
CS159 - Assignment 5
Part A: Thursday, 10/17 @ 11:59pm

Part B: Wednesday, 10/23 @ 11:59pm

https://xkcd.com/1483/

In this assignment we will be exploring different approaches for calculating word similarities based
on distributional similarity. For example, given the word dog we might come up with the following
similar words:

terrier

breed

dogs

inu

spitz

You may work with a partner on this assignment (I encourage you to try and work with a
different partner) and you may use whatever programming language you like.

Part A: Warm-up

To get started, we’re going to do a similarity calculation “manually” to make sure that you un-
derstand the concepts and to give you some test data to check your answers against. Submit your
answers to the questions below as assignment 5a (well, really just question #2).

1. Read through the rest of this handout and make sure you understand the problem description.

1

https://xkcd.com/1483/


2. Calculate the similarity between the “words” b and d with TF-IDF weighting using EUCLIDEAN
distance for the data below. Assume each line is a sentence and each letter is a word.

a a b c c

a a d c c

a a b c c

e e d g g

e e f g g

h h h h h

Follow the specifications outlined in Part B below including length normalization, etc. where
appropriate. Along with your answer (the similarity), turn in intermediate calculations that
will help me verify correctness, in particular:

(a) the original co-occurrence vectors for b and d before processing

(b) the IDFs for each of the “words”

(c) the length normalized TF-IDF co-occurrence vectors for b and d

(d) and the final distance between words b and d using TF-IDF weighting and EUCLIDEAN

distance.

You should do this part “manually”, which doesn’t necessarily mean on paper (e.g. you can
use Excel, python or some other tool to help with the calculations), but you should not be
trying to write the whole program and should instead be doing the individual calculations.

Part B: The program

Input

Like the last assignment, for this assignment you will be creating a script called wordsim.sh that
outputs the most similar words to a set of input words based on a some of the different weighting
schemes and similarity measures we’ve looked at in class. This script should be placed in your code
directory and take three arguments as parameters:

wordsim.sh <stoplist> <sentences> <inputfile>

• <stoplist>: a list of stop words, one per line, that should be ignored from the input.

• <sentences>: a list of sentences/text fragments, one per line, to be used for training the
distributional similarity method.

• <inputfile>: a file consisting of lines of the following form:

<word> <weighting> <sim_measure>

2



(tab separated), where <weighting> is one of:

– TF: term frequency - use the number of times each word occurs in the word context.

– TFIDF: term frequency with inverse document frequency weighting – use the term fre-
quency times the inverse document frequency. Calculate IDF using the <sentences>

file treating each line as a separate document.

and <sim measure> is one of:

– L1: L1 distance, normalized by the L2 (Euclidean) length of the vectors.

– EUCLIDEAN: Euclidean distance, normalized by the L2 (Euclidean) length of the vectors.

– COSINE: Cosine distance, normalized by the L2 (Euclidean) length of the vectors.

Output

For any run of the program, the first thing you should output are some statistics:

1. the number of unique words (after stoplist removal, lowercasing, etc.)

2. the number of word occurrences (again, after preprocessing)

3. the number of sentences/lines

Just print the counts by themselves, one per line, so your output should alway be prepended by
three lines of numbers.

Then, for each line in the <input file> you will calculate the 10 most similar words based on
the weighting and similarity measure specified (or less, if there are less than 10 words in the data
set–make sure to check for this! ). Output these in order based on the most similar, one per line
with the similarity score, tab separated.

For example, if “dog TF COSINE” were in the input file, then you would have an entry in your
output:

SIM: dog TF COSINE

terrier 0.6757599580387642

now 0.6732906004244482

kind 0.6564829111760163

called 0.6561324054538721

considered 0.6526006142705167

today 0.6505379660187838

type 0.6481430531459309

possible 0.6470210473696648

used 0.646499660989564

also 0.6403788033560914

3



To make the output explicit, I’ve included an example at the end of this handout in the Appendix.
Please do take a look at this as you develop your program to make sure that you’re following the
formatting correctly.

Implementation details

- Split words based on whitespace (i.e. don’t do any other tokenization).

- Lowercase all words.

- Before calculating any statistics, contexts, etc. remove all stop words.

- Before calculating any statistics remove all words that are not exclusively letters (i.e. no
numbers, punctuation, etc.).

