
When the Curious Abandon Honesty:
Federated Learning Is Not Private

Franziska Boenisch∗, Adam Dziedzic∗†§, Roei Schuster∗§,

Ali Shahin Shamsabadi∗‡§, Ilia Shumailov∗§, and Nicolas Papernot∗†
∗Vector Institute †University of Toronto ‡The Alan Turing Institute

Abstract—In federated learning (FL), data does not leave
personal devices when they are jointly training a machine
learning model. Instead, these devices share gradients, pa-
rameters, or other model updates, with a central party
(e.g., a company) coordinating the training. Because data
never “leaves” personal devices, FL is often presented as
privacy-preserving. Yet, recently it was shown that this
protection is but a thin facade, as even a passive, honest-but-
curious attacker observing gradients can reconstruct data of
individual users contributing to the protocol.

In this work, we show a novel data reconstruction
attack which allows an active and dishonest central party
to efficiently extract user data from the received gradients.
While prior work on data reconstruction in FL relies on
solving computationally expensive optimization problems or
on making easily detectable modifications to the shared
model’s architecture or parameters, in our attack the central
party makes inconspicuous changes to the shared model’s
weights before sending them out to the users. We call the
modified weights of our attack trap weights.

Our active attacker is able to recover user data perfectly,
i.e., with zero error, even when this data stems from the
same class. Recovery comes with near-zero costs: the attack
requires no complex optimization objectives. Instead, our
attacker exploits inherent data leakage from model gradients
and simply amplifies this effect by maliciously altering the
weights of the shared model through the trap weights. These
specificities enable our attack to scale to fully-connected and
convolutional deep neural networks trained with large mini-
batches of data. For example, for the high-dimensional vision
dataset ImageNet, we perfectly reconstruct more than 50%
of the training data points from mini-batches as large as
100 data points. In textual tasks, such as IMDB sentiment
analysis, more than 65% of data points from mini-batches
containing 100 data points can be perfectly reconstructed.

1. Introduction

With machine learning (ML) being increasingly ap-
plied to sensitive data in critical use-cases such as health
care [21], [39], smart metering [16], [49], or the internet
of things [27], [36], there is a growing need for privacy-
preserving training schemes that do not leak sensitive
information. Federated learning (FL) is a widely popular
distributed learning protocol [33] where user data can be
utilized for jointly training an ML model without the data

§. Equal contribution.

Original

Extracted

Original

Extracted

ive read a few of the reviews and im kinda
sad that a lot of the story seems [UNK] ...

ive read a few of the reviews and im kinda
sad that a lot of the story seems [UNK] ...

Figure 1: Original and Reconstructed Data. Original
data and data points extracted from model gradients with
our trap weights attack. Extraction is perfect i.e. recon-
struction error is zero.

ever leaving the users’ device. Instead, the device com-
putes and sends model updates to a central party which
aggregates them to produce a shared model. Assuming
the model updates do not reveal the user data, FL would,
thereby, preserve a notion of privacy.

This assumption has been repeatedly contested by
prior work. It has been shown how the model updates sent
to the central party not only leak training data member-
ship [34] (i.e. allow the attacker to tell if a given data
point was used in training) but also properties of the
training data [14], [34]. Inspecting model updates allows
attackers to even (partially) reconstruct [12], [15], [50],
[53], [55], [56] users’ training data. Ultimately, FL in
its naive implementation offers little to no guarantees
regarding potential leakage of user data to other users or
to the central party.

Yet, existing data reconstruction attacks either are
computationally expensive and yield low-fidelity extrac-
tion [55], [56], are limited to small mini-batch sizes [15],
or require modifications of the model architecture that are
trivially detected [12]. Another other line of concurrent
work proposes modifications to the model parameters
that are still easily noticeable: The attack introduced by
Pasquini et al. [37] sets a noticeable portion of parameters
to zero or negative values. Similarly, the attacks by Wen et
al. [52] zero out many parameters of the last fully con-
nected classification layer. In this work, we perform data
extraction from large mini-batches of local data based on
inconspicuous manipulations of the shared model weights.
We start by showing scenarios where the gradients sent
to the central party include full, memorized training data
points. We then proceed to show that a malicious central
party can significantly amplify this leakage by simply

175

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Franziska Boenisch. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00020

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
20

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

adversarially setting the model’s weights with our trap
weights method, prior to dispatching the weights to users.

Our trap weights mainly rely on re-scaling components
in the model’s weights matrix and can be applied to
unmodified model architectures, which makes the attack
more stealthy. By adversarially initializing the shared
model with our trap weights, the central party can ensure
they are able to perfectly extract a significant portion of
the users’ training data, as depicted in Figure 1. This
even holds when the gradients are computed over large
training data mini-batches containing only data from the
same class, a scenario in which previous optimization-
based attacks usually fail to obtain high-fidelity recon-
structions [48]. Since in FL, the central party holds full
control over the shared model weights that are sent out to
users, our attack integrates naturally in the FL protocol.
Furthermore, our attack is highly computationally efficient
since it extracts individual training inputs by simply pro-
jecting the appropriate portions of the users’ gradients
onto the input domain. Finally, we show both in theory and
in practice that our attack is equally successful when users
perform multiple rounds of local training (Fed-Avg [33])
and send the model updates instead of the gradients to the
central party.

In summary, we make the following contributions:

• We observe that in neural networks starting with
a fully-connected layer, even gradients of large
training data mini-batches contain individual train-
ing data points. In other words, in FL, mini-batch
training data points are often directly sent from
users to the central party, such that even an honest-
but-curious central party has access to them.

• We show that a dishonest and active central party
can amplify the leakage of individual training
data points and extend it to other model archi-
tectures by adversarially initializing the weight of
the shared model.

• In this setting, we perform data reconstruction on
image and text data. Our attack is able to perform
an extremely computationally efficient extraction
of individual training data points in only a single-
step computation over the received model updates
with the attack setup depicted in Figure 2. For
complex image datasets such as ImageNet [8], the
attack yields perfect reconstruction of more than
50% of the training data points, even for large
training data mini-batches that contain as many as
100 data points. For textual tasks such as IMDB
sentiment analysis [32], it perfectly extracts more
than 65% of the data points for mini-batches with
100 data points.

2. Background: Neural Networks, Federated
Learning, and Differential Privacy

Neural Networks. Let fW : Rm → {1, · · · , k} be a k-
class classifier defined as a set of l layers parameterized
by trainable weights W . Each layer consists of a linear
operation paired with a non-linear activation function (e.g.
ReLU). In this work, we consider two popular layer types:
fully-connected and convolutional layers.

Figure 2: Course of our Attack. Our attack () targets
two points in the FL protocol: At iteration t, the central
party actively manipulates the weights W of the shared
model fW before the model is sent out to the users. This

causes the gradients G
[t]
i of user i to contain individual

training data points which the central party can then
extract before calculating the averaged gradients G[t] and
applying them to fW .

The goal of the model fW is to map an input xi ∈ X
to its desired ground-truth yi ∈ Y . Therefore, the model
weights W are adapted in a training process, most com-
monly with the mini-batch Stochastic Gradient Descent
(SGD). To adjust the initial W , mini-batch SGD repeats
the following sequence of steps: (1) sample a mini-batch
of size B from the training data {(X,Y)b}Bb=1, (2) take a
forward pass through the model to obtain its predictions
on the mini-batch, (3) compute the difference between
predictions and ground-truth labels, called the loss L, (4)
compute the gradient of L w.r.t. the weights, called the
weight gradient G, and update the weights accordingly.

To bootstrap mini-batch SGD, weights need to be
initialized by sampling from a random distribution; pop-
ular distributions include the zero-mean Gaussian [17],
Xavier [18] or He [22] distributions. The choice of distri-
bution has a large effect on learning success [10]. In fact,
when weights are maliciously initialized, the final model’s
utility might be degraded [20].

Federated Learning. FL [33] is a communication proto-
col for training a shared ML model fW(·) on decentralized

data {(Xi, Yi)}Ni=1 owned by N different users {ui}Ni=1.
Since collecting and managing all the data centrally might
be costly, time consuming, and stand in conflict with
the confidentiality of these respective users’ data, FL
enables each user to keep their data locally. A central party
coordinates the training of the shared model by iteratively
aggregating gradients computed locally by users.

More formally, let t ∈ {1, · · ·T} be the current itera-
tion of the FL protocol. At iteration t = 0, the model f(·)
is initialized (at random) by the central party denoted as C.

Let f
[t]
W (·) be the model with its weightsW [t] at iteration t.

At every iteration t, M out of the N (M � N) users are
selected to contribute to the learning. Then, each of the

selected M users ui obtains f
[t]
W (·) from C and calculates

the gradients G
[t]
i for f

[t]
W (·) based on one mini-batch b

sampled from their local dataset (Xi, Yi)b. In other words,

the user computes the gradient G
[t]
i = ∇WL((Xi, Yi)b).

Each ui uploads their gradients to C, who then averages
all of these gradients to update the shared model’s param-

176

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

eters:

G[t] =
1

M

M∑
i=1

G
[t]
i , W [t+1] =W [t] − ηG[t]. (1)

FL, thereby, represents a decentralization of the mini-
batch SGD (i.e. distributed training from mini-batches of
user data).

3. Existing Data Reconstruction Attacks

This section introduces prior work on passive and
active data reconstruction attacks in FL and discusses the
limitations of attacks based on iterative optimization.

3.1. Passive Attackers

Passive attackers performing data reconstruction at-
tacks in FL can simply observe the received gradients but
not maliciously manipulate the protocol. Phong et al. [38]
were the first to show how gradients leak information that
can be used to recover training data from single neurons or
linear layers. Recent work [15], [23], [38], [45], [50], [53],
[55], [56] proposed that the central party or users involved
in FL training launch data reconstruction attacks based
on either training a Generative Adversarial Network [19]
(GAN) or solving a second order optimization problem.

Optimization-based Instance Reconstruction Attacks.
Several attacks aim to reconstruct individual user data
points while also relaxing the assumption that data labels
are available to the attacker. Zhu et al. [56] proposed
Deep Leakage from Gradients (DLG), where a data re-
construction attack is formulated as a joint optimization
problem on the labels and input data, see Algorithm 2
in Appendix A. iDLG [55] sped up the convergence rate
of DLG [56] by analytically computing the labels based
on the users’ gradients of the last layer. These works, and
other optimization-based ones [15], are limited to a setting
where mini-batches only contain a single example, i.e.,
B = 1. GradInversion [53] regularizes DLG’s objective to
improve the extraction fidelity, attaining some success in
extraction for mini-batches of size B > 1. In Section 7.4
we compare performance of our approach against a state-
of-the-art optimization-based attack. Our attack is superior
in extracting individual training data even for large mini-
batch sizes of B ≥ 100, and being far more computation-
ally efficient (even for passive adversaries in the honest-
but-curious model). We present a more thorough overview
on passive data reconstruction attacks in Appendix A.

Limitations of Optimization-Based Attacks. We hereby
provide a brief exposition to Zhu et al. [56]’s DLG, as a
representative case study of an optimization-based attack.
Their approach, characteristic of optimization-based data
reconstruction attacks, is given in Algorithm 2 in Ap-
pendix A. It firstly randomly initializes a “dummy data
point and corresponding label” (x̂, ŷ) and computes the

resulting “dummy gradients” as Ĝ = ∇WtL(fWt(x̂), ŷ).
Then, they iteratively optimize the dummy data to produce

gradients that are close to the original gradients Gt
i by

solving:

x∗i = argmin
x̂

‖G[t]
i − Ĝ‖2 (2)

y∗i = argmin
ŷ

‖G[t]
i − Ĝ‖2. (3)

DLG often fails to reconstruct high-fidelity data points
and discover the ground-truth labels consistently because
of a lack of convergence in the optimization. While other
methods offer improvements (e.g. iDLG [55] sped up the
convergence by simplifying the objectives in Equations 2
and 3 from both data and label reconstruction to only
data reconstruction; and GradInversion [53] adds useful
regularization), they suffer from the same pathology.

We identify several reasons for this. First, the gra-
dient of the loss is non-injective i.e. is not invertible
everywhere: different mini-batches may yield nearly iden-
tical gradients [43]. This holds whether the user samples
mini-batches that contain multiple data points or a sin-
gle data point only, i.e. B = 1. Second, optimization-
based attacks converge to different minima due to the
underlying randomness (see step 1 in Algorithm 2 in the
Appendix). These minima correspond to different possible
reconstructions of the input that often differ from the
original training points [53]. Third, optimization-based
attacks are computationally expensive: they either need to
train a GAN or solve a second-order gradient optimization
problem. Instead, our attack extracts exact data points
from the gradients without any optimization or GAN
training.

