support and automate parts of the design
process. Albaugh et al. [1] discuss CAD-systems as an example
of a set of tools that can be categorized as "time saving systems"
aiming at shortening the time or expertise required for each de-
sign iteration by delegating repetitive or time-consuming work to
the machine, giving the users more space to focus on the creative
aspects of design. A development of computer-aided design is the
field of generative design [27], which often refer to tools or prac-
tices where algorithms are used to create design variations or to
optimize existing design solutions. This approach is mostly used
when working with 3D-models, within for example industrial de-
sign and architecture, where the models are modified by changing
a set of predefined parameters. A branch of generative design is
grammar-based techniques, where complex forms and patterns can
be automatically generated from simple specifications [9]. Such
an approach was for example used in work by Anderson et al. [4]
where generative design was used to let novice users design elec-
tronic circuitry. Here the generative design functionality provided
alternative suggestions for functional circuits based on high-level
descriptions from the users. A majority of this type of computer
aids supports design and creativity by lowering thresholds for par-
ticipation by automating complex tasks, but they have also been
used to support the exploration of a design space by providing
examples of possible variations to new solutions, that can serve as
inspiration for design [25].

Co-creation in relation to programming and programming educa-
tion is also a fairly well-explored area, even if not often talked about
in these terms. There are numerous tools designed to support and
simplify various aspects of programming and programming practice.
You could also consider the design of the programming languages
themselves as creating support for co-creation between human and
computer. A fundamental principle in computer programming is
the use of abstractions and high-level representations. In high-level
programming languages, hardware-specific commands are replaced
with textual commands and a syntax that more or less builds on
a formalized natural language syntax. There have been several at-
tempts to create support for programming in natural language, for
example by Miller already in 1981 [26], and later by Price et al. [30]
These early examples however require that that the user adheres to
a pre-defined syntax. This differs from the GPT-3 based system used
in this paper, which is not restricted to a particular syntax or set of
commands. Another strand of research and development concerns
computer supported programming, where the computer provides
"smart" support to the programming activity, such as finding ways



Cracking the code: Co-coding with Al in creative programming education

of providing automated feedback and repairing erroneous code to
students learning how to program [39]. Another common form of
support that is built into most IDE:s is code completion, where the
editor can provide suggestions for how to complete a command or
a set of commands, based on the input from the user.

2.3 Post-human perspectives on co-creation

The conceptual underpinnings of this paper rely on theories of the
interplay between human and machine with a broad foundation
in the research field of Human-Computer interaction, but with a
particular focus on post-human theories, and the recent articula-
tion of post-human design [13, 38]. This connects to the broader
conceptual conversation in HCI on material and machine agency
[3.5, 17, 28, 33, 35] as being shared or distributed among humans,
machines, and artefacts, and the reconsiderations of processes of
design and interactivity that these imply. At its core, post-human
perspectives on design rejects the traditional dichotomies between
humans and machines in favor of a perspective on design in which
humans and machines are considered to be co-creators in processes
of ideation, design and making. These theories put to the fore how
human agency must be understood as entangled with agencies that
stem from non-human entities, e.g. as extensively elaborated in
notions such as agential realism [5] and machine agency [28]. Of
particular relevance for the present work are studies that question
traditional categorizations of programming and creativity as rely-
ing on step-by-step models as going from design ideas - to digital
representations - to machine execution, and instead view humans,
materials, and machines as working in conjunct in co-creative and
co-performative ways.

We argue that artificial intelligence systems are particularly
interesting to explore as a form of non-human co-performer as they
display properties that resemble those that would be ascribed to -
or expected by - human actors, such as problem-solving and natural
language interpretation. An important strand in post-human and
post-anthropocentric interaction design has explored notions that
challenge common expectations of Al systems to work as rational
predictable actors, such as uncertainty [24], imperfection [18, 34,
36], and under-determination [1], and the consequences these have
on the way we conceptualize and design tools and methods for
these practices.

3 STUDY SETUP

The study was integrated into an ongoing course in Creative Pro-
gramming for third-semester students in a bachelor’s program fo-
cusing mainly on user experience and interaction design. The course
is a six-week full-time course aiming at teaching the foundations
of programming using javascript in a creative context, aiming for
the creation of audio-visual and interactive expressions. The course
makes use of the programming environment Processing and the
javascript library p5js which is tailored for creative programming
practices and commonly used by artists and other non-professional
programmers. The study was presented in the fifth week of the
course as a voluntary workshop on "programming with AI". 21
students chose to participate in the study, which was about half
the class. The workshop lasted for two hours and consisted of an
introduction to the Al tool, followed by independent work with

C&C’ 22, June 20-23, 2022, Venice, Italy

the Al tool to produce code, and finally, a follow-up focus group
interview.

The tool that the participants used was the OpenAl "playground”
tool that allows for interaction with the GPT3 based models. For the
study the Codex (davinci-codex) model was used, which is specifi-
cally trained to generate programming code. After being introduced
to the tool, the participants were presented with two tasks to work
with: First, they were asked to draw an ace of diamonds on the
screen - a well-defined and seemingly simple task, that however
hides some complexity related to rotating objects. The second task
was the main activity in the workshop, and here the participants
were asked to create a visually interesting expression - a task that
was similar to some of the assignments they worked with previously
in the course. To support these tasks, the participants had access to
afew "presets” in the playground tool. These presets consist of a few
lines of code providing example prompts to the GPT-3 model provid-
ing so-called few-shot learning’ [7] examples, giving hints of the
kind of output that are expected. In this case the presets consisted
of link to the p5js javascript library followed by a simple program
that draws a circle and a rectangle on the screen. The presets ended
with a natural language description of what kind of expressions the
tool should generate. In the first preset this line read: "Replace this
line with instructions that makes the Al draw an ace of diamonds",
as depicted in Figure 2. After each task, the participants were asked

