Motor Control

Mobile Robotics

Anthony J. Clark

Rule-Compliance Path Planner

Pengfei Lin, 2024

Today

- DC Motors
- H-bridge motor driver (vary motor direction)
- Pulse-width modulation (PWM) (vary motor speed)
- Quadrature encoders (measure motor motion)
- Proportional control (control motor speed)

DC Motor Diagram

Lesson Explainer: Direct Current Motors | Nagwa

DC Motor Diagram

Lesson Explainer: Direct Current Motors | Nagwa

DC Motor Model

$$v = \frac{\alpha}{K_v} + Ri + L\frac{di}{dt}$$

DC Motor Model

$$v = \frac{\alpha}{K_v} + Ri + L\frac{di}{dt}$$

Where

- v is the voltage applied (or measured) across the motor terminals
- α is the angular velocity of the motor shaft
- K_{v} is the speed constant of the motor
- ${\it R}$ is the resistance of the motor
- *i* is the current through the motor
- L is the motor's inductance
- $\frac{di}{dt}$ is the rate of change of current

See Kirchhoff's circuit laws - Wikipedia

DC Motor Speed Vs. Voltage

H-Bridge

1	
1	
1	
1	
1	
1	

Pulse-Width Modulation (PWM)

$$V_{\text{effective}} = VT_{\text{duty-cycle}}$$

Quadrature Encoders

System Diagram

System Diagram

Proportional Control

$$u = K_p e$$

Where

u is the controller output

 K_p is a unitless proportional gain

 $e = r - \hat{y}$ is the error between the reference and the measured values

Proportional Control