3.2. Active Attackers

In the work most similar to ours, [12] considers a
threat model with an active and dishonest central party,
similar to our setup. This attack relies on the existence of a
fully-connected layer early within the network (otherwise,
the attack adds it). Since this layer’s weights have to
contain many weight rows with the exact same weight
values, this layer is inherently detectable.1 Additionally,
they do not discuss passive analytical-extraction attacks.
Finally, our work generalizes their setup and performs
successful extraction also for textual data.

In follow-up work, [52] proposes an attack that re-
quires modifications to the model parameters (specifically,
to the last fully-connected classification layer) sent to a
user but without changing the model architecture. The
attack extracts single data points by increasing the gradient
contribution of a target data point and decreasing the
gradient contribution of other data points. The final goal
of an attacker is to reduce an aggregated gradient to
an update calculated on a single sample. The attack is
easily detectable since it requires many parameters in the
last layer to be zeroed out. Moreover, our attack extracts
individual data points in a single training round while

1. This is inherent to the attack because the method relies on each row
computing the exact same function on the data and binning its result by
varying only the bias term, such that it becomes likely that a bin contains
only one input. Conversely, our trap weights are initialized such that it
is likely that an output neuron is only activated for a single input in
a mini-batch while avoiding imposing a highly regular structure on the
weight matrix.

177

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

their approach requires a collection of many updates from
an individual user. In the cross-device FL setting where
participants get randomly sampled from millions of users,
it is possible that single users participate fewer times than
required by the attack.

In another active attack proposed by [37], a server
sends distinct malicious parameters to individual users.
The main purpose of the attack is to circumvent the
protection of Secure Aggregation (SA) in FL and enable
the central party to learn individual model updates from a
target user. However, the work does not propose individual
user-data point extraction, as enabled by out trap weights.
We argue that by including our trap weights into their
attack and sending our trap weights to the target user, they
could efficiently extract this target user’s private data.

4. Threat Model and Assumptions

This section presents our threat model in terms of the
assumed attacker, the FL deployment, and the assumptions
required for our attack to succeed.

4.1. The Attacker

Our attacker aims at extracting individual training data
points from a chosen subset of the participating users.
Therefore, the attacker’s primary vantage point is the
central party who is in charge of orchestrating the FL
protocol. The assumption here is that, for example, the
company orchestrating the FL protocol or potential rogue
employees, are untrusted. This is the same attacker that FL
is meant to defend against by leaving data on the users’
devices. For brevity, in the following, we will refer to the
central party as the attacker, even though the attacker can
be a third party controlling the central party to deploy our
trap weights-attack.

In FL, the central party initiates the FL protocol and
chooses the task to train the shared ML model for. There-
fore, the central party is aware of the type, domain, and
dimensionality of data held by the users. It instantiates
the shared model appropriately to learn from this data.
Furthermore, in the standard FL scenario considered in
this work, the central party holds full control over the
shared model weights and can read users’ gradient updates
that are sent back. Finally, our central party is in charge
of sampling the users who contribute their gradients in
a given round—following standard deployments of the
protocol [5]. This allows the central party to even run
targeted attacks against specific users.

4.2. Assumptions and FL Setup

Following prior work [5], we consider an FL protocol
where users calculate the model gradients locally on one
(potentially large) mini-batch of their training data and
share the resulting gradients directly with the central
party. We assume that the data features are scaled in the
range [0, 1], which is a standard pre-processing step in
ML. When users have abundant amounts of data, they
can perform local gradient calculation and averaging over
more than one mini-batch, see evaluation in Section 7.3.

We, furthermore, assume that the attacker is in pos-
session of a small amount (e.g., one mini-batch) of data

from the users’ private data domain. This is no strong
assumption given that the central party chooses the ML
task and has to instantiate the ML model appropriately.

The weight-manipulation attacks we study in this pa-
per are not agnostic of the model architecture. In designing
the attack, we focus on victim models that contain a
ReLU-based fully-connected layer, and we experiment
with several different types of such networks. This is not
a material limitation: the approach of manipulating shared
model weights to promote leakage is very flexible, and can
be extended to cover many more architectures as needed
using similar techniques. For example in Section 6.3 and
Appendix B, we show how to extend the attack to work
on networks that contain convolutional layers and in Sec-
tion 7, also experimentally evaluate extraction under the
presence of a token-embedding layer.

4.3. Course of Attack

The course of our attack is illustrated in Figure 2. In a
given round of the protocol, the central party maliciously
manipulates the shared model with our trap weights. Note
that the central party does not necessarily attack all users
in every round of the protocol. Instead, it can target one
or several specific users in one or more chosen round(s).
To target a subset of the M users at iteration t, the central
party can send out different models to users under attack
and other users [37]: while the targeted users receive a
model initialized with our trap weights, all other users
receive the shared model used to train the ML task.
Attacking only a few users in a few rounds makes the
attack more stealthy and allows the central party to train
a performant shared model based on the gradient updates
received in the benign rounds or from non-targeted users.

After receiving the gradients from users under attack,
the central party simply projects the appropriate portions
these gradients onto the input domain. In the following
section, we will show how this approach can yield perfect
extraction of the users’ data points.

5. Passive Analytical Extraction for FC-NNs

Here, we show how the gradients of an FC-NN directly
leak the individual training data points they are computed
on, even to a passive attacker who just observes said
gradients. In Section 5.1, we formally show that for a
single training data point, i.e. a mini-batch size of B = 1,
perfect extraction from the network gradients is possible.
Then, in Section 5.2, we motivate why it is also possible
to perfectly extract a small number of individual data
points from gradients, even when working with larger
mini-batches of size B > 1. However, the success of
this passive extraction attack drops as the mini-batch sizes
increase. This limitation motivates our active adversarial
weight initialization attack, which we introduce in Sec-
tion 6.

5.1. Single-Input Gradients Directly Leak Input

It has been shown by Geiping et al. [15] that a
single input data point x can be reconstructed from the
gradients of any fully-connected layer which is preceded

178

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

only by fully-connected layers and contains a bias b. This
holds if the gradient of the loss w.r.t. the layer’s output
y = ReLU(Wx+b) = max(0,Wx+b) contains at least
one non-zero entry. For detailed proof of the above see
Proposition D.1 in [15]. In particular, when considering
the first model layer, reconstructing its input data directly
corresponds to obtaining the original input data point x.
Let yi denote the output of the ith neuron of the first and
fully-connected layer of a model, and let wT

i be the corre-
sponding row in the weight matrix and bi the correspond-
ing component in the bias vector. Assume wT

i x+ bi > 0,
and therefore, ReLU(wT

i x+ bi) = wT
i x+ bi. The recon-

struction of the input x is done by calculating the gradients
of the loss w.r.t. the bias and the weights as follows:

∂L
∂bi

=
∂L
∂yi

∂yi
∂bi

=
∂L
∂yi

(4)

since ∂yi

∂bi
= 1, where yi = wT

i x+ bi.

∂L
∂wT

i

=
∂L
∂yi

∂yi
∂wT

i

=
∂L
∂bi

xT (5)

Thus, if any ∂L
∂bi

�= 0, perfect reconstruction is given
by:

xT = (
∂L
∂bi

)−1 ∂L
∂wT

i

(6)

According to Equation (5), the gradient of the loss
w.r.t. the weights directly contains a scaled version of
the input data. The exact scaling factor is (∂L

∂bi
), which

is the gradient of the loss w.r.t. the bias. This gradient is
computed in the regular backward pass together with the
gradient of the weights. Therefore, obtaining the scaling
factor by just reading it from the gradients of the bias
and inverting it to (∂L

∂bi
)−1 comes at zero costs and the

factor can be directly applied to rescale the gradient of
the weights and obtain the input data point x, see Equa-
tion (6). Intuitively, the reason why there is a rescaled
version of the input data in the gradients and why this
would be beneficial for learning can be motivated by
revisiting the simple perceptron algorithm [13]. When an
input is misclassified, the weight update in the perceptron
algorithm consists simply in adding this input to the
weights, which makes the algorithm learn.

5.2. Mini-batch Gradients Directly Leak Some
Individual Inputs

It turns out that individual data point leakage is
not limited to gradients computed over a mini-batch of
size B = 1: we observe that gradients computed over
larger mini-batches also sometimes leak individual train-
ing points. To forge an intuition for this phenomenon,
Figure 8 in Appendix D visualizes the gradients of the
first fully-connected layer’s weight matrix of the FC-
NN described in Table 9. We see that we are able to
clearly distinguish some of the training data points within
the rescaled gradients. This is despite the fact that these
gradients were computed over a mini-batch of B = 100
inputs sampled from the CIFAR10 dataset.

Why do some gradients contain individual training
data points? We denote a training data mini-batch by

X = {x1, x2, · · · , xB} ∈ R
(m×B) with B > 1. The

gradient of this mini-batch X is equal to the average
of all gradients computed for each of the data points
{x1, x2, · · · , xB} that make up the mini-batch. Let yi
denote again the output of the ith neuron of the fully-
connected layer, and let wi and bi be the corresponding
row in the weight matrix and the component in the bias
vector, respectively. Then the gradient GwT

i
and Gbi of

wi and bi can be computed as follows:

GwT
i
=

1

B

B∑
j=1

∂L
∂y(i,j)

∂y(i,j)

∂wT
i

Gbi =
1

B

B∑
j=1

∂L
∂y(i,j)

∂y(i,j)

∂bi

(7)

with y(i,j) = ReLU(wT
i xj+bi). These equations illustrate

that the gradient GwT
i

over the data mini-batch X contains
a weighted overlay of all the input data points xj from
the mini-batch. The weighting, therein, depends on the
contribution of each data point to the model loss L.

We observe that, in some cases, all but one training
data point x∗ from the data mini-batch have zero gradi-
ents. This is due to the max operation in ReLU(wT

i x +
bi):= max(wT

i x + bi, 0). When wT
i x + bi is negative,

the ReLU outputs zero, which results in zero gradients
for the corresponding data point. When the gradients are
zero for all data points but for the one data point x∗,
the weight gradient GwT

i
from Equation (7) becomes

GwT
i
= 1

B
∂L

∂y(i,∗)
∂y(i,∗)
∂wT

i

with y(i,∗) = ReLU(wT
i x

∗ + bi).

This reduces the data extraction from the case of B > 1
to the case of B = 1, for which we saw in Section 5.1
that the data point x∗ can be perfectly extracted. In other
words, wT

i x+bi being negative for all data points but one
results in accidental leakage of that data point—enabling
its exact reconstruction by a passive adversary.

5.3. Individual Inputs still Leak from Mini-batch
Gradients computed in FedAvg

FedAvg is another popular protocol for FL [33] where
users do not send their gradients after each local itera-
tion of training. Instead, they calculate T ′ many local
epochs over l mini-batches of their data. After each it-
eration t′ of the total T ′ · l many local iteration, they
update the model according to the respective gradients
of the weights and biases, and a learning rate η as

f t′+1
W (·) = f t′

W(·)− η(∂L
∂wt′ ,

∂L
∂bt′

). Once the local training
is completed, the users send the updated shared model
fT ′
W (·) to the central party. By calculating the difference

between the shared model f0
W(·) sent to the user and

the obtained model, and by re-scaling according to η,
the central party obtains the value of the user’s local

model update as
∑T ′

t′=1
∂L

∂wt′ ,
∑T ′

t′=1
∂L
∂bt′

=
f0
W(·)−fT ′

W (·)
η .

According to Equation (5), after every local iteration t′
the gradient of the local weights ∂L

∂wt′ = x ∂L
∂bt′

. Therefore,∑T ′

t′=1 w
t′ =

∑T ′

t′=1 xb
t′ = x

∑T ′

t′=1 b
t′ . Since the server

knows
∑T ′

t′=1 b
t′ from the model update, it can multiply(∑T ′

t′=1 b
t′
)−1

· ∑T ′

t′=1 w
t′ = x and extract the user

179

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

data perfectly. We experimentally validate this theoretical
insight on large mini-batches at the end of Section 7.3.

6. Active Adversarial Initialization of the
First Fully-Connected Layer

Section 5 illustrates under which conditions model
gradients leak data points to a passive attacker capable of
observing these gradients. In the following, we show how
an active attacker can amplify previously-accidental leak-
age during the passive attack by controlling the weights
wi and biases bi. For example, while a passive attacker
can extract roughly 20% of arbitrary data points from a
batch size B = 100 for 1000 neurons (i.e. weight rows in
the fully-connected layer) on ImageNet, the active attack
can more than double the number of extracted data points
to 45%. Next, we show how to make such malicious
choices to extract a larger number of individual training
data points from model gradients.