Playground

<l-- Use p5.js version 1.4.8 to create a animated graphics --»>

<l-- https://github.com/processing/p5.js/releases/download/v1.4.6/p5.js -->

//setup

function setup() {
createCanvas (400, 46@);

}

//draw a red circle and a blue rectangle

function draw() {
background(220);
£i11(255,0,0);
ellipse(50,560,80,80);
fill(e,e,255);
rect(100,100, 80,80);

}

//byt ut den hdr texten mot instruktioner som gbr att AI:n ritar upp ruter ess

Figure 2: Screen capture of part of the OpenAl playground
window (from openai.com) showing the preset text that was
used in the first part of the study. The final line in Swedish
translates to: "Replace this line with instructions that make
the Al draw an ace of diamonds"

to write down their reflections on a number of questions about their
experience, and after the final task also provide the final code they
ended up with as a representation of "an interesting expression".
The session ended with a group interview where the group was
divided into two halves and asked to reflect on their experiences



C&C’ 22, June 20-23, 2022, Venice, Italy

based on some open-ended questions. The data that was collected
and analyzed consists of, on the one hand, video recordings of the
activities in the workshop and of the concluding group interviews,
and on the other hand of the material from 13 projects that were
handed in at the end of the workshop, consisting of programming
code and written reflections to the questions described above. In
the results section below, quotes from these answers refer to the
respective projects as P1-P13. That the 21 participants resulted in 13
hand-ins was due to that several participants chose to work in pairs,
and that a few participants decided to not hand in the material at
the end of the workshop. Transcriptions of the data were analyzed
using open coding and thematic analysis.

4 RESULTS

Of the 13 projects handed in after the workshop, 12 projects con-
tained working executable code, and are depicted as screenshots in
Figure 3. All but one of the artworks (P10) were animations that
changed their appearances over time. Three of the artworks (P1,
P7, P13) were interactive, reacting to mouse input. Neither the in-
structions in the assignment nor the preset examples mentioned
animations or interactivity as explicit aims of the assignments.
Throughout the workshop, the participants worked iteratively by
using the Codex system through natural language expressions to
generate javascript code representing those expressions, for in-
stance, "draw two red squares in the bottom half of the screen".
The Codex system would in most cases output syntactically correct
code snippets that adhered to the format that was provided in the
preset examples. The participants would then copy the generated
code into a separate programming IDE where they could execute
and try out the code, and modify it if needed. From the participants’
accounts, we saw that manual modification of the code happened
to a limited extent, and thus, participants primarily engaged in ex-
plorations of various natural language formulations for instructing
the Codex system.

4.1 Inconsistencies and errors

Even though the Codex system throughout the workshop almost
always provided syntactically correct and executable javascript
code, the output commonly did not correspond to the participants’
initial expectations or intentions. In many cases, the output was far
from what they were aiming for, as illustrated by this quote: I only
got flawed code. It had a hard time following simple instructions like
‘draw 2 triangles that are mirrored on the x axis’ sometimes it was
stuck with some of the instructions in a test so it wrote 13 copies of the
red triangle and it looked like it wanted to continue with that " (P3).
In other cases the output was more in line with what they aimed
for, as illustrated here: "For the most part, the code understood what
I 'wanted it to do, but I also commonly got it half right. An example of
this was that I asked for figures that change both color and size. At
first I only got figures in different sizes, but after reformulating the
sentence, it worked." (P6)

In general, the participants expressed that they found that the
system performed better when asked to draw basic shapes like cir-
cles and squares, and less well when asked to draw more complex
things. For instance, "it failed to draw things like bike, or a face, but
managed to produce a fair representation of ’a mountain, using lines’,

Martin Jonsson and Jakob Tholander

see Figure 4. The participants commonly talk about the generated
output in terms of being "correct” or "incorrect”, or making "right"
or "wrong" interpretations of their natural language instructions.
Typically they would express themselves similar to this example:
“The code that was generated was incorrect since I gave it the instruc-
tions to ‘draw a red square on 70 degrees’ but what came out was a red
triangle that wasn’t tilted” (P1). This view of how the Codex system
interprets user instructions is based on a traditional algorithmic
model where certain instructions correspond to specific reactions
by the system. Interestingly, this is quite far from how the Codex
system works and not how it was described by the instructor at
the beginning of the workshop. Instructions to the system do not
require following a specific syntax, but can be of an open-ended
natural language character.

In many cases, the Codex system would also provide a different
output if run twice with the same instruction. This kind of inconsis-
tencies and unpredictability was often experienced as frustrating
and confusing by the participants, but it also led them to explore
modes of interaction with the system where they would repeat the
instructions until they got a satisfactory output, as illustrated in
this quote: "At first the generator would not give me the right code
and forgot to sketch the ellipse. I gave it another try and it worked."
(P9)

These examples of perceived misinterpretations and inconsis-
tent behaviour bring along questions regarding how this kind of
system should be framed within the context of programming as a
creative practice. Considering the artificial intelligence system as a
co-participant in a creative process, it would not be surprising if the
same query would render different outputs, just like interactions
with other participants would not always unfold in a predictive
manner. Concerns about what should be considered a correct or
incorrect response thus rely on the point of view that the system
is looked upon, as an active contributor to the creative process or
as a tool that would be expected to respond in accordance to the
users’ instructions.

