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Abstract
Detecting anomalies is an important task in a wide
variety of applications and domains. Deep learn-
ing methods have achieved state-of-the-art per-
formance in anomaly detection in recent years;
unsupervised methods being particularly popular.
However, deep learning methods can be fragile to
small perturbations in the input data. This can
be exploited by an adversary to deliberately hin-
der model performance; an adversarial attack. This
phenomena has been widely studied in the context
of supervised image classification since its discov-
ery, however such studies for an anomaly detection
setting are sorely lacking. Moreover, the plethora
of defense mechanisms that have been proposed are
often not applicable to unsupervised anomaly de-
tection models. In this work, we study the effect of
adversarial attacks on the performance of anomaly-
detecting autoencoders using real data from a Cy-
ber physical system (CPS) testbed with intervals of
controlled, physical attacks as anomalies. An ad-
versary would attempt to disguise these points as
normal through adversarial perturbations. To com-
bat this, we propose the Approximate Projection
Autoencoder (APAE), which incorporates two de-
fenses against such attacks into a general autoen-
coder. One of these involves a novel technique
to improve robustness under adversarial impact by
optimising latent representations for better recon-
struction outputs.

1 Introduction
Anomalies are defined in [Hawkins, 1980] as ”observa-
tions which deviates so much from other observations as to
arouse suspicion it was generated by a different mechanism”.
Anomaly detection is the task of identifying these anoma-
lies in a set of data. It is a crucial task in many applica-
tions, from detecting fraudulent credit card usage [Bolton and
Hand, 1999] to malignant tumours [Spence et al., 2001], and
a plethora of approaches have been developed over time. A
common challenge is the absence of labelled data, making su-
pervised classification models ineffective. As such, many of
the most successful attempts use a one-class approach; where

the model is trained with only normal data and then deter-
mines whether test data belongs to the normal class or not.
Recently, deep learning methods have given the best perfor-
mance; particularly popular is to train an autoencoder to re-
construct data of the normal class, using the reconstruction
error to determine whether a point is anomalous.

Despite their successes, the highly complex operations of
deep learning models can make their outputs fragile to small
perturbations in input data. This makes them vulnerable to
an adversary who may exploit perturbations that are purpose-
fully designed to greatly hinder model performance. This
phenomena, known as an adversarial attack, has drawn a huge
amount of attention in related literature since being discov-
ered in [Szegedy et al., 2013] due to the potential risks to
model performance and security. Unfortunately, studies have
shown that attacks designed for a particular model can gener-
alize to other models with different architectures too [Kurakin
et al., 2017]. Many different attacks formulations have been
studied in a variety of contexts, a key categorization being
between white-box and black-box attacks: whether the adver-
sary uses internal information and computations of the model
such as loss gradients, or only inputs and outputs values, re-
spectively. The robustness of these models, how tolerant they
are to these input perturbations, is important in a variety of
applications. Within the context of anomaly detection, an ad-
versary may wish to perturb input data in such a way that as
many anomalies as possible appear normal.

A number of defense mechanisms have been devised
against adversarial attacks. Perhaps the most well-known,
[Goodfellow et al., 2014] proposes ‘adversarial training’,
which introduces data that has been perturbed with an ad-
versarial attack into the training set along with their correct
labels. In doing so, the model is trained to correctly classify
attacked examples too. In the case of unsupervised anomaly
detection, no labels are supplied to the model and anomalies
are only seen during test time, meaning this defense is inap-
plicable. Therefore, it is necessary to develop new defense
mechanisms against adversarial attacks in the unsupervised
anomaly detection setting.

With this in mind, the contributions of this work are as fol-
lows:

1. We study the vulnerability of anomaly-detecting autoen-
coders to different types of adversarial attacks.
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2. We propose the Approximate Projection Autoencoder
(APAE) which includes two developments to improve
both model performance and robustness under the im-
pact of adversarial attacks.

In experiments on real data, these techniques led to a me-
dian improvement in AUC score of 9% in the presence of ad-
versarial attacks in the range of those tested and 8% in their
absence.