6.1. Intuition of our Trap Weights

Without loss of generality, we will suppress the bias
term in the following considerations. The multiplication of
a single weight row wi corresponding to the ith neuron
at the fully-connected layer with some input data point x
can be expressed as a weighted sum of all of the features
in x as follows

yi = wT
i x =

m∑
j=1

w
(j)
i xj . (8)

In weight row wi, let N and P denote the sets of indices
that hold the negative and positive weight components,
respectively. Given ReLU activation, the ith neuron is
only activated on x if the sum of the features weighted by
the negative components is smaller than the sum of the
features weighted by the positive components:

∑
n∈N

w
(n)
i xn <

∑
p∈P

w
(p)
i xp. (9)

Therefore, x will yield non-zero gradients at the ith

neuron if and only Equation (9), holds for its features.
When the inequality holds only for a single data

point in a mini-batch, this data point can be individually
extracted from the gradients, as described in Section 5.2.
The idea behind our trap weights is to set the components
within each weight row corresponding to the neurons of
the first fully-connected layer, such that Equation (9) only
holds relatively rarely in inputs, and is therefore likely to
only hold for a single data point within a mini-batch.

6.2. Adversarial Weight Initialization

Intuitively, our approach adversarially initializes each
row of the weight matrix to increase the likelihood that
only one data point in a given mini-batch will activate
the neuron corresponding to that row. To achieve this,
we initialize a randomly chosen half of the components
of the weight row to negative values, and the other half
to the corresponding positive values, by sampling from a
Gaussian normal distribution. The positive components of

Algorithm 1: Adversarial Initialization of a
Weight Row.

Input: Weight row wi of length L, Gaussian
distribution N (μ, σ) with mean μ and std
σ, Scaling factor s < 1, Discrete uniform
distribution U(·, ·)

Output: Adversarially initialised weight row wi

1: N = {i|i ∼ U(1, L)} where |N| = 1
2L � Select

randomly indices for negative weights

2: P← {i /∈ N|i ∈ [L]} � Select indices for

positive weights

3: z− ∼ N (μ, σ)|z− ∈ R−
1
2L � Negative samples

4: z+ = −s · z− � Positive samples

5: wi[N]← Shuffle(z−) � Initialize negative

weights

6: wi[P]← Shuffle(z+) � Initialize positive

weights

the weight row are scaled down with a small factor s < 1
in comparison to the negative components. This increases
the impact of the negative components on the weighted
input sum to the corresponding neuron. This causes most
input data points to produce non-positive input to the
neuron, such that only a few (in the best case only one)
input data point activates the neuron. See Algorithm 1 for
a formalization of our initialization.

We use the scaling factor s to specify how much larger
the absolute values of the negative weight components
should be than the positive values. This determines how
”aggressively” our activation causes weighted inputs to
individual neurons to be negative, thereby to be filtered
out by the ReLU function and to have zero gradients for
most input data points. The ideal value of s when it comes
to attack effectiveness is dataset-dependent. The attacker
can to fine-tune s either on a small amount of data from
the users’ input domain it holds before sending the trap
weights to the users. Alternatively, they can fine-tune s
without any data from the users’ input domain and solely
by exploiting the passive data leakage, or using data with
the same dimensionality as the users’ data as we show in
Section 7.3.

Our adversarial initialization causes the ReLU func-
tion for many neurons at the fully-connected layer to
activate only for one input data point per mini-batch. Due
to the randomness in the initialization of each weight row
corresponding to a neuron, different neurons are likely to
be activated by different input data points. Thereby, the
gradients of different weight rows allow for the extraction
of different individual data points. We demonstrate the
success of our trap weights for data extraction in Sec-
tion 7.3 by showing that they increase the proportion of
neurons that only activate on one random individual data
point in a mini-batch by more than factor 10, and thus
we are able to extract more than double the number of
individual training data points. E.g. our trap weights cause
51.4% of active neurons out of 1000 to by activated by
individual data points from the ImageNet dataset while
random model weights with a Gaussian normal initial-
ization with σ = 0.5 only yield 4.4%. This allows for
an individual extraction of 45.7% of the data points in a

180

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

mini-batch of size B = 100 for our trap weights versus
21.8% with random model weights.

6.3. Trap Weights for Other Architectures

To enable perfect extraction, our attack relies on the
presence of a ReLU-based fully-connected layer at the be-
ginning of the model architecture. Since in FL, the central
party is in charge of instantiating the model architecture,
this does not represent a practical limitation.

For some application domains, the central party might
want to train ML models beyond pure FC-NNs though,
i.e., models where the first layer is not fully-connected.
In Appendix B, we show how an attacker can apply mali-
cious manipulations to shared model’s weights to extend
our attack to CNN-based architectures. These architectures
consist of several convolution layers and some fully-
connected layers which the attacker can leverage for ex-
traction. The intuition of the attack-extension is to convert
the convolution layers to identity functions which transfer
the user’s input data to the first fully-connected layer in
the model. The attacker initializes this layer with our trap
weights and can then extract user data. In Appendix B.3,
we discuss how to also make the manipulations of the
convolutional layers most stealthy.

In the following section, we also evaluate extraction
for text-data in model architectures that contain an embed-
ding layer before the first fully-connected layer. Extraction
is done from the fully-connected layer whose input con-
sists of the embedding layer’s output. To reconstruct the
original text tokens from a sequence of extracted embed-
dings, the attacker creates a lookup dictionary, mapping its
initialized embeddings back to their corresponding tokens
(this is the inverse mapping to the embedding layer). To
avoid vector-comparisons for each lookup, the attacker
uses hash values for vector embeddings as keys.

7. Experimental Evaluation

In this section, we validate that our adversarial weight
initialization attack allows a central party to reconstruct
individual training data points from gradients shared by
users. We use three different image datasets, namely
MNIST [31], CIFAR10 [29], and ImageNet [8] and the
text-based IMDB [32] dataset for sentiment analysis. Be-
cause our approach is applicable to FC-NNs and CNNs,
we test it against both of these architectures. We instantiate
our attack against an FC-NN for the MNIST dataset,
and against a CNN for CIFAR10 and ImageNet. For the
IMDB dataset, we use a model whose input is 250-token
sentences, and consists of an embedding layer, which
maps each token in a 10,000-word vocabulary to a 250-
dimensional floating-point vectors, and inputs these to a
fully-connected layer. The specifics of our model architec-
tures for image and text data are described in Table 9 and
Table 10 in Appendix C, respectively. We implemented
our trap weights, and the experiments in TensorFlow [3]
version 2.4. The code will be open sourced after the peer
review process.

Attack Instantiation. Since the central party has access
to the gradients of all model layers uploaded by users, it
is able to choose which layer to instantiate the attack on.

For the FC-NN, we adversarially initialize the first
layer with our trap weights and extract training data points
from its gradients. In the CNNs, we first initialize the
convolutional layers to transmit the input data to the
first fully-connected layer of the architecture. Then, we
adversarially initialize this layer’s weights with our trap
weights for extraction.

For the text classifier, we initialize the weights of
the embedding layer with a random uniform distribu-
tion (min=0., max=1.) to create the inputs for the fully-
connected layer. We then adversarially initialize this fully-
connected-layer’s weights with our trap weights to per-
form extraction of the embeddings there.

7.1. Extraction Success Metrics

We introduce three novel metrics to measure the suc-
cess of individual data point extraction.

Active Neurons. By measuring the number of active
neurons (A) we can determine for how many neurons their
respective weighted inputs are positive. This is important
because data extraction for both overlaying and individual
data points is only possible with activated neurons. If a
neuron is not activated by any data point, no informa-
tion can be transmitted over this neuron and, hence, the
gradients will all be zero.

Extraction-Precision. Our second metric, which we call
extraction-precision, captures the percentage of non-zero
gradient rows at the given layer’s weight matrix from
which we can extract any input data point individually.
This metric enables us to quantify how well the adver-
sarial weight initialization manages to generate weights
that cause activation for exactly one single data point.
Extraction-Precision can be calculated as follows:

P =
G1

A
, (10)

with A denoting the active neurons, and G1 denoting the
number of gradient rows from which we can extract a data
point individually and with an �2-distance of zero to any
of the input data points.

However, the extraction-precision metric alone would
not be expressive enough since a high extraction-precision
could be achieved despite the exact same individual
training input being reconstructed from all gradient
rows. Therefore, we defined another metric that we call
extraction-recall.

Extraction-Recall. The extraction-recall measures the
percentage of input data points that can be perfectly
extracted from any gradient row. We define it by

R =
B0

B
, (11)

where B is the number of data points in the given mini-
batch and B0 is the number of these data points that we
can extract with an �2-error of zero from the rescaled
gradients.

Interpretation of Success Metrics. Note that our attack
seeks to find an adversarial initialization that balances set-
ting enough neurons’ outputs to zero (such that a gradient
is more likely to isolate individual points from large mini-
batches) with, at the same time, having enough neuron

181

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

MNIST CIFAR10 ImageNet
Weights Initializer P R P R P R

Xavier Normal .004 .037 .048 .203 .046 .213
Xavier Uniform .005 .048 .053 .229 .040 .201
Gaussian (σ=0.01) .005 .048 .051 .226 .041 .203
Gaussian (σ=0.1) .005 .049 .053 .238 .043 .209
Gaussian (σ=0.5) .006 .050 .058 .255 .044 .218
Gaussian (σ=1) .006 .059 .058 .256 .045 .218
Gaussian (σ=2) .007 .061 .058 .259 .047 .217

TABLE 1: Extractability with Random Initializa-
tions. Impact of random initialization functions on the
extraction-precision (P) and extraction-recall (R) of indi-
vidual training data points from the model gradients. The
displayed numbers refer to a mini-batch of 100 data points
and 1000 neurons for extraction in the first model layer
(FC-NN architecture from Table 10). Results are averaged
over 10 runs with different random initializations.

Passive Attack Our Active Attack
B A P R A P R

20 .842 .072 .900 .519 .610 1.000
50 .885 .050 .552 .776 .376 .962
100 .909 .036 .254 .910 .192 .654
200 .927 .030 .128 .978 .070 .255

TABLE 2: Data Extraction on IMDb Dataset. The ex-
traction success depends on the size B of the mini-batches
for passive attack and active attack with adversarial initial-
ization. The results depict the percentage of active neurons
(A), extraction-precision (P), and extraction-recall (R).
All numbers are averaged over 10 runs with different
random and adversarial initialization of the model from
Table 10, respectively.

outputs’ that are non-zero (otherwise, in the limit, no
points would be extracted). Thus, active neurons provide
additional context for the extraction-precision: with few
active neurons, even a high extraction-precision might not
be able to extract many individual training data points,
simply because there are very few gradients to perform
data extraction from. However, with many active neurons,
the extraction-recall might become small, due to each
neuron being most likely activated by several input data
points, preventing individual extraction.

7.2. Evaluating the Passive Attack

Recall from Section 5 that extraction of training data
from gradients is possible even when model weights are
initialized randomly. We evaluate this passive attack to
obtain a baseline for our adversarial weight initialization
strategies. To evaluate the passive attack, we measure the
extraction success of individual training data points from
the gradients of randomly initialized models.

Table 1 reports the extraction-precision and extraction-
recall of training data point extraction from the gradi-
ents of randomly initialized models. These gradients are
computed over a mini-batch of 100 data points for 1000
neurons (i.e. 1000 weight rows’ gradients for extraction)
in the first fully-connected layer. We later study the impact
of these two parameters on the success of reconstruction
attacks. Even if this attack is passive, and the central
party has not modified any of the weights adversarially,
training data extraction is often successful: for the MNIST
dataset, around 6% of individual training data points can

MNIST CIFAR10
Epoch Loss L A P R Loss L A P R

0 .526 .998 .005 .050 1.857 .907 .053 .232
5 .067 .997 .044 .137 1.352 .900 .044 .195
10 .021 .997 .116 .154 1.088 .913 .041 .196
15 .006 .997 .131 .165 .768 .923 .043 .206
20 .002 .997 .136 .167 .472 .931 .050 .232
25 .001 .997 .140 .169 .282 .935 .058 .241
30 .001 .997 .142 .168 .200 .936 .062 .267

TABLE 3: Data Extractability from Converging Mod-
els. Results depict the success of passive data extraction
based on the training stage of the corresponding models.
We show the percentage of active neurons (A), extraction-
precision (P), and extraction-recall (R) for extraction with
a mini-batch size of 100 data points from the first layer
of the fully-connected network from Table 9. All numbers
are averaged over 10 runs with different random initial-
izations.

Figure 3: Evolution of Model Weights over Training.
Distribution of the first layer’s weights of the FC-NN from
Table 9 over training on the MNIST dataset. Weights
at epoch zero were initialized with a random uniform
distribution.

be directly extracted from the model gradients, whereas
for CIFAR10 and ImageNet, roughly 26% and 22% of the
training data points can be perfectly extracted. The passive
attack for extracting embeddings from the IMDB dataset
yields roughly 25% extraction-recall for 1000 neurons and
mini-batches of 100 data points, see Table 2.

These results also suggest that setting higher spread, in
form of standard deviations to random weight distributions
alone can already significantly increase the extraction-
recall of individual data points from the model gradients,
see Table 1. This is, most likely, due to the larger span
within the weight values.