4.2 Instructing the system and expectations of
syntax

One of the most commonly recurring accounts from the partici-
pants concerned that they assumed that the instructions provided
to the Codex system - such as “draw a yellow circle” - required
a certain ’syntax’ in how they would be formulated to achieve
the desired output. This involved an assumption that to get the
results that you want from a particular query you would need to
formulate it syntactically correct, similar to that of a programming
language expression. "The code changes and is extensively affected
by small edits in the formulations, so it is very sensitive to errors" (P5).
Consequently, the participants put significant effort into finding
what they hoped would be the ’correct’ formulation of the query
that would lead to the intended outcome. A central aspect of how
the participants used the Codex system concerned exploring what
would be a working language to use in creating formulations that
would lead to the generation of pieces of code that could be useful
in designing their expressions. In the interviews with the partici-
pants, they said that they tried to adapt their instructions according
to what they figured "the AI" would understand. These queries



Cracking the code: Co-coding with Al in creative programming education

C&C’ 22, June 20-23, 2022, Venice, Italy

— - Y
00000 00 OSPIR S

QOO0 e 0o 0 00ONES :
009000 -0:-0 (
OooocooOQQo
©00°:00°0000
c0c@@O@e@e 0 0

e@e -0 Q000 0]
@@ e 0000000
@eceo@c -c000@
0@cc0ee - o0f
@-c000c000c0N

Figure 3: Image artworks generated by the participants in the workshop. A majority of the sketches were animated and some
of them were also interactive, reacting to mouse movements. P2 is omitted since the project did not contain any working

programming code

Figure 4: An early attempt at creating an expression by ask-
ing the system to create a ‘'mountain using lines’, resulting
in a triangular shape resembling a mountain, but also a set
of (not asked for) animated vertical lines

ranged from everyday natural language expressions such as “Could
you draw a nice yellow circle”, to more formal expressions such as
“draw circle yellow”. These attempts involved making assumptions
regarding the boundaries of what they figured that the system could
understand and what pieces of code that the system was capable of
producing.

These accounts resonate with previous research on interactions
with voice-based conversational agents, such as a study by Luger
and Sellen [22] where they found that the users of such systems
systematically tested appropriate speech syntax in order to ’speak
its language’ and to create a dynamic mental model of its’ capabili-
ties. Additionally, these accounts also mirror Luger’s and Sellen’s

identification that "When learning to use their CA, all participants
described making use of a particular economy of language", where
their participants dropped words other than ‘keywords’, reducing
the number of words used, and searching for the most specific
terms. These results are very similar to accounts that commonly
appeared in this study, such as: “Sometimes it requires that you use
a simplified language in order for it to understand” (P2). A quote
from another participant highlights expectations that the system
should be able to understand and interpret the underlying intention
of different sentences with similar meanings: "I can safely say after
testing several phrasings that the result totally depends on how the
sentence is formulated and how the computer generates code from
that. Several times different sentences but with the same meaning
resulted in different outcomes. I think that you have to find "code"
words, i.e., the words that the system can understand and write based
on that. To identify a pattern” (P11)

In the post-activity interviews one participant accounted for the
struggles to get one particular feature to work by experimenting
with different wordings, concluding that "on the time you spend
figuring out what you need to say to it, you can just code it yourself."
These various accounts pinpoint some of the central challenges in
the use and design of a system that should work as a co-participant
that should render nuances and interpretations to a creative process
that goes beyond a mere syntactical reading of an instruction, and at
the same time being predictable and to some extent understandable
in the output it generates.

4.3 Creative, generative, and conversational
use

When looking at what role the Codex system played in the creative
and explorative parts of the activity, some interesting perspectives
can be identified. Some participants for example point out that the
system promotes creativity by taking care of some of the difficulties
of programming, leaving more room to focus on the end result, as
in the following quote: "In my case it was an effective tool as I have



C&C’ 22, June 20-23, 2022, Venice, Italy

limited programming skills, which in turn limits what I can produce,
creatively in this kind of tasks. So therefore it has been an effective
way to promote creativity" (P11). A similar quote brings to the fore
how the system may be useful to realize creative ideas: "...when you
know in your head how you want to design something but you can’t
really pinpoint how to write it yourself" (P11).

While some participants approached the Codex system as a tool
to be used to simplify or speed up the coding process, others treated
it in a more ’generative’ and open-ended fashion. Adopting such a
generative approach involved using the system to create pieces of
code based on a more loosely defined idea. Such use largely took the
form of a conversational process, in which the system worked as a co-
participant in a collaborative process of developing the idea, rather
than as a tool that would serve a more well-defined purpose. In such
generative use, the joint actions of both participants and system
would constitute the shaping of a shared idea. These conversations
involved manipulation and tweaking of the generated code in order
to shape a creative expression. This entailed iterative processes of
using the Codex system to generate code that was manipulated
in subsequent actions of code generation and code manipulation
in order to solve the task. This kind of use was mirrored in the
participants’ reflections: “Sure, the code was useful in solving the
problem on your own, it provided hints as to how the task could be
solved.” (P1) or *when you only have a rough idea of how to design
something, but really cannot put the finger on how to write it yourself”
(P11)

This kind of conversational use was also reflected in how some
participants approached the exercise in a modular fashion. Typically,
they would create snippets of code that would contribute to solving
various parts of the expression they wanted to create. Programming
here largely became about experimenting with and manipulating
the instructions to the system, and also to some extent tweaking
the actual code that was generated. For instance: "It gave many
different idea suggestions and interesting expression that it created on
its own based on vague instruction. Lots of inspiring proposals that
could be used to to complete/extend/build a foundation for ones own
code” (P7) This experimental and conversational approach could be
understood in terms of having a conversation with the material [32],
where the material can be attributed with certain agencies [14, 35]
that shape the interaction.