2 Background
2.1 Anomaly Detection with Autoencoders
Autoencoders are a very popular approach for anomaly detec-
tion. They are neural networks that are trained to reconstruct
the input data, with the error between the original and the re-
construction used in the loss function for training:

Err(x) = ||x−A(x)||, (1)

where x and A(x) is the input and output of the autoencoder
respectively and || · || is typically some type of norm.

There are usually fewer neurons in the hidden layers than
the input (and output) layers in order to encourage the model
to learn a more compressed representation of the data; a form
of dimensionality reduction. As mentioned, it is common to
train the autoencoder on only normal data in anomaly detec-
tion. In doing so, normal data should be reconstructed with
low error during inference whilst anomalies will be recon-
structed with higher error as they follow a different distribu-
tion. This reconstruction error can be used as an anomaly
score; those below or above a given threshold are determined
to be normal or anomalous respectively.

2.2 Adversarial Attack
As mentioned, input data can be perturbed as to hinder model
performance through adversarial attacks. Formulated in [Ku-
rakin et al., 2017], the ‘fast gradient sign method’ (FGSM) is
particularly prominent. In this attack, inputs are moved in the
direction of the gradient of the loss function with respect to
these inputs which acts to increase the loss function with re-
spect to the true class and encourage a misclassification. This
is extended to the ‘basic iterative method’, in which this step
is performed for multiple iterations as follows:

Xadv
0 = X,

Xadv
N+1 = ClipX,ε{Xadv

N + α ∗ sign(∇XJ(XadvN , ytrue))},
(2)

where X is the original input data, J the loss function and
ytrue the true class. This is controlled by a rate α and a clip-
ping function which keeps values in the range [−ε, ε].

3 Related Work
In the supervised setting, anomaly detection is a typical clas-
sification problem; the labels corresponding to whether data
is normal or anomalous. Well established methods like deci-
sion trees and neural networks are applicable in this setting

[Zhang et al., 2001], however imbalanced datasets and diffi-
culty obtaining accurate labels make this approach unpopular.
As such, unsupervised versions of these types of algorithms
have been developed, most notably the One-class SVM [Es-
kin et al., 2002]. [Goldstein and Uchida, 2016] evaluates a
variety of unsupervised anomaly detection methods such as
kNN, Local Outlier Factor (LOF) and One-Class SVM.

[Hawkins et al., 2002] first proposes autoencoders for
anomaly detection, using a step-function as activation to sep-
arate inputs into normal and anomalous clusters. Since then,
the reconstruction error as anomaly score has become the
norm in more recent studies [Dau et al., 2014]. [Sakurada
and Yairi, 2014] show that the non-linearity of autoencoders
allows for better detection of anomalies than linear PCA,
whilst being computationally cheaper than kernel PCA. Au-
toencoder variants are also commonly used, including recur-
rent [Chauhan and Vig, 2015; Malhotra et al., 2015], convo-
lutional [Chen et al., 2018], denoising [Feng and Han, 2015]
and variational models [An, 2015]. They have also been used
just for feature learning, with a separate prediction network,
such as a Gaussian Mixture Model [Bo et al., 2018], using
the learnt features to make predictions.

Some studies improve the robustness of anomaly detec-
tion models to noisy data, such as Robust SVM [Hu et al.,
2003] and Robust PCA. The approach taken in the latter; fil-
tering noise out of input data via matrix decomposition, has
also been adopted for autoencoders [Zhou and Paffenroth,
2017]. However, no similar techniques have been developed
in the case of adversarial perturbations. [Kloft and Laskov,
2010] studies adversarial poisoning attacks on online centroid
anomaly detectors, where the anomaly score is the distance of
a point to its nearest centroid. The authors find that, in their
intrusion detection scenario, the adversary needs to control
5-20% of incoming traffic in order to subvert an online cen-
troid learner to a target position. [Paudice et al., 2018] uses
anomaly detection methods to detect adversarial examples in
training sets in order to improve model performance in other
tasks as a preparation step, however they do not consider the
effect of attacks to the anomaly detection model itself.