Additionally, we also set out to investigate how as
training progresses, and the model’s weights converge,
the extraction’ success evolves. We initialized the FC-
NN from Table 9 with a Xavier Uniform distribution and
trained the model on MNIST and CIFAR10 for 30 epochs.
Table 3 depicts the results. We observe that the extraction-
recall increases slightly over the training epochs. Ana-
lyzing the distribution of the model weights in Figure 3
shows that over training, the uniformly initialized weight
values resemble more a normal distribution and obtain a
wider spread, which might be the reason for the increased
extraction success.

7.3. Evaluating Active Manipulations

We now turn to our active attack, which implements
our trap weights to amplify the vulnerability exploited by
passive attacks. This amplification is controlled by the
scaling factor s in the trap weights. We first evaluate the
impact of this scaling factor on the reconstruction quality

182

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

MNIST CIFAR10 ImageNet

s A P R A P R A P R

.400 .022 .803 .114 0. 0. 0. .0. 0. 0.

.500 .149 .636 .354 0. 0. 0. 0. 0. 0.

.600 .462 .408 .526 0. 0. 0. 0. 0. 0.

.700 .796 .203 .540 0. 0. 0. 0. 0. 0.

.800 .959 .062 .334 0. 0. 0. 0. 0. 0.

.900 .996 .010 .089 .034 .946 .077 0. 0. 0.

.950 .999 .003 .029 .729 .412 .540 0. 0. 0.

.960 .999 .003 .027 .925 .175 .522 0. 0. 0.

.970 1. .002 .020 .993 .025 .198 .002 .900 .013

.980 1. .002 .021 1. .001 .008 .043 .986 .049

.990 1. .002 .020 1. 0. 0. .655 .514 .457

.995 1. .002 .018 1. 0. 0. .999 .007 .055

.999 1. .002 .017 1. 0. 0. 1. 0. 0.

TABLE 4: Impact of Hyperparameter s. Success of
our adversarial weight initialization dependent on the hy-
perparameter s, which downscales the positive weights.
The results depict the percentage of active neurons (A),
extraction-precision (P), and extraction-recall (R) with a
mini-batch size of 100 data points from the first fully-
connected layer of the respective architectures from Ta-
ble 9. All numbers are averaged over 10 runs with different
adversarial initializations.

MNIST CIFAR10 ImageNet
(B, N) A P R A P R A P R

(200, 20) .522 .436 .720 .454 .670 .695 .090 .948 .355
(200,50) .690 .302 .428 .662 .494 .452 .381 .763 .304

(200,100) .782 .196 .218 .846 .280 .269 .653 .500 .240

(200,200) .859 .121 .086 .954 .124 .096 .886 .233 .113

(500,20) .535 .451 .915 .452 .689 .870 .096 .939 .490
(500,50) .697 .301 .624 .653 .505 .614 .387 .767 .426

(500,100) .792 .205 .397 .845 .290 .422 .646 .508 .358

(500,200) .871 .129 .185 .950 .119 .177 .892 .240 .199

(1000,20) .539 .444 .950 .441 .703 .915 .102 .942 .595
(1000,50) .705 .300 .760 .648 .504 .724 .388 .770 .516

(1000,100) .796 .203 .540 .844 .297 .556 .655 .514 .457

(1000,200) .871 .124 .293 .951 .120 .256 .892 .238 .288

(3000,20) .541 .442 1. .441 .696 .945 .101 .934 .640
(3000,50) .704 .299 .888 .646 .503 .812 .386 .764 .586

(3000,100) .797 .203 .746 .840 .286 .711 .649 .518 .579

(3000,200) .873 .129 .504 .951 .122 .414 .889 .243 .404

TABLE 5: Effect of Mini-Batch Size and Number of
Neurons on Data Extraction. Success of our adversarial
weight initialization is dependent on the mini-batch size
B and the number of neurons N that corresponds to the
number of weights rows. The results depict the percent-
age of active neurons (A), extraction-precision (P), and
extraction-recall (R). All numbers are averaged over 10
runs with different adversarial initializations.

of individual training data points over a mini-batch of 100
data points and 1000 neurons.

Table 4 depicts the results, averaged over ten different
random adversarial initializations. We can see that the best
scaling factor for MNIST, when it comes to the extraction-
recall, is s = 0.7. With this scaling factor, we are able
to extract on average 54.0% of the individual training
data points which were involved in the users’ gradient
computations. This is an improvement by around factor
nine to the passive attack. For CIFAR10 and Imagenet,
the best scaling factors concerning extraction-recall are
s = 0.95, and s = 0.99, which allow for a perfect recon-
struction of 54.0%, and 45.7% of the individual training
data points, respectively, for 1000 neurons and a mini-
batch size of 100 data points. Thereby, the active attack
is more than twice as successful as the passive attack for
extracting individual training data points in these datasets.
Figure 11, Figure 12, and Figure 13 in the Appendix D
show the visual reconstruction results of the best run for
the MNIST, CIFAR10, and ImageNet dataset, respectively.
For CIFAR10, we additionally present extraction success
when all local data stems from the same single class.

(a) s = 1, Baseline (b) s = 0.99 (ImageNet)

(c) s = 0.95 (CIFAR10) (d) s = 0.7 (MNIST)

Figure 4: Influence of s on Trap Weight Distribution.
When s = 1, the distribution of weights follows the stan-
dard Gaussian normal distribution (here σ = 0.5). This
corresponds to the baseline of random initialization. For
ImageNet and IMDB (b) and CIFAR10 (c), the difference
in distribution to the random Baseline (a) is negligible.

Similar improvements of performance could be
achieved for the IMDB dataset. The best extraction was
achieved also with s = 0.99, for which, with 1000 neurons
and mini-batches of 100 data points, we obtained an
extraction-recall of 65.4%, which is around 2.5 time as
high as the passive attack, see Table 2.

In Figure 4, we show the influence of the scaling
factor s, our method’s hyperparameter, on the distribution
of our trap weights. The case s = 1 corresponds to the
baseline where positive components in the trap weights
are not scaled down. The figure shows that the more
s deviates from 1, the larger the difference between a
random distribution and our trap weights. For CIFAR10
and ImageNet (s = 0.95, and s = 0.99), our trap weights’s
distribution is very close to the the random distribution,
making our trap weights more stealthy. The best scaling
factor for MNIST, s = 0.7, is significant smaller than for
ImageNet and CIFAR10 due to the sparsity in the data (the
background in MNIST images consists of zero pixels).
Our experiments indicate that with decreasing sparsity and
increasing data dimensionality, s approaches 1. Especially
the last observation makes sense since scaling more pos-
itive components with a factor closer to 1 is in effect
of the weighted sum equivalent to scaling fewer positive
components with a factor much smaller than 1. Thereby,
our trap weights increase in stealthiness with increasing
complexity of the data to be extracted.

As hypothesized above, from Table 4, we furthermore
confirm that the extraction-recall of our attack is related to
the percentage of active neurons: When very few neurons
are activated, it is not possible to extract large numbers
of individual data points due to the lack of gradients
to extract them from. However, when the percentage of
active neurons is high, the extraction-recall also becomes
very small, which is due to the fact that each neuron
gets activated by several input data points, and thereby,
individual extraction is impossible.

Attacker without Auxiliary Data. We experiment with
an attacker who does not have access to a small mini-

183

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

batch of data from the users’ distribution to tune the
scaling factor s of our trap weights. In this setup, the only
knowledge an attacker holds is about the dimensionality
of the users’ data which it needs to instantiate an adequate
model architecture. We evaluate three attacks in this setup.
1) Exploiting passive data leakage and composing a tun-
ing dataset: the attacker randomly initializes the model
in a first round of the protocol. Our results in Table 1
show that also randomly initialized models’ gradients leak
significant fractions of the users’ data (MNIST 6.1%,
CIFAR10 25.9%, and ImageNet 21.7%). By plotting the
user’s gradients and eyeballing which data points resemble
natural images, the attacker can build a tuning set for s.
Since we only require a maximum of 100 data points to
find the optimal values for s per dataset in Table 4, the
attacker only has to inspect the gradients of 17, 4, and 5
users for MNIST, CIFAR10, and ImageNet, respectively
in the first round of the protocol. On the selected data, they
can tune s and use it in every subsequent iteration. We per-
formed tuning on 100 data points obtained through passive
extraction and obtained the same s as through tuning on a
random mini-batch of data (0.7, 0.95, and 0.99 for MNIST,
CIFAR10, and ImageNet, respectively). 2) Exploiting raw
passive data leakage: Since manually, selecting suitable
data points is time-consuming, we propose an alternative
approach where the attacker uses all extracted data points
with are in a valid range for input pixels ([0,1]) from the
passive extraction on non-adversarially initialized model
weights in the first round of the protocol. These data
points are not necessarily individually extracted user data
points as we show in Figure 9 in Appendix D.2. But
the attacker can still consider them as a tuning dataset
for s and evaluate the extraction-recall on this dataset
when initializing the shared model with different trap
weights to tune s. Our results in Table 13 show that
for CIFAR10 and ImageNet, the best s found on these
passively reconstructed data points are equal to the best
s obtained directly by tuning on one mini-batch of the
original data. For MNIST, the s on the extracted gradients
differs slightly from the original best s (0.75 vs. 0.7). We
suspect these changes to result from MNIST data being
much sparser (many more zero features) than the extracted
gradients in Figure 9a. 3) Using a surrogate dataset of
same data dimensions: Lastly, the attacker can tune s on
a surrogate dataset of the same dimension (but potentially
different distribution) than the users’ data. We compare
extraction-recall of an adversarial weight initialization
with s found on a surrogate dataset and the optimal s∗
found on the actual dataset for Fashion MNIST, SVHN,
CIFAR100, and Open Images [30] in Table 6. Our results
highlight that extraction with the surrogate s obtained
through tuning on MNIST, CIFAR10, and ImageNet, al-
ready yields a significantly higher success than passive
extraction on non-manipulated weights. Furthermore, the
closer the surrogate dataset’s distribution is to the users’
dataset, the closer s and s∗. Especially for CIFAR10 and
CIFAR100, and ImageNet and Open Images, we find that
s = s∗ which leads to highest extraction success.

Impact of Data Labels. Additionally, we investigated
whether this high reconstruction success could also be
achieved =in a non-IID setting when users hold local mini-
batches of data that belongs to one single class, different

Dataset Passive R s R with s s∗ R with s∗

Fashion MNIST 0.09 0.7 0.22 0.77 0.31
SVHN 0.22 0.95 0.26 0.97 0.40

CIFAR100 0.25 0.95 0.42 0.95 0.42
Open Images 0.21 0.99 0.44 0.99 0.44

TABLE 6: Surrogate Data for Tuning s. We report
extraction-recall for passive extraction and extraction un-
der adversarial weight initializations. For the latter, we
compare the extraction under an s found on a surrogate
dataset, and the optimal s∗ found through tuning on 100
data points from the given datasets. As surrogate datasets,
we use MNIST for Fashion MNIST, CIFAR10 for SVHN
and CIFAR100, and ImageNet for Open Images. Results
are averaged over 5 runs.

(a) Original Data. Dimension=(224,224,3).

(b) VGG7 Extracted. Dimension=(56,56,3).

(c) ResNet Extracted. Dimension=(28,28,3).

Figure 5: Extraction from Standard Architectures. We
extract individual user data points from the first fully-
connected layer after the convolutional layers. The com-
pression of extracted data in comparison to the original
data results from the pooling layers in the architectures.

from the other users. This is a particularly challenging
setting for prior work on optimization-based attacks that
end up reconstructing average points rather than individual
points exactly. Instead, Figure 12b and Table 12 in Ap-
pendix D.2 show on CIFAR10, how our method remains
able to perfectly extract individual data points from the
gradients even when all points stem from the same class.

Impact of Mini-Batch Sizes. We also set out to investi-
gate the impact of the mini-batch size B and the number of
weight rows that we can use for extraction. Table 5 depicts
the resulting metrics. The metrics show that the smaller
the mini-batch sizes are, and the more weight rows there
are for extraction, the more individual training data points
can be individually reconstructed. For 3000 weight rows,
even up to 50% of the individual training data points for
mini-batch sizes as large as 200 in the MNIST dataset can
be perfectly extracted. Small mini-batches of 20 training
data points are entirely extractable without any loss in this
setting. Also for the IMDB dataset, smaller batch-sizes for
the same number of neurons yield much higher extraction-
recall, and embeddings of data from small mini-batches
of 20 training data points are perfectly extractable, see
Table 2. This suggests that in practice, the success of
the extraction attack can be significantly increased by the
central party demanding smaller mini-batch sizes from the
users or initializing larger models.