As has been noted previously, the system often generated seem-
ingly random output, that was not at all in line with the users’
intentions, such as in this answer to a question about whether the
generated code was correct or flawed: "Both yes and no, yes because
we actually got something working, but no because the expression
wasn’t what we had in mind. It did not recognize the shapes we wanted
to use but generated circles or triangles instead” (P4). Sometimes this
partially random behaviour however led to interesting results, that
in some cases were perceived as having qualities that exceeded the
intended results: "I can’t say that the final became a unique expression
but in an earlier stage when I randomly typed in a sentence that was
generated by the Al it became a unique expression with rotating circles
that changed color and created a lively pattern which thereafter could
have been developed even more" (P11). In the post-activity interviews
the participants noted that the Codex system would "contribute to
a lot more creative solutions through its randomness". If we continue
the framing of creative design as engaging in conversations with

10

Martin Jonsson and Jakob Tholander

the material, parallels can be made with how Devendorf et al. [14]
talk about how non-intuitive technologies and unpredictable and
’stubborn’ design materials forces the user to negotiate her goals
with the machine. However, some participants also raised the issue
that the system merely generated a bunch of “weird stuff” without
any concrete connection to the desired expression. This points to
the necessity of considering the boundaries between experiencing
the system as working in an almost random fashion vs seeing it as
a co-actor that generates potentially useful ideas.

Another dimension that is commonly put to the fore in research
on generative design, concerns aspects of originality and authorship
[25], which here is expressed in terms of to what extent the partici-
pants saw the resulting expressions as authored by themselves or
by the Al system. Here the opinions differ with respect to whether
the participants viewed it as their own expressions, such as in this
quote: "I still think that it became like my own expression since it
made everything like I told it. And also since I understand the meaning
of the code" (P8). Or if the Al system is the primary source behind
the expression, such as in the following: "The expression I finally
ended up with was to the most part the Al's. I wrote ’fill the canvas
with lines’ it was the computer who drew the lines in different sizes
and placed them in this pattern. I never gave any specifications so
this was the computer” (P10)

4.4 Support for reflection and learning

In the post-activity group interviews, the participants were asked
to reflect on how useful tools like this could be for learning com-
puter programming. On this note, one participant argued that the
tool helps you not to get stuck in finding the exact programming
language syntax, which makes the learning activity more enjoyable.
As the system would always provide a potential starting point, it
might be easier than to merely start from a blank slate. Others
agreed that it is a potentially useful tool for novice learners, as you
can have an experimental approach where you generate code that
you then can modify and change on your own. As noted by one
of the participants in the concluding interviews: "It provided clues,
it does not always give perfect code, but still some kind of working
suggestions. It provides clues on how to structure things and what one
would need to learn more of.". Another participant compared work-
ing with the tool to how you work with pseudo-code in ordinary
programming education, but where the tool allows you to quickly
generate working code from the pseudo code, and that going back
and forth between these is beneficial to learn the programming
code syntax. A common view among the participants was however
that the system’s inability to correctly interpret the user’s inten-
tions was not beneficial to the learning situation. One participant
framed it as for it to work in this context "..it has to be flawless
so that it won’t generate code that does not contribute to what you
try to achieve otherwise there is a risk that you learn it wrong." And
another participant put it like: "It spits out so much and so random
things... and as a beginner you think that these things are related to
what you wrote"

Despite the participants’ view that the unreliable behavior of the
system is problematic in educational settings, we could also see that
these inconsistencies and flawed behaviour afforded a potential for
reflection and learning. During the workshop session, there were



Cracking the code: Co-coding with Al in creative programming education

many occasions where the participants struggled with not getting
the result they wanted, and where they had to closely investigate the
generated code to see why it did not work, and how to potentially
change it. We saw several cases in which participants scrutinized
the generated code and said that it acted weirdly, since according
to their interpretation it looked like it should. For instance, two
participants tried to rotate a square 45 degrees by using the function
“rotate(45)”, but the code did not execute as expected. This confused
them as they were quite convinced how “rotate” should work. They
continued by experimenting with different numbers based on the
errors of their initial trials, to figure out the correct usage of this
function.

One could see this as encouraging a form of reflection in action
[32], by creating an explorative situation of learning-by-doing and
tinkering, [31] where activities of code generation is intertwined
with activities of interpretation and meaning making. As noted by
several participants in the interviews, for this kind of interpretative
activities to become meaningful, a basic understanding of program-
ming is required: "I think that you have to know some programming
in advance, so that you know that here it made a mistake, and correct
it and take the things that are correct and use that". Ideally, the gen-
erated code should be a bit more advanced than the current level
of the student, (or in the zone of proximal development [15]), but in
the generative Al system used in this study, the level of complexity
of the generated code is difficult to control. As noted by one partic-
ipant: "Sometimes it gets really complex with nested loops with many
lines of code".

A final reflection with respect to learning concerns what the
introduction of these kinds of tools does for the motivation to
learn computer programming. As one participant puts it in the
interview: "If it generates the code for you, you are not motivated
to learn how to do it yourself". Given the rapid development of
Al in general, and generative machine learning in particular, it is
not unrealistic to assume that the performance of these types of
systems will increase. Here, one could argue that this paves the
way for entirely new types of programming practices based on
natural language interactions. So it might be a fair question to ask
from a student’s perspective, why do you need to know a particular
complex programming syntax, when you can just tell the Al system
what to create.