4 Methods
4.1 Attacks
The first task is to design adversarial attacks that hinder the
performance of autoencoders for anomaly detection. In par-
ticular, we consider perturbations to anomalous points in the
test set that cause the model to misclassify as many of them
as possible as normal points. This is achieved by reducing
reconstruction error. Two such attacks are tested: a ‘random-
ized’ attack and an ‘FGSM’ attack.

In the first, a randomly generated vector is added to the
original point. If the reconstruction error of this perturbed
point is reduced compared to the original, then the pertur-
bation is kept, otherwise it is discarded and another random
vector is tested. This is repeated iteratively, so that multi-
ple vectors can be added and the reconstruction error reduces
further over iterations.

In the second, we implement an adaptation of the basic it-
erative method presented in Section 2, which we refer to as

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1245



Figure 1: Points x and y and their projections x′ and y′ respectively
on the image M.

‘FGSM’ from here for brevity. The adaptation ensures the re-
construction error i.e. the loss function, decreases rather than
increases, by moving in the opposite direction of the loss gra-
dient as follows:

Xadv
0 = X,

Xadv
N+1 = Xadv

N − α ∗ sign(∇XJ(XadvN )).
(3)

where X refers to anomalous points. The clipping function
could outweigh the impact of the perturbations and is there-
fore removed.

4.2 Defenses
We now describe our Approximate Projection Autoencoder
(APAE), which combines two defenses: Approximate Pro-
jection (AP) and Feature Weighting (FW).

Approximate Projection
Autoencoders reconstruct complex data using lower dimen-
sional representations. Adversarial vulnerability can arise be-
cause they can learn highly unstable functions that change
rapidly in response to small input perturbations.

In contrast, we consider a class of projection functions
which are much more robust; moreover, their level of ro-
bustness can be characterized theoretically. Formally, let
A : Rd → Rd be an autoencoder, and define the image
M = {A(x) : x ∈ Rd}, i.e. the set of points that the au-
toencoder can map to. Define the projection f(x) as the clos-
est point inM to x; i.e. f(x) = arg minx′∈M ‖x − x′‖, as
visualized in Figure 1. Like in autoencoders, the reconstruc-
tion error Err(x) = ‖x− f(x)‖ is used as an anomaly score;
where higher error values indicate more anomalous points.
Then the following theorem shows that f(x) is provably ro-
bust against adversaries:
Theorem 1. If an adversary perturbs a data point from x to
y such that ||x− y|| ≤ ε, then we have:

|Err(y)− Err(x)| ≤ ε

i.e. the adversary can change the reconstruction error of any
point x by at most ε.

Proof. By the triangle inequality we have:

‖x− f(y)‖ ≤ ‖y − f(y)‖+ ε. (4)

f(x) is the projection of x ontoM, therefore, it is the closest
point to x onM, so:

‖x− f(x)‖ ≤ ‖x− f(y)‖ (5)

Combining this with (4) gives:

‖x− f(x)‖ ≤ ‖y − f(y)‖+ ε; (6)

or Err(x) ≤ Err(y) + ε. By symmetry, the same result holds
when swapping x and y, completing the proof.

Theorem 1 shows that in the worst-case scenario, an adver-
sary moving a point by ε distance can decrease the reconstruc-
tion error under f by at most ε. In reality, the projection f is
not accessible as the imageM is unknown and highly com-
plex. Instead, after fitting an autoencoder A, we approximate
a projection by performing gradient descent on the latent em-
bedding of the data, encoded at the bottleneck layer. Upon
convergence, this will lead to a reconstruction that is closer
to the optimum; the projection. Gradient descent updates are
made via the following formula:

Z0 = Z,

ZN+1 = ZN − α ∗ ∇ZJ(θ,Z)
(7)

where Z is the original latent embeddings of test set points
under A.