Impact of Lossy Layers. For perfect extraction of data
points in CNN architectures, our attack requires the input
to the first fully-connected layer to have at least as many
parameters as the original input data point. CNN architec-

184

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

local local MNIST CIFAR10

epochs B ↑Δacc P R ↑Δacc P R

1 10 0.296 0.238 0.704 0.264 0.279 0.584

20 0.220 0.175 0.496 0.238 0.277 0.466

40 0.289 0.109 0.280 0.188 0.127 0.213

2 10 0.384 0.252 0.704 0.316 0.311 0.560

20 0.772 0.184 0.478 0.296 0.295 0.476

40 0.671 0.111 0.264 0.282 0.126 0.247

3 10 0.604 0.241 0.712 0.372 0.329 0.596

20 0.790 0.189 0.544 0.420 0.277 0.496

40 0.823 0.111 0.283 0.324 0.138 0.257

4 10 0.644 0.251 0.692 0.396 0.332 0.632

20 0.848 0.178 0.494 0.440 0.288 0.478

40 0.825 0.113 0.273 0.415 0.138 0.256

5 10 0.604 0.270 0.732 0.412 0.354 0.620

20 0.870 0.178 0.494 0.492 0.289 0.502

40 0.873 0.119 0.283 0.461 0.139 0.277

TABLE 7: Local Accuracy Improvement and Extrac-
tion Success with FedAvg. We present results for Fe-
dAvg where each user holds five mini-batches of size
B and computes 1,2,3,4, or 5 local epochs of training
with the FC-NN from Table 9. The Δacc indicates the
accuracy improvement on the user’s local data w.r.t. the
received shared model (initially around 10% accuracy).
The extraction-precision (P) and extraction-recall (R) for
every B stay at the same high level even after multiple
local epochs of training.

tures can contain pooling layers to reduce input size. In
Appendix D.3, we evaluate the impact of pooling on the
fidelity of the extracted data. Our evaluation shows that
pooling results in some form of compression of the user’s
input data, see for example Figure 16a. In Appendix B.2,
we show how the central party can implement an alter-
native to pooling for size-reduction in CNNs based on
convolutional layers which still allows for prefect extra-
cability, as long as there are enough model parameters.
We also evaluate the effect of dropout on the fidelity of
the extracted data. Figure 15 and 17 visualize the effect
of pure dropout, while Figure 16 and 18 visualize the
joint effect of dropout and pooling. To increase fidelity of
extraction under lossy layers, an attacker can apply post-
processing, such as de-compression.

VGG and ResNet. In addition to our custom FC-NN and
CNN architecture from Table 9, we experimented with a
VGG7 and a ResNet20 [44] architecture. For VGG7, we
initialize all convolutional layers as illustrated in Figure 6
in Appendix B.1, and the fully-connected layer directly af-
ter the convolutional layers with our trap weights. For the
ResNet20, we only initialize the first convolutional layer
according to Figure 6. Thanks to the skip connections,
the remaining convolutional layers can remain unchanged,
apart from the convolutional filters whose output is added
to the output of the skip connections. These need to be
set to zero, such that the input data can be propagated
unaltered over the skip-connections to the fully-connected
layer that we initialize with our trap weights. We set
the last pooling layer before this fully-connected layer in
ResNet20 to implement average pooling. Our extraction
results for ImageNet are depicted in Figure 5. The com-
pression of extracted data in comparison to the original
data results from the pooling layers in both architectures
that reduce input dimensions.

Impact of Local Mini-Batch-Averaging. Additionally,
we looked into the effect of averaging over the gradients
of multiple mini-batches, e.g. the average of gradients
received from multiple users. The results in Table 11 in
Appendix D.2 show that through averaging, the attack

success is significantly reduced. Already when averaging
over 20 mini-batches of size B = 100 in the MNIST
dataset, the average extraction-recall drops from 54.0% to
2% because multiple data points overlay in the gradients.
This highlights that the central party needs to perform the
extraction before the averaging operation. The following
section shows that this simple change to the protocol is
easily implemented by an actively dishonest central party,
even for standard FL libraries.

FedAvg. To validate our theoretical insights from
Section 5.3 which highlights that even under FedAvg,
perfect extraction of individual data points is possible,
we run FedAvg experiments in which users hold five
mini-batches of {10, 20, or 40} different data points
(yielding a total of 50, 100, and 200 local data points
per user), and perform {1, 2, 3, 4, or 5} local training
epochs. In Table 7, we depict results from the FC-NN
architecture from Table 9 on MNIST and CIFAR10. Our
results highlight that the while accuracy on the users’
data significantly increases through the local training,
the extraction success stays constant over multiple
local epochs. We even observe a slight increase in
extraction-recall. For example, we can extract 58.4% of
data points from users who hold five mini-batches with
ten data points each after one epoch, while this number
increases to 62% after five local epochs of training.
This finding is congruent with our finding in Table 3,
where we show that extraction success increases with
convergence. For CNNs, the extraction success degrades
over multiple local epochs of training. This is due to the
convolutional filters that, after a local update, do not have
the zero-elements anymore which prevent features in the
forward-pass from overlapping. For our CNN architecture
from Table 9, we report �2-distances between original and
extracted data of [3.81e−5, 5.06e−5, 0.07, 0.27, 0.92] and
[1.4e−3, 138.94, 199.69, 264.45, 269.32] for CIFAR10
and ImageNet after 1,2,3,4, and 5 epochs, respectively.

TensorFlow Federated. We experimented with Tensor-
Flow Federated [2]—a standard open source library for
FL deployments. In Appendix D.4, we show that a dis-
honest central party only requires minimal code changes
to implement our trap weights.

7.4. Comparison To Previous Work

To compare the success of our attack, we compare to
the three approaches conceptually closest to ours. These
are [15] which is the first to describe individual ex-
tractability of single-data point gradients, [12] which relies
on direct extraction from a fully-connected layer in the
model architecture, and [37] which exploits manipulations
model parameters to extract data from user-gradients.

Comparison to [15]. For the sake of correctness, we
build on their code base and adopt it to also run with
neural architectures we used in our other experiments.
We use the parameters that [15] found to perform best.
Here, we are mainly interested in the quality of the other
attack’s reconstruction in comparison to our method, and
in the number of passes over the model, i.e. the computing
time required to obtain the reconstructions. We perform
evaluation on the MNIST and CIFAR10 datasets.

185

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

Figure 19 in Appendix D shows an example of the
gradient-inversion fidelity obtained with [15] for MNIST
with B = 1. Within 104 iterations, the pixel-wise �2 errors
observed go as low as 10−4 for FC-NNs with architecture
as depicted in Table 9 in the Appendix, and 10−3 for
LeNet-5. Similar results for CIFAR10 are available in
Appendix 20 in Section D. In contrast to these results,
our attack allows us to extract data points perfectly, i.e.
with �2 error of zero, and without any back-propagation
iterations. These results make clear that gradient inversion
in practice suffers from local minima and requires a very
large number of iterations to converge to a comparable
reconstruction to our method. On a practical note, recon-
struction of a single CIFAR10 image with 32 restarts from
a seven-layer FC-NN takes on average 1 hour and 3 min-
utes on a high-end GPU, in comparison to milliseconds
needed for extraction with the help of our trap weights.
Most importantly, it is clear that reconstruction is not a
lossless process and full data recovery is almost never
possible, even in the simple cases where gradients of only
a single data point are considered. To better understand
limitations of prior literature we refer the reader to [48].

Comparison to [12]. The success of [12]’ data extraction
depends on the size of their imprinting module. Using
their code-base and extending it with our success metrics,
we evaluated what size of imprinting module they require
to obtain the same extraction recall as we do, i.e., to
extract the same number of data points from the model
gradients perfectly. We compared our methods for all
three vision dataset, using a batch-size of B = 100.
For ImageNet and CIFAR10, following their baseline, we
instantiated their model with a ResNet18, for MNIST, we
used LeNet5. We always inserted their imprinting module
before the first layer to allow for perfect extractability
with their method. Our results show that to obtain the
same extraction recall as we do (46%, 54%, and 54%
for ImageNet, CIFAR10, and MNIST, respectively), their
imprinting module needs to be of size roughly 150, 200,
and 400, respectively. The fact that they require the largest
imprint module for MNIST is due to the similarity in
the data points (sparsity in the background with all zero
pixels) which makes their binning less effective.

Comparison to [37]. Note that [37]’s main goal is not
to extract large amounts individual user data points but
user updates, by circumventing the secure aggregation [6]
used to protect the FL protocol. The updates (gradients)
that [37] recover do usually not correspond to full and
perfectly individual data points. Instead, for FC-NNs, their
extracted gradients will resemble our passive extraction
results from Figure 8 where most of the gradients are a
blurry overlay of all underlying data points. For CNNs,
their results will not be able to extract any individual
data point since non-maliciously initialized convolution
filters overlay input features. Thereby, their attack mainly
violates confidentiality of the users’ model updates in a
setup where users believe to obtain protection though an
aggregate with other users. Still, the resulting gradients
can then be used as a departure point for additional
privacy-attacks, such as reconstruction. In contrast, our
work directly violates the users’ privacy by manipulating
the shared model weights to make individual data points
directly extractable from the model updates sent from

users to the central party. To assess individual extractabil-
ity in their setup, we use their gradient suppression and
model inconsistency attack to make all but one user in
a round of the FL protocol return zero gradients. The
one target-user receives a randomly initialized FC-NN
(Gaussian with σ = 0.5) with architecture from Table 9.
Note that the data extraction from gradients in this setup
corresponds to our passive extraction. For MNIST, with
B = 100, extraction in their setup yields 5% of perfectly
extractable data points, while our trap weights yield 54%.
In the same setup for CIFAR10, their method yields 26%,
in contrast to our trap weights which yield again 54%.

8. Defending Privacy in Federated Learning

This section discusses potential mitigations against our
trap weights attack. We start with explaining DP which
provides formal privacy guarantees and then move on to
defenses specifically tailored to our trap weights attack.

8.1. Formal Guarantees: Differential Privacy

To bound the leakage of private information from
model gradients, a gold standard for reasoning about
privacy guarantees is the framework of differential privacy
(DP) [11].

There exist three main ways of integrating DP in
the FL protocol, namely Centralized Differential Privacy
(CDP), Local Differential Privacy (LDP), and Distributed
Differential Privacy (DDP).

In CDP, users clip their gradients locally according
to a clip norm c and the central party performs the
addition of noise with a scale dependent on the noise
multiplier σ [40]. CDP cannot provide DP guarantees with
a malicious central party because this central party can
simply extract user data before adding noise or not add
noise at all.2

LDP reduces the trust required in the central party
since every user locally adds noise to their gradients ac-
cording to their privacy requirements [47]. Independent of
other users, the noise is drawn from N (0, σ2c2). However,
previous work has shown that this setup leads to poor
privacy-utility trade-offs, such that LDP is not popular in
practical applications [51].

DDP is supposed to combine the advantages of CDP
and LDP. In DDP, before aggregation, each user locally
adds some (small) amount of noise to their gradients [46].
The noise distribution depends on the number M of other

selected users. It is specified by N
(
0, σ2

M−1c
2
)

[46].

While the individual noise levels do not offer sufficient
protection, the aggregates provide rigorous privacy guar-
antees. There exist different forms of performing the
aggregation. One popular approach is to use secure ag-
gregation (SA) [6], which adds significant computational
overhead and requires tailored DP mechanisms that oper-
ate on integer values, e.g. [4], [26]. Finally, prior work has
shown that in FL, SA can be eluded [37]. This motivates
defenses dedicated to protecting specifically against our
trap weights attack.

2. For a private aggregation of sensitive statistics (instead of high-
dimensional ML model gradients), there exist solutions of CDP without
a trusted aggregator [41], [42].

186

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

8.2. Specific Defenses against Trap Weights

The following defenses can be applied to mitigate the
success of our trap weights attack. Since these defenses
do not provide rigorous theoretical privacy guarantees
but rather empirical protection, we recommend combining
them with DP.

Hardware-Based Protection. Using protocols that rely
on Trusted Execution Environments (TEE), e.g. [35] pre-
vents the central party from performing active manip-
ulations. However, TEEs are prone to side-channel at-
tacks [9], [24]. Hence, there is a remaining risk for the
privacy of users’ data.

Local Averaging and Large Mini-Batches. Our results in
Table 5 and Table 11 highlight that calculating gradients
over large mini-batches and local averaging reduces the
fraction of data points that can be perfectly reconstructed.
We, therefore, argue that users should perform gradient
calculation on large mini-batches of local data points
and average gradients over multiple mini-batches before
sending them to the central party. This is, however, only
possible if users have actual control on the local execution
of the FL protocol and the execution is not inaccessibly
encapsulated inside an application.