5 DISCUSSION AND CONCLUSIONS

The findings from the study show that there are conflicting views a
mong the participants on how to understand and use a system such
as this in the context of programming education, as well as on the
different ways it may aid the practice of computer programming in
a creative context. Traditionally, computer programming has been
framed as a form of problem-solving practice that resembles scien-
tific thinking, but more recently creative [6], embodied [19], and
craft-oriented [8] perspectives of programming have contributed
to a shift in this view. These bring up questions of how the practice
of programming should be understood in an interaction design
context and how a system that "co-creates" with the users should
be used and framed. Clearly, if the responses of the Codex system
are considered from the point of view of ’providing the code that
the participants asked for’, there are a considerable number of flaws

11

C&C’ 22, June 20-23, 2022, Venice, Italy

and inconsistencies in how it works. However, as reflected in sev-
eral accounts of the participants and as shown in previous work
on post-human design, uncertainty, inconsistencies, or ‘random-
ness’, (e.g.,[24, 34]), the responses of the Codex system contributed
to opening up for creativity and novel design ideas. Thus, when
viewing this form of interaction as a co-creative or co-performative
activity, the outcome cannot be determined based on a literal inter-
pretation of how the participants initially expressed their ideas, but
as a shared expression that unfolds in the interaction between user
and system. In the following sections, we will discuss the findings
in relation to three broader themes relating to co-creation with ar-
tificial intelligence: 1) learning to ’speak’ the language to creatively
use the system, 2) co-creation as a process of reducing or inducing
friction, and 3) managing user expectations by considering how the
system is framed within the creative process.

5.1 Cracking the code

Our findings point in several directions with respect to how par-
ticipants perceive the usefulness and the value of this system. In
many of the accounts from the participants, they claim that the
success of getting their intended response from the system depends
on their ability to formulate sentences that the Al understands,
thereby suggesting that there is some kind of syntax that need to
be figured out as one becomes more experienced in using the sys-
tem. These accounts reflect research on voice-based conversational
agents such as Alexa and Siri, showing how users tend to adapt and
simplify their language in a way that is assumed that the system
understands more easily. These studies highlight how natural lan-
guage interfaces do not communicate their capabilities in the same
way as traditional graphical user interfaces. Instead, users bring
expectations of using natural language from other settings, most
commonly from interaction with other natural language speakers,
and adapt their interpretation of the system’s response based on
those [22, 29]. As noted above, while many participants became
frustrated that the system did not generate code that worked in
the fashion that they had foreseen, they also expressed value in the
open-ended character of the interaction with the system. The open-
endedness and unpredictability were thus interpreted positively
as well as negatively. However, even if there is a value in that a
system is not fully predictable - it might still be problematic when
users expect that they have to figure out particular syntax when
interacting with the system, when, in reality, there is none. As one
participant said, "it’s like a mysterious system where you have to
‘crack the code’ in order to unlock the full potential of the system".
This particular mindset and understanding of the system can be
attributed to that machine learning systems like the GPT-3 system
used in this study can be described as ’black-box’ systems, where it
is inherently challenging to understand why the system behaves the
way it does. Contemporary guidelines for the design of Al systems
[2] generally strive for increasing the transparency of the system
by providing explaining what the system can do, how well it does it,
and why it did what it did. In the context of co-creation and creative
design it is however not obvious that it would be more beneficial
with a completely transparent system where capabilities and means
of communication are clearly articulated. The unpredictive and
inconsistent behaviour instead points to that the behaviour of the



C&C’ 22, June 20-23, 2022, Venice, Italy

system could be understood in terms of animism, as articulated by
Marenko and van Allen [24]. In this context, animism should not be
confused with anthropomorphism, as it is not a question of suggest-
ing human-like capabilities and modes of communication. Instead,
animism refers to a form of interaction that fosters the unexpected
instead of prediction and linearity, and where conversations with
things, rather than about or to things, take place. So learning to
‘talk to the AT’ from an animistic perspective is neither about con-
forming to a particular syntax, nor expecting a communication
that resembles that of another human. To ’crack the code’, becomes
a matter of learning to treat the interactions with the system as
contributions to a joint project of co-creation between human and
machine, appreciating what can be experienced as unpredictability
and inconsistency, rather than about unlocking what the machine
is exactly capable of.

5.2 Reducing or inducing friction

As noted by Albaugh et al [1], systems aiming for co-creation with
computers in creative contexts can be roughly divided into "time-
saving systems”, and "time-deepening systems", where the latter
aims at disrupting or dehabituating an otherwise familiar practice,
and supporting creative reflection. One way of rephrasing this is
that the system may either reduce or introduce friction into the
activity." Friction has previously been used in interaction design
research for example by Laschke and Hassenzahl [21], where the
notion of friction is described as a design quality that can be used to
nudge users towards meaning-making and reflective use. Similarly,
Cox et al. [11], talk about friction in terms of microboundaries that
create obstacles, fostering a more mindful use of technology. Our
findings show how the Codex system to some extent served both to
reduce friction, by e.g. providing programming code with accurate
syntax that they could use as a starting point to explore an idea, but
also to induce friction, by providing code that performed differently
than the users expected it to, thereby challenging them to expand,
refine or rethink their idea.

Our findings show numerous accounts of how the Codex system
may fill an important role in reducing friction in creative program-
ming practices. Many participants highlighted that it was useful to
get a ’starting point’ through an automatically generated piece of
code that executes and is syntactically correct. Some participants
point out that this could be particularly useful for inexperienced
programmers. To reduce friction, it is important that the system
responds in a consistent and predictable way, and that it actually
produces code in line with the users’ expectations. From this point
of view, the partially unpredictable behaviour of the system does not
serve to lower friction, but was sometimes experienced to include
flaws that would need to be mitigated by clarifying the system’s
behaviour.

However, our findings also show how the creative processes
might also benefit from introducing friction into the process. This
becomes particularly relevant in cases where the designer has a less
well-defined or even vague idea of what the end result should be. In
such a case, the system would instead play the role of co-exploring
the design space and providing novel directions and resources in a
creative process. Our findings provide several examples where the
participants initially aimed for a particular expression, but where
the system did not render exactly what they had hoped for. Instead,

12

Martin Jonsson and Jakob Tholander

the system generated code with unexpected elements, a form of
friction, that forced the users to reflect on and reconsider their ac-
tions and intent. In many cases, this steered the design exploration
in new and often more creative directions. In the context of creative
design, this reflects work by e.g. [23], [16] and [1], which have iden-
tified how aspects such as ambiguity, inconsistency, uncertainty,
and randomness, may work as resources in a creative process.