Feature Weighting
In the second defense, we acknowledge that different features
vary in their discriminative capabilities. In particular, regard-
less of whether points are normal or anomalous, different fea-
tures tend to be more accurately reconstructed than others
through the autoencoder. It is useful to normalize reconstruc-
tion error across the different features in order to account for
these differences:

Ĵi =
Ji

ε+ J̃i
(8)

where Ji is the reconstruction error associated with feature
i for a single point, J̃i is the normalizing factor and ε is a
small constant. Various formulations of J̃i were considered;
the median provides robustness against outliers and good em-
pirical performance. The optimal value of ε varies between
10−4 and 10−6 depending on the dataset.

This is a form of normalization which prevents the recon-
struction error, and therefore the anomaly score, from being
dominated by those features which are reconstructed most
poorly regardless of the class. Whilst improving detection
performance, this step alone does not necessarily improve ro-
bustness against adversarial attacks. However, in combina-
tion with the gradient descent defense, the autoencoder would
be more accurate as well as more robust in both the presence
and absence of adversarial attacks.

5 Experiments
Deep autoencoders are trained using only data of the normal
class, using the reconstruction error as the anomaly score.
Normal data should be reconstructed with lower error than a
chosen threshold, whilst those of the anomalous data should
exceed it. We use the kth percentile of reconstruction errors
associated with the training set to define this threshold. The
value of k is varied within the range of 90 to 100 to explore
the difference it makes to the performance.
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Dataset #Features #Train #Test Anomalies
WADI 1220 1048571 172792 5.99%
SWaT 500 496791 449910 11.97%

Table 1: Summary of the two datasets used in experiments.

5.1 Datasets
The Secure Water Treatment (SWaT) is a water treatment
testbed resembling those used by Singapore’s Public Utility
Board. It is an example of a Cyber-Physical System (CPS),
integrating digital and physical infrastructure to control and
monitor system behaviour. These systems are increasingly
used in important sectors, such as utilities or transportation,
and are therefore potential targets to attack by malicious ac-
tors. The Water Distribution (WADI) is an extension of this
setup to include a network of distribution pipelines. There
are two weeks worth of data from normal operations, which
are used as training data for the respective models. A num-
ber of controlled, physical attacks are implemented at differ-
ent intervals in the following days, which correspond to the
anomalies in the test set. More information about the systems
and datasets can be found at their websites [iTrust Centre for
Research in Cyber Security, 2019].

Table 1 summarises the two datasets, showing the number
of features, training and test set sizes as well as proportion
of anomalies in the test set. In both cases, a 10 second slid-
ing window (with a stride of one) were concatenated into one
feature vector for each data sample - the corresponding label
coming from the latest timestamp within the current window.
For WADI, 120 sensors are used meaning a total of 1220 fea-
tures per example. For SWaT, 50 sensors instead make for
500 features.

5.2 Training
Autoencoders with three hidden layers were trained for each
dataset. The bottleneck hidden layer had 100 (50) neurons for
the WADI (SWaT) dataset, reflecting their difference in input
dimensonality. The models are trained using the Adam opti-
mization scheme with learning rate 1× 10−3 and (β1, β2) =
(0.5, 0.99). Early stopping was used once the loss function,
Huber loss, is sufficiently small for the validation set, which
was 20% of total training data. We use N = 2000 iterations
and α = 0.001 for the gradient descent step (Eq. (7)).

In Table 2, we compare the performance of a standard
autoencoder, as well as an autoencoder with our proposed
defenses, with various other existing methods in a non-attack
setting. These are the following:

APAE: The proposed Approximate Projection Autoencoder
with defenses.
AE: Autoencoder as formulated above without defenses.
PCA: Principal Component Analysis finds the set of k or-
thogonal axes that retain the greatest variance within the data.
The anomaly score is the reconstruction error after transform-
ing and inverse-transforming data using these components.
OC-SVM: One-class support vector machine [Chen et al.,
2001] adapts the SVM for anomaly detection by maximising
the margin between the one-class training data and the origin.