Choice of the Activation Function. Our trap weights
are designed to exploit properties of the ReLU activation
function, namely the fact that it yields zero-gradients for
inputs at some neurons. Yielding zero-gradients is not
unique to the ReLU activation. Other popular activation
functions such as sigmoid and tanh have flat areas that also
yield zero-gradients. Hence, by adapting the initialization
of our trap weights to these functions’ properties, we could
also achieve perfect extractability of individual data points
with these functions. However, using activation functions,
such as leaky ReLU, which propagate information on
every input through each neuron, can prevent individual
extractability of training data points.

Lossy Layers. Our evaluation in Section 7 highlights that
the application of layers that compress the input data
or cause information loss, such as pooling or dropout
reduce fidelity of the extracted data. Therefore, relying
on architectures that have aggressive compression and/or
dropout reduces the leakage of individual user data to the
central party.

Given that in FL, the central party is in charge of
instantiating the shared model (with its hyperparameters,
such as the activation function), users can only rely
on additional protection through the model itself if this
central party is trusted. An untrusted central party, in
contrast, has incentives to choose model architectures and
hyperparameters that facilitate data extraction.

9. Discussion and Future Directions

In this section, we first discuss the detectability of
our adversarial initialization and integration of our attack
in the training process of the shared model. We then
analyze the potential and capabilities of adversarial weight
initialization for future privacy attacks. Finally, we argue
that dedicated privacy-protection should be implemented
as a default option into FL protocols to prevent accidental
or malicious privacy leakage.

9.1. Detectability of Trap Weights

To detect the presence of our trap weights, the users
can apply one of the following two strategies: (1) analyz-
ing the weights of the shared model in one or multiple
iterations over the FL protocol, or (2) analyzing the be-
havior of the shared model on their data.

Analyzing Model Weights. Assuming the user has access
to the model only in one iteration of the protocol3, they
can run a detection method that aims at deliberately look-
ing for characteristic elements of our trap weights, such
as a normal distribution with high standard deviation, or
the presence of higher absolute values for negative compo-
nents than positive components in the first fully-connected
layer’s weight matrix. Figure 3 shows that even when
initialized with a uniform distribution and relatively low
deviation, model weights after several epochs of training
resemble more a normal distribution and exhibit a larger
standard deviation, making the former characteristic of our
trap weights an unreliable attack detector. When it comes
to the magnitude of positive and negative components,
Figure 4 shows that for s close to one, the distribution
of the model weights still resembles a standard normal.
However, the more s deviates from one, the more the
distribution of weights deviates from a standard normal
distribution. Yet, without knowledge of the prior training
procedure and the other users’ data, we argue that a target
user can still not determine with certainty whether the
received model weights are the result of the prior training
or of a manipulation [43].

Having access to the shared model over multiple
iterations of the FL protocol additionally enables users
to compare the received shared model’s parameters to
the parameters from previous FL iterations. Therefore,
the success of detection boils down to the following
question: Can a local user tell that a given set of model
parameters came from legitimate updates of other local
users? We argue that this is not possible, even for non-FL
setups where the entire training procedure is transparent.
The stochastic nature of training algorithms, combined
with the non-determinism of modern hardware, makes it
difficult to reproduce training runs [25]. Because of this re-
producibility error, an attacker can assemble a mini-batch
of natural data points that produce any desired gradient
update [43]. In other words, given two different sets of
model weights, the user cannot tell if the gradient descent
step between these weights was a result of a legitimate
optimization step. This is exacerbated in FL because the
data of any given user is invisible to other users, further
complicating the verification of gradient descent integrity.

Analyzing Model Performance. In addition to analyzing
the received model weights for detection of our attack,
a user can also evaluate the functionality of the shared
model. We observe that, for the vast majority of classifi-
cation tasks, the model’s loss across training data points
significantly reduces after just a few iterations. Thus, after
the initial training iterations, FL users would expect to en-
counter low loss values for their own examples. However,
research has shown that, in particular for users whose data

3. Given that in practical deployments of FL, N >> M, an individual
user will be sampled for participation very rarely.

187

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

stems from the tails of the data distribution, FL does not
necessarily lead to an improvement of model accuracy on
their data [54]. Therefore, detection mechanisms that rely
on analyzing the convergence of the model’s accuracy over
multiple FL iterations are also no reliable detectors of our
manipulation.

9.2. Training Success and Model Performance

Increasing the utility of the shared model over the
course of training in the FL protocol is important because
the central party is expected to provide a well-performing
model after several training iterations. Therefore, the cen-
tral party in our attack leverages two main points over
the course of the protocol. (1) Instead of aiming at recon-
structing the user data over all communications, it sends
the adversarially (re-)initialized model out only at a few
communication rounds. In all other rounds, it sends out
the actual shared model for training without adversarially
re-initializing it. (2) Instead of targeting all users, the
central party only targets a subset of users, and send
out an adversarially initialized model to them, and the
continuously trained shared model to all other users. The
central party can even combine both strategies by sending
out an adversarially initialized model only to a subset of
users in a few iterations.

9.3. The Power of Weight Initialization

In general, even outside of the FL context, our attack
shows that controlling and manipulating the weights of
neural networks opens a new attack surface against ML.
We argue that weight manipulation could be used to
design further privacy attacks outside of the FL context.
Our adversarial initialization of convolutional and fully-
connected model layers is able to transmit input data
points to any subsequent layer in the model, practically
modulating data perfectly over them. Additionally by set-
ting our trap weights, we can increase the leakage of indi-
vidual training data points from model gradients. There-
fore, the trap weights basically create a simple if-else logic
based on > and < relations between weighted inputs to
model neurons. Future work could investigate whether the
weights could also be set in order to implement more
complex logical structures and if-else cases depending on
the input. Based on these, it might be possible to craft
hybrid attacks that first initialize the model weights and
then use that to later extract information, for example, on
membership of individual data points, or these data points’
sensitive attributes. Note that adversarially setting weights
also does not need to be limited to initializing the model
weights. Instead, given an already initialized (and trained
model), it might be possible to craft additional training
data that leads to the weights taking the adversarial values
that an attacker wants.

9.4. Using Dedicated Privacy Protection in FL

FL was originally designed as an alternative to cen-
tralized ML in which no large datasets would have to
be moved from users to a central party in order to train
an ML model on the joint data. The approach does not

only reduce communication costs but also spares the
central party from having to build up the infrastructure by
outsourcing training and data storage costs to the users.
Indeed, FL is more communication cost effective since the
data itself is not shared directly.

Attacks like our trap weights highlight, however, that
the protocol does not guarantee protection for the individ-
ual users’ private training data. This is not surprising since
nothing in the design the FL protocol protects against
leakage of private information. Without dedicated privacy-
protection, the central party even has an upper hand over
how much data a local model will leak, as demonstrated
in our work. However, FL is still often marketed as a data-
minimizing technology. Our work highlights that such
marketing is misleading since in order to deploy FL as a
privacy-technology, it is necessary to implement dedicated
additional protection methods, such as the ones discussed
in Section 8.We argue that, to prevent malicious or ac-
cidental leakage in FL, these protection methods should
be implemented in FL as a default when deploying the
protocol to actual users. That is, vanilla federated learning
does not provide privacy advantages for users—unless it
is combined with additional defense methods, such as DP
learning.

10. Conclusion

In this work, we presented a new privacy attack against
FL that is based on an active attacker who holds the
ability to maliciously manipulate the shared model and
its weights. Our attack allows for perfect reconstruction
of a significant portion of the users’ private training data.
Even for very high-dimensional complex datasets, such as
ImageNet, we are able to perfectly extract roughly 50%
of the individual data points from mini-batches of sizes
as large as 100. The extraction is computationally highly
efficient and even allows to perfectly extract individual
training data points from data mini-batches containing all
data points from one single class.

Our attack underscores the deficiency of the “data
never leaves the device” approach to preserving privacy.
For FL to have a chance of truly preserving privacy, it
must incorporate appropriate mitigations against our at-
tack. Those either have expensive overheads or are tailored
for this specific attack (see Section 8).

Acknowledgments

We would like to acknowledge our sponsors, who sup-
port our research with financial and in-kind contributions:
Amazon, Apple, CIFAR through the Canada CIFAR AI
Chair, DARPA through the GARD project, Intel, Meta,
NFRF through an Exploration grant, NSERC through the
COHESA Strategic Alliance, the Ontario Early Researcher
Award, and the Sloan Foundation. Resources used in
preparing this research were provided, in part, by the
Province of Ontario, the Government of Canada through
CIFAR, and companies sponsoring the Vector Institute.

188

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

References
[1] Implementation of FedAvg in TensorFlow Federated.

https://github.com/tensorflow/federated/tree/v0.19.0/tensorflow
federated/python/examples/simple fedavg. Accessed: 10/2021.

[2] TensorFlow Federated. https://www.tensorflow.org/federated. Ac-
cessed: 10/2021.

[3] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, and et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems. 2016.

[4] Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam
mechanism for differentially private federated learning. Advances
in Neural Information Processing Systems, 34, 2021.

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry
Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub
Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of Machine
Learning and Systems, 1:374–388, 2019.

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1175–1191, 2017.

[7] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van
Schaik. Emnist: Extending mnist to handwritten letters. 2017
International Joint Conference on Neural Networks (IJCNN), 2017.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[9] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
{HybCache}: Hybrid {Side-Channel-Resilient} caches for trusted
execution environments. In 29th USENIX Security Symposium
(USENIX Security 20), pages 451–468, 2020.

[10] Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond
a good init: Exploring better solution for training extremely deep
convolutional neural networks with orthonormality and modula-
tion. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017.

[11] Cynthia Dwork. Differential privacy. 2006.
[12] Liam H Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum,

and Tom Goldstein. Robbing the fed: Directly obtaining private
data in federated learning with modified models. In International
Conference on Learning Representations, 2021.

[13] Stephen Gallant. Perceptron-based learning algorithms. IEEE
Transactions on neural networks, 1(2):179–191, 1990.

[14] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita
Borisov. Property inference attacks on fully connected neural
networks using permutation invariant representations. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 619–633. ACM,
2018.

[15] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael
Moeller. Inverting Gradients – How easy is it to break privacy in
federated learning? 2020. 23 pages, 20 figures. The first three
authors contributed equally.

[16] Nastaran Gholizadeh and Petr Musilek. Distributed learning ap-
plications in power systems: A review of methods, gaps, and
challenges. 14(12):3654, 2021. PII: en14123654.

[17] Raja Giryes, Guillermo Sapiro, and Alex M. Bronstein. Deep
neural networks with random gaussian weights: A universal clas-
sification strategy? 64(13):3444–3457, 2016.

[18] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. pages 315–323, 2011.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS),
Montreal, Canada, December 2014.

[20] Kathrin Grosse, Thomas A. Trost, Marius Mosbach, and Michael
Backes. Adversarial initialization - when your network performs
the way i want -. 2019.

[21] Saqib Hakak, Suprio Ray, Wazir Zada Khan, and Erik Scheme.
A framework for edge-assisted healthcare data analytics using
federated learning. In 2020 IEEE International Conference on Big
Data (Big Data). IEEE, 2020.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In 2015 IEEE International Conference
on Computer Vision (ICCV). IEEE, 2015.

[23] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep
models under the gan: information leakage from collaborative deep
learning. 2017.

[24] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
Trusted execution environments: properties, applications, and chal-
lenges. IEEE Security & Privacy, 18(2):56–60, 2020.

[25] Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo,
Natalie Dullerud, Anvith Thudi, Varun Chandrasekaran, and Nico-
las Papernot. Proof-of-learning: Definitions and practice, 2021.

[26] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed
discrete gaussian mechanism for federated learning with secure
aggregation. In International Conference on Machine Learning,
pages 5201–5212. PMLR, 2021.

[27] Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and
Choong Seon Hong. Federated learning for internet of things:
Recent advances, taxonomy, and open challenges. 23(3):1759–
1799, 2021.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, 2009.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[30] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo
Malloci, Tom Duerig, and Vittorio Ferrari. The open images
dataset v4: Unified image classification, object detection, and visual
relationship detection at scale. arXiv:1811.00982, 2018.

[31] Yann LeCun, Corinna Cortes, and C. J. Burges. MNIST handwritten
digit database. 2010.

[32] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,
Andrew Y. Ng, and Christopher Potts. Learning word vectors for
sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics.

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning of
deep networks from decentralized data. pages 1273–1282, 2017.

[34] Luca Melis, Congzheng Song, Emiliano de Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 691–706. IEEE, 19/05/2019 - 23/05/2019.

[35] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin,
Diego Perino, and Nicolas Kourtellis. Ppfl: privacy-preserving
federated learning with trusted execution environments. In Pro-
ceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, pages 94–108, 2021.

[36] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Senevi-
ratne, Jun Li, and H. Vincent Poor. Federated Learning for Internet
of Things: A Comprehensive Survey, volume 23. 2021.

[37] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding
secure aggregation in federated learning via model inconsistency.
ArXiv, abs/2111.07380, 2021.