These ways of experiencing the Codex system represent con-
flicting views on how creative work can be supported, either by
reducing or inducing friction. Understanding friction from these
views requires that designers find ways to balance aspects of au-
tomation with aspects of interference in the creative process. In
some cases, it is preferable for the system to more closely align
with the user’s literal articulations, whereas in other cases it might
be better if the system interferes or diverges from them in order to
expand or open up a design space. We argue that the concept of
friction can capture both these dimensions of using and designing
these kinds of systems and thus become a potentially useful concept
in the context of co-creation with artificial intelligence.

5.3 Framing the system - tool or co-creator

In line with post-human design perspectives, introducing systems
of this kind in creative practices such as interaction design and
programming involves repositioning the relations between humans
and machines in the creative process. In particular, as opposed to
viewing design and creativity with such tools as uni-directional
processes governed solely by the actions and intent of the human,
this requires that we consider the use of this kind of system as
engaging humans and machines in co-creative dialogues. As our
findings show, in a co-creative practice, we cannot assume that a
system such as the one used here generates well-defined ideas or so-
lutions, but rather these systems should be understood as creatively
contributing to the unfolding of the design process. By considering
creative practice from this point of view, we argue that we con-
tribute by challenging the idea of the designer as the sole source of
the ideas and intents that form a particular creative expression and
thereby, expanding the space for the creative potential of this kind
of tools. By framing the activities with this kind of tool in different
ways we can engage users in attributing various degrees of agency
to the Al tool [20]. From one point of view, the system resembles a
passive tool that just acts on the command from the user. If the user
asks it to draw a circle, it should draw a circle. Sometimes the sys-
tem will understand the commands correctly and produce a correct
response, and sometimes it will fail to do so. From another point
of view, the system can be viewed as a co-performer or co-agent,
which aligns with how GPT-3 systems actually work, referring to
what can be labeled "few-shot learning’ systems [7], to which input
is provided, and then the system autonomously generates novel
output that is coherent with the provided input. From such a per-
spective, the issue is not to consider the behaviour of the system as
correct or incorrect, but rather an issue of to what extent the system
deviates from the original examples. Understanding the interaction
with these can be described through Kuijer’s and Giaccardi’s no-
tion of co-performance [20] to conceptualise the extent to which
artefacts are capable of performing and exerting agency together
with people. In contrast to notions of good or bad performance of a
technological artifact, this shifts focus to the contextually situated



Cracking the code: Co-coding with Al in creative programming education

"appropriateness’ of the joint human and artificial performances. In
the context of this study, framing the interaction as a joint perfor-
mance, shifts focus from how well the system output aligns with
the user intention, to instead emphasize the resulting animated
expressions as a joint achievement between user and system.

5.4 Conclusions

In this paper, we have shown how the sometimes inconsistent and
imperfect behaviour of an Al-based system for generating program-
ming code provided various challenges for the participants engaged
in a programming exercise. However, it also worked as a creative
resource and as a means to encourage reflection on the solutions
that they were developing. To frame the challenges that a system
such as this might introduce, we use and extend the existing notion
of friction, as a way to address the need to balance the qualities
of automation with that of interfering in the creative process. We
believe that finding ways of dealing with these two aspects is cru-
cial to successful use of generative Al for co-creation in creative
settings. We stress the importance of framing when presenting
activities to users, that involve generative Al for co-creation. By
designing settings of use that involve a post-human design per-
spective, the users’ understanding of what can be expected from it
can be addressed, thereby putting generativity and unpredictabil-
ity at the core, rather than a well-defined query-response system.
Finally, our findings point to how in interaction with black-box
systems such as the Codex, experimentation with language and
syntax becomes a core part of the activity. In reflecting on the ac-
tivity, participants displayed an understanding of the use of the
Codex system as a matter of figuring out how to talk to the system
to get the response they looked for. This suggests that introducing
generative Al support for computer programming based on natural
language interaction, although it might relieve the programmers
from some of the struggles related to the syntax of the program-
ming language, also introduces new struggles with identifying or
inventing an effective "syntax’ in the interaction with the Al-system
itself.

REFERENCES

[1] Lea Albaugh, Scott E. Hudson, Lining Yao, and Laura Devendorf. 2020. Investi-
gating Underdetermination Through Interactive Computational Handweaving.
In Proceedings of the 2020 ACM Designing Interactive Systems Conference (DIS
’20). Association for Computing Machinery, New York, NY, USA, 1033-1046.
https://doi.org/10.1145/3357236.3395538

Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Igbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
Al Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
1-13. https://doi.org/10.1145/3290605.3300233

Kristina Andersen, Ron Wakkary, Laura Devendorf, and Alex McLean. 2019.
Digital crafts-machine-ship: creative collaborations with machines. interactions
27,1 (Dec. 2019), 30-35. https://doi.org/10.1145/3373644

Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-
Circuits: Leveraging Generative Design to Enable Novices to Design and Build
Circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). Association for Computing Machinery, New
York, NY, USA, 331-342. https://doi.org/10.1145/3126594.3126637

[5] Karen Barad. 2007. Meeting the Universe Halfway: Quantum Physics and the
Entanglement of Matter and Meaning. Duke University Press. Google-Books-ID:
H41WUfTU2CMC.