Method WADI SWaT
APAE 0.8711 0.9136

AE 0.805 0.896
PCA 0.816 0.788

OC-SVM 0.730 0.801
DAGMM 0.558 0.683

MAD-GAN 0.568 0.532

Table 2: AUC score for various anomaly detection methods.

DAGMM: Deep Autoencoding Gaussian Mixture Model
trains an autoencoder and Gaussian mixture model end-to-
end, using energy as the anomaly score as seen in [Bo et al.,
2018].
MAD-GAN: A GAN is trained on normal data and the
output of the trained discriminator is used to determine
anomaly score, as seen in [Liu et al., 2019].

All models were built and implemented using the PyTorch
library, except for DAGMM and MAD-GAN where the pub-
licly available codes were used. Even without optimization
of hyperparameters, a basic autoencoder is the best of the ex-
isting deep methods tested. Even PCA and OC-SVM out-
perform the other deep methods shown, suggesting that the
latter require more meticulous preparation and model cali-
bration to achieve their state-of-the-art performance shown in
the original works. We see that in a non-attack setting, the
techniques used in the APAE significantly improve the per-
formance of the autoencoder and is easily the most successful
model tested. In the following sections, the performance of
this model in both attack and non-attack settings is compre-
hensively studied.

5.3 Attacks
Table 3 show the precision, recall and F1 measures when
different reconstruction error percentiles are used as the
anomaly score threshold for the two datasets respectively.
In the first case, the performance is recorded for the origi-
nal data without adversarial attack. In this case, we see a
general pattern of increasing precision and decreasing recall
as the threshold increases. A higher threshold means more
anomalies do not exceed it and therefore fewer are correctly
detected, however fewer normal points are falsely flagged
too. The optimal performance on WADI is achieved with the
99.9th percentile threshold, though it seems a much higher
threshold would give better results for SWaT. To avoid this
problem, the AUC score is also presented, which eliminates
the need for manually-set thresholds. Using this metric, the
model for SWaT achieves a score of 0.896 compared to 0.805
for WADI.

In the second case, we apply the randomized attack de-
tailed in Section 4. We conducted 1000 iterations, and there-
fore 1000 random vectors were generated. These vectors
vectors were sampled from a N (0, 0.01) distribution, as this
showed to result in the largest perturbations. This attacks
caused a slight reduction in performance, however the most
severe setting of the FGSM attack tested is much more im-
pactful, after which the AUC scores reduce by approximately
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WADI Without Attack Random Attack FGSM Attack
Threshold Precision Recall F1 Precision Recall F1 Precision Recall F1

95 0.097 0.814 0.173 0.096 0.803 0.171 0.018 0.138 0.032
99 0.257 0.695 0.375 0.234 0.613 0.339 0.063 0.136 0.086

99.9 0.730 0.540 0.621 0.715 0.500 0.588 0.403 0.135 0.202
100 0.984 0.344 0.510 0.979 0.262 0.414 0.960 0.133 0.233

AUC 0.805 0.764 0.139
SWaT Without Attack Random Attack FGSM Attack

Threshold Precision Recall F1 Precision Recall F1 Precision Recall F1
95 0.145 0.974 0.252 0.145 0.974 0.252 0.096 0.607 0.165
99 0.172 0.963 0.292 0.172 0.961 0.292 0.048 0.236 0.080

99.9 0.208 0.897 0.338 0.206 0.886 0.335 0.025 0.089 0.039
100 0.486 0.700 0.573 0.478 0.680 0.562 0.009 0.007 0.008

AUC 0.896 0.890 0.258

Table 3: Precision, Recall and F1 measures for various anomaly score thresholds for the original test set, the randomly-attacked test set and
the FGSM-attacked test set for WADI (top) and SWaT (bottom) datasets.

Figure 2: Receiver operating characteristic (ROC) curve for the
anomaly-detecting autoencoder on the three test sets used for WADI
(left) and SWaT (right).