[38] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang,
and Shiho Moriai. Privacy-preserving deep learning: Revisited and
enhanced. pages 100–110. Springer, Singapore, 2017.

[39] Rudiger Pryss, Manfred Reichert, Jochen Herrmann, Berthold
Langguth, and Winfried Schlee. Mobile crowd sensing in clinical
and psychological trials – a case study. In 2015 IEEE 28th
International Symposium on Computer-Based Medical Systems.
IEEE, 2015.

[40] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen An-
drew, H Brendan McMahan, and Françoise Beaufays. Training
production language models without memorizing user data. arXiv
preprint arXiv:2009.10031, 2020.

[41] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Hae-
berlen. Honeycrisp: large-scale differentially private aggregation
without a trusted core. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 196–210, 2019.

[42] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C
Pierce. Orchard: Differentially private analytics at scale. In 14th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 1065–1081, 2020.

[43] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao,
Nicolas Papernot, Murat A. Erdogdu, and Ross Anderson. Manip-
ulating SGD with Data Ordering Attacks. 2021.

189

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

[44] sjmikler. Github: Resnets in tensorflow 2.0 on cifar-10,
2019. https://github.com/sjmikler/resnets-in-tensorflow2, on com-
mit ”547d131382438ef76e315dde06a6870737f1fbad”.

[45] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li,
and Yiran Chen. Provable defense against privacy leakage in
federated learning from representation perspective. arXiv preprint
arXiv:2012.06043, 2020.

[46] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke,
Heiko Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to
privacy-preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security, pages 1–11,
2019.

[47] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and
Wenqi Wei. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the Third ACM International Workshop
on Edge Systems, Analytics and Networking, pages 61–66, 2020.

[48] Aidmar Wainakh, Ephraim Zimmer, Sandeep Subedi, Jens Keim,
Tim Grube, Shankar Karuppayah, Alejandro Sanchez Guinea, and
Max Mühlhäuser. Federated learning attacks revisited: A critical
discussion of gaps, assumptions, and evaluation setups, 2021.

[49] Yi Wang, Imane Lahmam Bennani, Xiufeng Liu, Mingyang Sun,
and Yao Zhou. Electricity consumer characteristics identification:
A federated learning approach. 12(4):3637–3647, 2021.

[50] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang,
and Hairong Qi. Beyond inferring class representatives: User-level
privacy leakage from federated learning. In IEEE INFOCOM 2019
- IEEE Conference on Computer Communications. IEEE, 2019.

[51] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad
Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated
learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Se-
curity, 15:3454–3469, 2020.

[52] Yuxin Wen, Jonas A. Geiping, Liam Fowl, Micah Goldblum, and
Tom Goldstein. Fishing for user data in large-batch federated
learning via gradient magnification. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 23668–23684. PMLR, 17–23 Jul 2022.

[53] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan
Kautz, and and Pavlo Molchanov. See through Gradients: Image
Batch Recovery via GradInversion. 2021.

[54] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging
federated learning by local adaptation, 2021.

[55] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved
Deep Leakage from Gradients. 2020.

[56] Ligeng Zhu and Song Han. Deep leakage from gradients. In
Federated Learning, pages 17–31. Springer, Cham, 2020.

A. Extended Related Work on Passive Data
Reconstruction Attacks

Table 8 summarizes these data reconstruction attacks
(described below) and compares them with our attack.

Method Attacker Rep. Label- B Opt.-/
U S C U ID Free 1 ≥ 1 Train.-Free

stronger−−−−−−−−→ stronger−−−−−−−−→

DMU-GAN [23] � � �
mGAN-AI [50] � � �
DLG [56] � � � �
iDLG [55] � � � �
GradInv [53] � � � �
trap weights [Ours] � � � � �

TABLE 8: Comparison of data reconstruction attacks.
KEY– U: User, S: Server, C: Class, ID: Individual Data
Points, B: Mini-batch size, Opt.: Optimization, Train.:
Training, Rep.: Representative.

Class-wise Representation Reconstruction Attacks. Hi-
taj et al. [23] were the first to propose a GAN-based data
reconstruction attack, called DMU-GAN. The attacker

must know the dataset’s classes, and the reconstructed
data points are generic representations of class-wise prop-
erties rather than individual user data points or classes.
Wang et al. [50] suggested mGAN-AI, which extends
DMU-GAN’s reconstruction attack to per-user class-wise
representations, but still does not extract individual data
points. Additionally, both methods require access to data
from the same distribution as the users’ data. [45] observes
that class-wise representations are embedded in model
updates even without the need to reconstruct them using
a GAN, and suggest defenses.

Algorithm 2: Optimization-Based Data Recon-
struction [56].

Input: Gradients, G
[t]
i , received from victim user

ui at iteration t, Shared model f
[t]
W (·) at

iteration t.
Output: Reconstructed training data, (x∗i , y∗i)

1: (x̂
[1]

, ŷ
[1]

)← (N (0, 1),N (0, 1)) � Initialize

2: for t̂ ∈ [1, T̂] do
3: Ĝ[t̂] = ∇WL(f [t]

W (x̂t̂), ŷt̂) � Dummy gradients

4: D
[̂t]

= ‖G[t]
i − Ĝ[t̂]‖2 � Dummy vs user

5: x̂
[t̂+1] ← x̂

[t̂] − α∇
x̂
[t̂]D

[̂t]
,

6: ŷ
[t̂+1] ← ŷ

[t̂] − α∇
ŷ
[t̂]D

[̂t]

7: end for
8: (x∗i , y∗i)← (x̂

[T̂+1]

, ŷ
[T̂+1]

)

B. Generalization of Data Extraction Attack
to Convolutional Neural Networks

So far, both the passive and active attacks we described
are tailored to extracting data from the gradients computed
to update a fully-connected layer. However, modern neural
network architectures often rely on convolutional layers
to model image and text data alike. It is difficult to
directly apply our attack strategy to these convolutional
layers because they rely on the weight sharing principle:
to decrease the effective number of parameters that need
to be trained, the same weight values are applied to mul-
tiple locations of the image to extract patterns regardless
of their location in the image. In this section, we thus
propose a second instantiation of our adversarial weight
initialization strategy that generalizes extraction attacks to
convolutional neural networks (CNNs).

Our solution reduces networks with convolutional lay-
ers to the setting we previously considered with fully-
connected neural networks. To do so, we observe that a
CNN typically composes a few convolutional layers with
fully-connected layers. We thus initialize the weights of
the convolutional layers such that they transmit the model
input unaltered up to the fully-connected layers of the
model architecture.

There are two important requirements for our approach
to transmitting, or forwarding, model inputs through con-
volutional layers. The first is to make sure that no feature
of the input data is lost. This requires having at least
as many parameters at every convolutional layer as the
number of input features. The second is to make sure that

190

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) 2D Example. (b) 3D Example.

Figure 6: Size-Preserving Adversarially Initialized Convolutional Filters. Adversarially initialized convolutional filters
that transmit their input to the next layer. The numbers indicated in the input and feature map represent the features, the
numbers in the filter represent the weight initialization. Grey layers indicate random weight values while white layers
indicate zero weights.

different features do not get overlaid. We explain how to
ensure this next.

B.1. Preserving Input-Size

Two Dimensional Input. In general, preserving input size
over a convolutional layer can be achieved through an
adequate combination of padding, stride, and filter sizes.
Specifically, we use stride one and an adequate zero-
padding to preserve the size of the layer input. In order to
transmit the input features, we create a filter with uneven
dimensions (w, h), where w = h, and we initialize it with
zero everywhere apart from the element in the middle
which we set to one. For a two dimensional input (e.g. a
grey-scale image), the described filter perfectly transmits
the information to the next layer and creates a feature
map that exactly replicates the input. See Figure 6a for
this adversarially initialized filter.

Three Dimensional Input. Some input data to CNNs
is distributed over several input channels, such as color
images, that consist of three channels. At every layer, we,
therefore need three adversarially initialized convolutional
filters to ”transmit a copy” of the input channels. A
standard architecture can have many more filters per layer,
which can, in the case of our attack be randomly initialized
since they will be ignored by the attacker. Assume now
that the original input features at the current layer li
are distributed over ali of the total bli−1

many feature
maps. For example, in the first model layer, ali = bli−1

corresponds to the number of color channels required to
encode the image. In subsequent layers, the remaining
bli−1

− ali many feature maps contain random noise,
introduced by random filters that do not transmit the input
features (e.g. Filter 1 in Figure 6b). We denote the indices
of the feature maps where the input features are located by
�αli . We then need ali many filters, initialized as described

above to transmit the information to the next layer. The
filters differ from each other only by the placement of the
matrix that contains the one element. This placement must
correspond to different indices in �αli . See Figure 6b for
a visualization of this setting. Note that the placement of
the feature-transmitting filters at layer li will determine
the indices �αli+1

of the feature maps that are input to the
next layer.

In the last convolutional layer before the fully-
connected layer that we want to transmit the input to,
the filters containing noise should be initialized such that

they yield negative input to the ReLU function. Thereby,
the output of the last convolutional layer becomes zero
everywhere apart from the feature maps produced by the
filters transmitting input data features. The flattened output
then serves as input to the fully-connected layer, and
reconstruction can be conducted as described in Section 6.

B.2. Reducing Input-Size

Two Dimensional Input. The reduction of size in convo-
lutional layers can be achieved by increasing the stride.
However, thereby, the number of features in the next
feature map is reduced such that this feature map cannot
accommodate all features from the previous layer. To
overcome this, we propose distributing the features of
one input feature map over several feature maps in the
following layer. Figure 7a depicts this approach for two-
dimensional inputs. Note that the stride is set to the dimen-
sions of the convolutional filters (w, h) to prevent features
from overlapping in the following layer. Additionally, to
transmit all the features, the dimensions of the filters w
and h (w = h) need to be integer dividers of the previous
feature map’s dimensions. Finally, in total, for each layer
that reduces the size of the input by a factor 1

w , we require
w2 many filters to transmit every feature from one input
feature map. Hence, assuming that at layer li the original
features are distributed over ali many input feature maps,
we require ali · w2 many filters to transmit all original
input features.

Three Dimensional Input. The same approach as for
the two dimensional input can be extended to the case
with three input dimensions. The approach is visualized in
Figure 7b. For improved visualization, we do not present
the feature maps in the layer’s output which contain only
noise. Again, in both the two and three dimensional case,
in the last convolutional layer before flattening, the noise
filters should produce negative input to the ReLU function.
This enables only extracting the original input features and
no noise from the following fully-connected layer.

B.3. Reducing Detectability

In principle, our adversarial weight initialization for
CNNs only requires the number of filters per layer that
actually transmit the features. However, using only a
small number of filters, e.g. one as in the case of the

191

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) 2D Example. (b) 3D Example.

Figure 7: Size-Reducing Adversarially Initialized Convolutional Filters. Adversarially initialized convolutional filters
that transmit their input to the next layer. The numbers indicated in the input and feature map represent the features, the
numbers in the filter represent the weight initialization. Grey layers indicate random weight values while white fields
indicate zero weights. Feature maps in the 3D example that only contain noise are suppressed for improved visualization.

size-preserving adversarial convolutional filters, leads to
models architectures that deviate strongly from standard
architectures. Therefore, we propose using a standard
number of convolutional filters in every layer and ini-
tializing the filters that are not used to transmit features
at random. Additionally, to prevent the simple detection
strategy which relies on probing after every convolutional
layer whether its input is equal to its output, one can
replace the ones in the adversarially initialized convolu-
tional filters by other positive constants. Data extraction
at the fully-connected layer then yields data points where
features of the original input data are scaled by (multiple
different) factors. By applying the inverse of the factors
encoded in the model weights this scaling can then be
reverted. As a consequence, the rescaled extracted data
points still perfectly correspond to the input data.

C. Additional Material

The following table describes the model architectures
both for the FC-NNs and CNNs use throughout the paper.
Note that the our method could also be applied to much
larger CNNs with more layers: in fact, as long as each
layer contains as many parameters as the data holds input
features, our approach is applicable.

FC-NN Architecture VGG-inspired CNN Architecture

Dense(n=1000, act=relu) Conv(f=128, k=(3,3), s=1, p=same, act=relu)
Dense(n=3000, act=relu) Conv(f=256, k=(3,3), s=1, p=same, act=relu)
Dense(n=3000, act=relu) Conv(f=512, k=(3,3), s=1, p=same, act=relu)
Dense(n=2000, act=relu) Flatten
Dense(n=1000, act=relu) Dense(n=1000, act=relu)

Dense(n=#classes, act=None) Dense(n=#classes, act=None)

TABLE 9: Architectures of models used in the experi-
ments on image data. f: number of filters, k: kernel size,
s: stride, p: padding act: activation function, n: number of
neurons.