Ilias Bergstrom and R. Beau Lotto. 2015. Code Bending: A New Creative Coding
Practice. Leonardo 48, 1 (Feb. 2015), 25-31. https://doi.org/10.1162/LEON_a_
00934

[2

—

(3

=

=

=

13

C&C’ 22, June 20-23, 2022, Venice, Italy

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learn-
ers. arXiv:2005.14165 [cs] (July 2020). http://arxiv.org/abs/2005.14165 arXiv:
2005.14165.

[8] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The

LilyPad Arduino: using computational textiles to investigate engagement, aes-

thetics, and diversity in computer science education. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI "08). Association for

Computing Machinery, New York, NY, USA, 423-432. https://doi.org/10.1145/

1357054.1357123

Scott C. Chase. 2005. Generative design tools for novice designers: Issues for

selection. Automation in Construction 14, 6 (Dec. 2005), 689-698. https://doi.org/

10.1016/j.autcon.2004.12.004

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,

Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish

Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe

Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,

Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex

Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,

Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,

Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam

McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large

Language Models Trained on Code. arXiv:2107.03374 [cs] (July 2021). http:

//arxiv.org/abs/2107.03374 arXiv: 2107.03374.

AnnaL. Cox, Sandy J.J. Gould, Marta E. Cecchinato, Ioanna Iacovides, and Ian Ren-

free. 2016. Design Frictions for Mindful Interactions: The Case for Microbound-

aries. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human

Factors in Computing Systems (CHI EA ’16). Association for Computing Machinery,

New York, NY, USA, 1389-1397. https://doi.org/10.1145/2851581.2892410

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A. Bharath. 2018. Generative Adversarial Networks: An

Overview. IEEE Signal Processing Magazine 35, 1 (Jan. 2018), 53-65. https:

//doi.org/10.1109/MSP.2017.2765202 Conference Name: IEEE Signal Processing

Magazine.

Laura Devendorf, Abigail De Kosnik, Kate Mattingly, and Kimiko Ryokai. 2016.

Probing the Potential of Post-Anthropocentric 3D Printing. In Proceedings of the

2016 ACM Conference on Designing Interactive Systems (DIS ’16). Association for

Computing Machinery, New York, NY, USA, 170-181. https://doi.org/10.1145/

2901790.2901879

Laura Devendorf and Kimiko Ryokai. 2015. Being the Machine: Reconfiguring

Agency and Control in Hybrid Fabrication. In Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems (CHI ’15). Association

for Computing Machinery, New York, NY, USA, 2477-2486. https://doi.org/10.

1145/2702123.2702547

Tayebeh Fani and Farid Ghaemi. 2011. Implications of Vygotsky’s Zone of

Proximal Development (ZPD) in Teacher Education: ZPTD and Self-scaffolding.

Procedia - Social and Behavioral Sciences 29 (Jan. 2011), 1549-1554. https://doi.

0rg/10.1016/j.sbspro.2011.11.396

William W. Gaver, Jacob Beaver, and Steve Benford. 2003. Ambiguity as a resource

for design. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI "03). Association for Computing Machinery, New York, NY, USA,

233-240. https://doi.org/10.1145/642611.642653

Elisa Giaccardi and Johan Redstrom. 2020. Technology and More-Than-Human

Design. Design Issues 36, 4 (Sept. 2020), 33-44. https://doi.org/10.1162/desi_a_

00612

Miwa Ikemiya and Daniela K. Rosner. 2014. Broken probes: toward the design of

worn media. Pers Ubiquit Comput 18, 3 (March 2014), 671-683. https://doi.org/

10.1007/500779-013-0690-y

Martin Jonsson, Jakob Tholander, and Ylva Fernaeus. 2009. Setting the stage —

Embodied and spatial dimensions in emerging programming practices. Interacting

with Computers 21, 1-2 (Jan. 2009), 117-124. https://doi.org/10.1016/j.intcom.

2008.10.004

Lenneke Kuijer and Elisa Giaccardi. 2018. Co-performance: Conceptualizing

the Role of Artificial Agency in the Design of Everyday Life. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/

3173574.3173699

Matthias Laschke, Sarah Diefenbach, and Marc Hassenzahl. 2015. “Annoying,

but in a Nice Way™:. 9, 2 (2015), 12.

—
)

[10

(1]

(12]

[13

(14]

[15

[16

[17

(18]

[19

™
=

[21


https://doi.org/10.1145/3357236.3395538
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3373644
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1162/LEON_a_00934
https://doi.org/10.1162/LEON_a_00934
http://arxiv.org/abs/2005.14165
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1016/j.autcon.2004.12.004
https://doi.org/10.1016/j.autcon.2004.12.004
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2851581.2892410
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1145/2901790.2901879
https://doi.org/10.1145/2901790.2901879
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1016/j.sbspro.2011.11.396
https://doi.org/10.1016/j.sbspro.2011.11.396
https://doi.org/10.1145/642611.642653
https://doi.org/10.1162/desi_a_00612
https://doi.org/10.1162/desi_a_00612
https://doi.org/10.1007/s00779-013-0690-y
https://doi.org/10.1007/s00779-013-0690-y
https://doi.org/10.1016/j.intcom.2008.10.004
https://doi.org/10.1016/j.intcom.2008.10.004
https://doi.org/10.1145/3173574.3173699
https://doi.org/10.1145/3173574.3173699

C&C’ 22, June 20-23, 2022, Venice, Italy

[22] Ewa Luger and Abigail Sellen. 2016. "Like Having a Really Bad PA": The Gulf
between User Expectation and Experience of Conversational Agents. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(CHI ’16). Association for Computing Machinery, New York, NY, USA, 5286-5297.
https://doi.org/10.1145/2858036.2858288

[23] Betti Marenko. 2015. When making becomes divination: Uncertainty and con-
tingency in computational glitch-events. Design Studies 41 (Nov. 2015), 110-125.
https://doi.org/10.1016/j.destud.2015.08.004

[24] Betti Marenko and Philip van Allen. 2016. Animistic design: how to reimagine
digital interaction between the human and the nonhuman. Digital Creativity 27,
1 (Jan. 2016), 52-70. https://doi.org/10.1080/14626268.2016.1145127 Publisher:
Routledge _eprint: https://doi.org/10.1080/14626268.2016.1145127.