80% in both datasets. A range of attack severities are tested
and discussed in Section 5.4. We see a drastic reduction in
the recall, rather than the precision, as the perturbations de-
crease reconstruction error of anomalies and increase the false
negative rate only. Interestingly, the optimal threshold also
changes as a result of the FGSM attack; the 100th percentile
threshold now giving the best F1 measure for WADI and the
95th for SWaT.

Figure 2 visualises the impact of the randomized attack
and a less severe FGSM attack on the ROC curves for both
datasets. As the randomized attack had less impact, it will
be disregarded from here on and only the FGSM attack will
be studied. In the following section, a wide range of imple-
mentations of the attack and their quantitative result will be
presented, along with the effect of the proposed defenses.

5.4 Defense
Three different attack scenarios are considered. In the first,
we consider the case where an adversary can only perturb a
limited subset of features of cardinality k, analogous to a sub-
set of sensors in the network. We test a variety of values for
k, expressed as a percentage of the total number of features.
The attack is iterated until convergence for the k features that

had the highest reconstruction error before the first iteration.
In the second case, all features can be perturbed; however, the
total change, in percentage terms, is limited to a given budget
∆. This percentage is calculated as follows:

Perturbation Size =

N∑
i=0

|xorigi − xadvi |

N∑
i=0

|xorigi |
,

where xorigi , xadvi are a point before and after perturbations
respectively and N is the total number of features. Summa-
tion over all features is taken in order to avoid division by
zero. A range of perturbation budgets are tested. The final
case is similar to this, however it uses the mean squared er-
ror to calculate reconstruction error instead of Huber. As this
is differs from the loss function used in model training, this
corresponds to a scenario where an adversary does not know
how the model was trained and therefore uses the wrong er-
ror measure. The three cases are named L0, Lhuber and L2

respectively for convenience.
Table 4 shows the performance of the new method with de-

fenses in these attack scenarios, as well as a no attack case,
for the WADI dataset. The best performance is highlighted in
bold and underlined and the second best is bold only. The ap-
proximate projection (AP) and feature weighting (FW) tech-
niques are tested separately to examine their individual ef-
fects, as well as in combination (AP + FW). Furthermore,
we distinguish between FWTrain and FWTest, which relate to
whether the weights are calculated from the feature-wise me-
dian reconstruction errors from the training set or the test set.
The latter is more applicable to scenarios where data is ac-
cessible in batches, whilst the former would be more useful
where data is received point-wise, such as in streaming ap-
plications. The performance without such defenses is also
shown (No Defense).

Firstly without defenses, some general patterns can be ob-
served. As would be expected, performance worsens further
with more “powerful” attacks, i.e. with larger k in the case
of L0 and larger ∆ in the others. The L0 attack is noticeably
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L0 attack
Features (≈ %) 0 1 10 50

No Defense 0.8051 0.8119 0.7933 0.6202
AP 0.8585 0.8589 0.8567 0.7697

FWTrain 0.8247 0.8316 0.8094 0.6550
AP + FWTrain 0.8648 0.8679 0.8666 0.7938

FWTest 0.8501 0.8563 0.8335 0.7241
AP + FWTest 0.8711 0.8770 0.8716 0.8296

Lhuber attack
Budget ∆ (%) 1 5 10 20
No Defense 0.7577 0.5893 0.1884 0.1385

AP 0.8491 0.7345 0.3170 0.1949
FWTrain 0.7699 0.6331 0.2056 0.1416

AP + FWTrain 0.8576 0.7631 0.3835 0.2214
FWTest 0.7991 0.7120 0.4250 0.2040

AP + FWTest 0.8654 0.7943 0.5599 0.3101
L2 attack

Budget ∆ (%) 1 5 10 20
No Defense 0.7665 0.6873 0.5591 0.0004

AP 0.8519 0.8075 0.7094 0.0550
FWTrain 0.7795 0.7118 0.6061 0.0006

AP + FWTrain 0.8597 0.8225 0.7420 0.0755
FWTest 0.8084 0.7550 0.6968 0.0409

AP + FWTest 0.8660 0.8405 0.7800 0.1586

Table 4: WADI: AUC for the three different types of attack with and
without defenses.

less impactful than the others, despite having an unrestricted
perturbation budget. Surprisingly, the AUC score actually in-
creases from perturbing 0% (i.e. no attack) to 1% of features.
For SWaT, perturbing 1% or 10% of features made negligible
difference.