D. Additional Experimental Results

This section presents additional experimental results.

D.1. Passive Extraction

Figure 8 shows extraction from a randomly initialized
FC-NN with architecture presented in Table 9.

IMDB-Model Architecture

Embedding(feat=10000, dim=250)
Dense(n=1000, act=relu))

Dense(n=1, act=None)

TABLE 10: Architecture of models used in the ex-
periments on the IMDB dataset. feat: vocabulary size,
dim: embedding size, act: activation function, n: number
of neurons.

Figure 8: Baseline: Passive Attack. Data from the CI-
FAR10 dataset, extracted from the gradients of the first
30 weight rows at the first fully-connected layer of a ran-
domly initialized FC-NN with architecture from Table 9.

D.2. Trap Weights and Active Extraction

Figures 11 and 13 depict the extracted data points for
MNIST and ImageNet, respectively.

We, furthermore, study partial extractablity, i.e., the
case when a data point is not individually extractable, but
still leaks meaningful private information about a train-
ing data point. Partial leakage occurs when an extracted
gradient represents the overlay of only a few data points.
In this case, the individual signal of each data point is
still distinguishable, see for example the first data point
in the third row of Figure 8. We plot in Figure 10 by
how many data point each of the neurons with our trap
weight initialization gets activated. This corresponds to the
number of data points that will be present in the overlay of
the respective gradients. We can see that nearly as many
neurons get activated by two data points as by one data
point (i.e. perfect extractability). In general, with our trap
weights, neurons get activated by small numbers of data
points. This indicates that the central party can still extract
meaningful partial information on many data points, also
if these are not perfectly extractable. Results an average
over five runs with different trap weight initializations for
a mini-batch of 100 data points from the ImageNet dataset.

To provide additional insights on data points that can
and cannot be individually extracted, in Figure 14 which

192

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

B, Num A P R

(20,1) .496 .486 .950
(20,5) .787 .213 .572

(20,10) .851 .157 .412
(20,20) .898 .116 .251
(50,1) .687 .307 .790
(50,5) .901 .107 .230

(50,10) .928 .080 .138
(50,20) .953 .053 .067
(100,1) .800 .200 .562
(100,5) .936 .066 .116

(100,10) .966 .046 .054
(100,20) .982 .028 .020

TABLE 11: Effect of Mini-Batch Averaging. Success
of our adversarial weight initialization on MNIST under
averaging over multiple mini-batches on the same model
parameters. The number of mini-batches is denoted by
Num and their respective size by B. The results depict
the percentage of active neurons (A), extraction-precision
(P), and extraction-recall (R) for extracting from 1000
neurons at the first layer of the FC-NN depicted in Table 9.
All numbers are averaged over 10 runs with different
adversarial initializations.

data points can and cannot be extracted. For the individu-
ally extractable data points, we, furthermore, depict how
often each of them is individually extractable, i.e. for how
many neurons this data point is the only one activating it.
We see that our trap weights first amplify natural leakage
i.e., data points that are extractable from random weights
are usually also extractable with our trap weight and our
trap weights make other data points extractable. Second,
our trap weights yield redundancy, i.e. data points are
extractable multiple times from different weight rows’
gradients.

We depict extraction success for local averaging over
multiple mini-batches in Table 11.

We also study the non-IID setup where users hold
data from a single class, different from other users in the
protocol. We present the extraction-recall and extraction-
precision per class on the CIFAR10 dataset in Table 12.

Class P (Passive) P (Active) R (Passive) R (Active)

0 .064 .570 .185 .352
1 .041 .276 .208 .560
2 .056 .480 .195 .384
3 .044 .318 .208 .489
4 .056 .516 .225 .426
5 .045 .356 .238 .534
6 .049 .358 .209 .442
7 .051 .367 .205 .515
8 .055 .536 .209 .386
9 .043 .395 .240 .559

TABLE 12: Non-IID Extraction on CIFAR10. Success
of our adversarial weight initialization (active) versus non-
manipulated model weights (passive) on CIFAR10 in a
non-IID setup where each user only holds data from a
single class, different from all other users. The results de-
pict the extraction-precision (P) and extraction-recall (R)
for extracting from 1000 neurons at the first layer of the
FC-NN depicted in Table 9. All numbers are averaged over
10 runs with different (adversarial) initializations. While
in both passive and active extraction, extraction success
between the classes differs, our adversarial weight ini-
tialization significantly increases leakage over all classes.
Results are averaged over 5 runs.

s MNIST R CIFAR10 R ImageNet R

.650 0.468 0.0 0.0

.700 0.477 0.0 0.0

.750 0.603 0.0 0.0

.800 0.603 0.085 0.0

.900 0.531 0.121 0.0

.910 0.504 0.147 0.0

.920 0.513 0.178 0.0

.930 0.459 0.210 0.0

.940 0.450 0.222 0.0

.950 0.513 0.238 0.0

.960 0.378 0.229 0.0

.970 0.450 0.191 0.073

.980 0.315 0.012 0.232

.990 0.360 0.0 0.422

.995 0.342 0.0 0.330

.999 0.270 0.0 0.0

TABLE 13: Tuning Factor s on Data Points from
Passive Extraction. We model an attacker who does not
hold auxiliary data to tune the scaling factor s. Such an
attacker can, during the firs round, of the protocol extract
the data points from the non-manipulated model weights’
gradients. The points (we select those with features in
range [0,1], see Figure 9), can be used to tune s. The
identified optimal s (bold) w.r.t. the extraction-recall are
close (0.75 or 0.80, MNIST) or identical (0.95, CIFAR10
and 0.99, ImageNet) to the original datasets’ optimal s,
0.7, 0.95, and 0.99 for MNIST, CIFAR10, ImageNet.

(a) MNIST.

(b) CIFAR10.

(c) ImageNet.

Figure 9: Passive Extraction from Non-Manipulated
Model Weights. We extract from the gradients of the
weight rows at the first fully-connected layer of a ran-
domly initialized FC-NN with architecture from Table 9
and depict data points whose features are in range [0,1].
These passively extracted data points can be used by an
attacker to tune the hyperparameter s for active extraction.

Finally, we study how an attacker without any prior
knowledge can tune s. One way to proceed is that the
attacker does not adversarially initializes the model in the
first FL iteration. It then extracts data points from the
gradients, which are not necessarily individually extracted
data points. From these data points, the attacker keeps the
one in a valid image input range with features in range
[0, 1], and uses these data points for fine-tuning s. We
depict the resulting data points for MNIST, CIFAR10, and
ImageNet in Figure 9 and show extraction success for
different s on 100 such data point in Table 13.

D.3. Extraction under Lossy Layers

We also study the effect of ”lossy” layers, such as
dropout and pooling on our data extraction success. There-
fore, we rely on the following architecture proposed by [4]
for FL, see Table 14.

193

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

Figure 10: ImageNet: Activation of Neurons. To study
partial extractability, we analyze by how many data points
each neuron gets activated. Results are averaged over five
different random and trap weight model initializations.

(a) Reconstructed data points.

(b) Original data points.

Figure 11: MNIST. Reconstruction success of our ad-
versarial initialization: first 30 images from a mini-batch
of 100 data points, extracted at the first fully-connected
layer of the FC-NN from Table 9. Gray images indicate
that the corresponding original data point could not be
extracted individually from the model gradients.

Figures 15 and 16 and Figures 17 and 18 show
individual effects of dropout and pooling layers on a
reconstructions for mini-batches of size 1 and 20 re-
spectively. We evaluated different dropout rates p ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Note that the second dropout
layer does not have a significant impact on the success of
our reconstruction since we extract from the first fully-
connected model layer before information can get lost
due to the second dropout. To evaluate dropout without
pooling, we remove the MaxPool layer, and to evalu-
ate pooling without dropout, we set the dropout rate to
p = 0.1. Although existence of non-invertible components

CNN Architecture by [4]

Conv(f=32, k=(3,3), s=1, p=same, act=relu)
MaxPool()

Conv(f=64, k=(3,3), s=1, p=same, act=relu)
Dropout()

Flatten
Dense(n=1000, act=relu)

Dropout()
Dense(n=#classes, act=None)

TABLE 14: CNN Architecture by [4] used to evaluate
the data extraction attack under the impact of Dropout
and Pooling. f: number of filters, k: kernel size, s: stride,
p: padding act: activation function, n: number of neurons.

compromises overall reconstruction fidelity, we observe it
is often possible to still recognise individual data points.

D.4. TensorFlow Federated

We adapted the implementation of FedAvg [1] pro-
vided by the developers to pass each individual gradient
update through our reconstruction function. Note that the
whole change took only minutes of work and required
minimal code changes, such that they could easily be im-
plemented by a dishonest central party. We pre-generated
our adversarial initialized shared models with scaling
factor s = 0.7 and s = 0.99 and 1000 neurons at the
first fully-connected layer, and passed them to the users.
The aggregator then collects the gradients and performs
reconstruction.

We find that our attack works consistently well against
commonly used FL benchmarks integrated into the library.
Over 50 users, for EMNIST [7], our trap weights yield
0.32± 0.07 extraction-recall and 0.05± 0.02 extraction-
precision, versus 0.10± 0.05, and 0.02± 0.01 in the non-
adversarial baseline. For CIFAR100 [28] we get 0.44 ±
0.05 extraction-recall and 0.22±0.06 extraction-precision,
versus 0.20±0.04, and 0.04±0.01 in the baseline. These
results are comparable to the ones reported in the previous
experiments, and confirm that our attack is practical.

194

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) Reconstructed data points from different classes. (b) Reconstructed data points from class ”dog”.

(c) Original data points from different classes. (d) Original data points from class ”dog”.

Figure 12: CIFAR10 Data Extracted from Mini-Batches with Data Points from Different and the Same Class.
Reconstruction success of our adversarial initialization: first 30 images from a mini-batch of 100 data points, extracted
at the first fully-connected layer of the CNN from Table 9. Gray images indicate that the corresponding original data
point could not be extracted individually from the model gradients. Our extraction success for data from the same class
is as high as for data from different classes.

(a) Reconstructed data points. (b) Original data points.

Figure 13: ImageNet. Reconstruction success of our adversarial initialization: all reconstructed data points from
a mini-batch of 100 data points, extracted at the first fully-connected layer of the CNN from Table 9. Gray images
indicate that the corresponding original data point could not be extracted individually from the model gradients..

195

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) Randomly initialized model weights. (b) Trap weights.

Figure 14: ImageNet: Extractability. Number of individual occurrences in the rescaled gradients over a mini-batch of
100 data points, extracted at the first fully-connected layer of the CNN from Table 9. To provide insights into what
data points could not be individually extracted, we plot data points with zero occurrences with low saturation.

196

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) Dropout with p = 0.0.

(b) Dropout with p = 0.1.

(c) Dropout with p = 0.3.

(d) Dropout with p = 0.5.

(e) Dropout with p = 0.7.

(f) Dropout with p = 0.9.

Figure 15: Batch size 1.

(a) Dropout with p = 0.0 and pooling.

(b) Dropout with p = 0.1 and pooling.

(c) Dropout with p = 0.3 and pooling.

(d) Dropout with p = 0.5 and pooling.

(e) Dropout with p = 0.7 and pooling.

(f) Dropout with p = 0.9 and pooling.

Figure 16: Batch size 1.

197

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) Dropout with p = 0.0.

(b) Dropout with p = 0.1.

(c) Dropout with p = 0.3.

(d) Dropout with p = 0.5.

(e) Dropout with p = 0.7.

(f) Dropout with p = 0.9.

Figure 17: Batch size 20.

(a) Dropout with p = 0.0 and pooling.

(b) Dropout with p = 0.1 and pooling.

(c) Dropout with p = 0.3 and pooling.

(d) Dropout with p = 0.5 and pooling.

(e) Dropout with p = 0.7 and pooling.

(f) Dropout with p = 0.9 and pooling.

Figure 18: Batch size 20.

198

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

(a) FC-NN (b) LeNet-5 (c) FC-NN (d) LeNet-5

Figure 19: Baseline—Prior Work. Single sample gradient inversion with untrained network using the inversion method
proposed by [15] for the first 100 MNIST datapoints. (a) and (b) shows fidelity of individual datapoint reconstruction
with no restarts, while (c) and (d) show 32 different optimisation start points. Error bars are a single standard deviation
of individual restarts.

(a) VGG11-like (b) ResNet20-4 (c) VGG11-like (d) ResNet20-4

Figure 20: Baseline—Prior Work. Single sample gradient inversion with untrained network using the inversion method
proposed by [15] for the first 100 CIFAR10 datapoints. (a) and (b) shows fidelity of individual datapoint reconstruction
with no restarts, while (c) and (d) show 32 different optimisation start points. Error bars are a single standard deviation
of individual restarts.

199

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on October 11,2024 at 01:09:13 UTC from IEEE Xplore. Restrictions apply.