[25] Jon McCormack, Alan Dorin, and Troy Innocent. 2004. Generative Design: A Par-
adigm for Design Research. DRS Biennial Conference Series (Nov. 2004). https://dl.
designresearchsociety.org/drs-conference-papers/drs2004/researchpapers/171

[26] L.A.Miller. 1981. Natural language programming: Styles, strategies, and contrasts.
IBM Systems Journal 20, 2 (1981), 184-215. https://doi.org/10.1147/sj.202.0184
Conference Name: IBM Systems Journal.

[27] James Mountstephens and Jason Teo. 2020. Progress and Challenges in Generative
Product Design: A Review of Systems. Computers 9, 4 (Dec. 2020), 80. https:
//doi.org/10.3390/computers9040080 Number: 4 Publisher: Multidisciplinary
Digital Publishing Institute.

[28] J. Brian Pickering, Vegard Engen, and Paul Walland. 2017. The Interplay Between

Human and Machine Agency. In Human-Computer Interaction. User Interface

Design, Development and Multimodality (Lecture Notes in Computer Science),

Masaaki Kurosu (Ed.). Springer International Publishing, Cham, 47-59. https:

//doi.org/10.1007/978-3-319-58071-5_4

Martin Porcheron, Joel E. Fischer, Moira McGregor, Barry Brown, Ewa Luger,

Heloisa Candello, and Kenton O’Hara. 2017. Talking with Conversational Agents

in Collaborative Action. In Companion of the 2017 ACM Conference on Computer

Supported Cooperative Work and Social Computing. ACM, Portland Oregon USA,

431-436. https://doi.org/10.1145/3022198.3022666

David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. 2000. NaturalJava:

a natural language interface for programming in Java. In Proceedings of the 5th

[29

[30

14

[31

[32

[33

[34

[35

]
]

]

Martin Jonsson and Jakob Tholander

international conference on Intelligent user interfaces (IUI ’00). Association for
Computing Machinery, New York, NY, USA, 207-211. https://doi.org/10.1145/
325737.325845

Mitchel Resnick and Eric Rosenbaum. 2013. Designing for tinkerability. In
Design, make, play: Growing the next generation of STEM innovators, M Honey
and D Kanter (Eds.). Routledge, New York, NY, USA, 163-181.

Donald A. Schon. 1987. Educating the reflective practitioner: Toward a new design
for teaching and learning in the professions. Jossey-Bass, San Francisco, CA, US.
Pages: xvii, 355.

Lucy Suchman. 2017. Agencies in Technology Design: Feminist Reconfigurations™.
In Machine Ethics and Robot Ethics. Routledge. Num Pages: 15.

Jakob Tholander and Maria Normark. 2020. Crafting Personal Information -
Resistance, Imperfection, and Self-Creation in Bullet Journaling. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/
3313831.3376410

Jakob Tholander, Maria Normark, and Chiara Rossitto. 2012. Understanding
agency in interaction design materials. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’12). Association for Computing
Machinery, New York, NY, USA, 2499-2508. https://doi.org/10.1145/2207676.
2208417

Vasiliki Tsaknaki and Ylva Fernaeus. 2016. Expanding on Wabi-Sabi as a Design
Resource in HCL In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). Association for Computing Machinery, New York,
NY, USA, 5970-5983. https://doi.org/10.1145/2858036.2858459

Ron Wakkary. 2020. A Posthuman Theory for Knowing Design. 14, 3 (2020), 12.
Ron Wakkary. 2021. Things We Could Design: For More Than Human-Centered
Worlds. MIT Press. Google-Books-ID: UiYSEAAAQBA].

Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). Association for Computing Machinery,
New York, NY, USA, 481-495. https://doi.org/10.1145/3192366.3192384


https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1016/j.destud.2015.08.004
https://doi.org/10.1080/14626268.2016.1145127
https://dl.designresearchsociety.org/drs-conference-papers/drs2004/researchpapers/171
https://dl.designresearchsociety.org/drs-conference-papers/drs2004/researchpapers/171
https://doi.org/10.1147/sj.202.0184
https://doi.org/10.3390/computers9040080
https://doi.org/10.3390/computers9040080
https://doi.org/10.1007/978-3-319-58071-5_4
https://doi.org/10.1007/978-3-319-58071-5_4
https://doi.org/10.1145/3022198.3022666
https://doi.org/10.1145/325737.325845
https://doi.org/10.1145/325737.325845
https://doi.org/10.1145/3313831.3376410
https://doi.org/10.1145/3313831.3376410
https://doi.org/10.1145/2207676.2208417
https://doi.org/10.1145/2207676.2208417
https://doi.org/10.1145/2858036.2858459
https://doi.org/10.1145/3192366.3192384

	Abstract
	1 Introduction
	2 Background
	2.1 Generative machine learning
	2.2 Co-creation in design and programming
	2.3 Post-human perspectives on co-creation

	3 Study Setup
	4 Results
	4.1 Inconsistencies and errors 
	4.2 Instructing the system and expectations of syntax
	4.3 Creative, generative, and conversational use
	4.4 Support for reflection and learning

	5 Discussion and conclusions
	5.1 Cracking the code
	5.2 Reducing or inducing friction
	5.3 Framing the system - tool or co-creator
	5.4 Conclusions

	References