Lhuber attacks caused greater deterioration in performance
than L2 attacks for smaller ∆ in both datasets, however the
inverse is true for the highest budgets tested. It was noticed
that in both datasets, some anomalous intervals had drasti-
cally larger reconstruction errors than others, suggesting a
significantly larger perturbation would be required to reduce
it to a normal level. The L2 loss more heavily penalises these
extreme values, therefore it is more likely to reduce these ex-
treme errors sufficiently when given a large enough budget
compared with Lhuber.

Moving onto the defenses, both gradient descent and fea-
ture weighting improve the performance across the range of
attacks. Considered in isolation, AP fares better than both
forms of FW, and FWTest is better than FWTrain overall. The
best performance is found when combining AP + FWTest.

Table 5 shows the same results for SWaT. Generally, the
same pattern applies here as to WADI. However, it was no-
ticed that much larger perturbation budgets were needed for
a significant impact to performance. Furthermore, the AP de-
fense is less successful on this dataset; performing worse than
no defense in the L0 attacks. In these cases, the best perfor-
mance is found using FWTest without AP.

L0 attack
Features (≈ %) 0 1 10 50

No Defense 0.8955 0.8438 0.8438 0.7750
AP 0.8935 0.8412 0.8410 0.7750

FWTrain 0.8982 0.8481 0.8478 0.7779
AP + FWTrain 0.8959 0.8472 0.8470 0.7839

FWTest 0.9126 0.8879 0.8877 0.8368
AP + FWTest 0.9136 0.8852 0.8851 0.8292

Lhuber attack
Budget ∆ (%) 10 20 50 80
No Defense 0.8766 0.8588 0.7788 0.2577

AP 0.8776 0.8624 0.7913 0.2541
FWTrain 0.8786 0.8628 0.7995 0.3544

AP + FWTrain 0.8792 0.8670 0.8119 0.3605
FWTest 0.8986 0.8895 0.8375 0.4899

AP + FWTest 0.8996 0.8906 0.8414 0.4948
L2 attack

Budget ∆ (%) 10 20 50 80
No Defense 0.8772 0.8590 0.7853 0.1973

AP 0.8786 0.8596 0.7938 0.1901
FWTrain 0.8792 0.8614 0.8056 0.2863

AP + FWTrain 0.8780 0.8632 0.8129 0.2907
FWTest 0.8987 0.8890 0.8406 0.4249

AP + FWTest 0.8999 0.8907 0.8443 0.4202

Table 5: SWaT: AUC for the three different types of attack with and
without defenses.

6 Conclusion
We have examined the problem of adversarial impact to deep
autoencoders for anomaly detection. Deep autoencoders are
trained to learn patterns from a set of data of only the nor-
mal class. The reconstruction error associated with a point
in the test set is used to determine whether it is normal or
anomalous. We have considered the context in which an ad-
versary perturbs this data in order to have as many anomalies
go undetected as possible. We have shown that the model
is indeed vulnerable to this kind of attack, especially to a
gradient-based attack like the basic iterative method. We have
also shown that through analysing the worst-case scenario of
an attack, the change in reconstruction error associated with
an attacked point is bounded by the size of the perturbation
if we assume the autoencoder has learnt an optimal mapping,
i.e. projection. We propose the Approximate Projection Au-
toencoder, which involves implementing gradient descent on
latent embeddings as a way to optimise reconstructions. We
also account for the natural variability in reconstruction er-
rors between different features through a feature-weighting
normalization step. Experiments with real data show that
combining both defenses almost always improves anomaly
detection performance by the largest amount, regardless of
the presence or severity of an attack.
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