- We will use a context of 2 words on each side of a word. If a word occurs multiple times in a
context, count it multiple times. If you are at a line boundary (beginning or end) only count
to the boundary. For example, if we had the input sentence:

I like to eat bananas too .

and “to” was in our stoplist, then we would preprocess and get:

i like eat bananas too

and if we then wanted the context for bananas we would get the words {like eat too}.

- When looking for the 10 most similar words, only consider words that have occurred 3 or
more times.

- Make sure to follow the input and output specifications exactly. Look at the test
input and output examples in the data directory and make sure you match formatting, etc.

- My version takes less than a minute to load the data and calculate the test example. As with
all of the assignments, do think about efficient data structures when you’re thinking about
the implementation.

Hints

• You should be able to get all of your counts with a single pass through the sentences.

• Use a sparse representation for your co-occurrence vectors, i.e., you should only be storing
counts for those words that do co-occur.

• You’ve walked through one example by hand, but I’d encourage you to look at some other
ones manually as well. For example, calculate the results for the other measures on the corpus
from Part A.

4



• Be careful about converting between ints and doubles and doing division with ints.

• For each of the similarity/distance measures make sure you think about whether smaller or
larger means “more similar”.

• There is a strong relationship between EUCLIDEAN and COSINE.

Data

Like the previous assignments, we’ll use GitHub classroom:

https://classroom.github.com/a/-yT6kevX

There is no explicit code to start (though I’ve included a simple example of the wordsim.sh. The
main role of the starter is the data, which includes the following files in the data directory:

• stoplist: a stoplist

• sentences: the data

• test: an example input file

• test.out: the output for the test input file

Because of rounding errors, etc. your numbers may be just slightly different, but your for-
matting and lists should be the same.

Writeup

Once you have everything working, play with some different examples to see how well each of
the approaches work. Include a short writeup with the output from your system on two or more
different words over a range of weightings and similarity measures. Your experiments should high-
light strengths and weaknesses in the different approaches and allow you to provide some concrete
analysis of the approaches.

In addition to the results, provide a short (i.e. a paragraph or two) analysis of your results. Include
all of this as a file called either writeup.txt or writeup.pdf.

Your writeup will be graded based on the quality of your analysis as well as the quality of your
chosen examples.

Extra credit

For extra credit you may implement additional weighting schemes and/or additional similarity
measures. If you do this, include examination of these in your writeup and also include the extra
parameters in the README. Points will be awarded based on the difficulty of the approach as well
as its effectiveness.

5

https://classroom.github.com/a/-yT6kevX


One additional weighting scheme we talked about in class was PMI. If you implement it, use the
following specification:

• PMI: pointwise mutual information – use the pointwise mutual information weighting between
the word and the feature. Calculate:

p(w, f) =
count(w, f)

count(all words)

p(w) =
count(w)

count(all words)

p(f) =
count(f)

count(all words)

where count(all words) is the total number of word occurrences in the corpus, count(f) and
count(w) are the total occurrences of f and w, respectively, over the whole corpus (i.e. not
only in word contexts), and count(w, f) is the number of times word f was seen in the context
of word w, counting duplicates (i.e. if f occurred twice in one context, you’d count it twice).
For the log, use base 10.

When you’re done

When you’re all done, submit via Gradescope.

All of your code and your script wordsim.sh should be in the code directory and should work from
there.

Make sure to include your writeup as well.

If you worked with a partner, tag both people in the submission system, but only submit one copy.

If the naming of the files isn’t obvious about where various things are being done, please include a
README file explaining your organization.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file you
modify.

• Each class and method should have appropriate JavaDoc comments (doc strings if you do it
in Python).

6



• If anything is complicated, put a short note in there to help me out if there are any issues.

This is a non-trivial assignment and it can get complicated, which makes code style and comments
very important so that I can understand what you did. For this reason, you will lose points for
poorly commented or poorly organized code.

Grading

Part points

General 20

TF 5
TFIDF 5
PMI 5

L1 5
Euclidean 5
Cosine 5

Efficiency 5
Style/commenting 5

Writeup 10

extra credit 5

total 70 + 5 extra

7



Appendix

To make the output format concrete, I’ve included some output here. The formatting is correct,
but don’t read too much into the actual similarity values since they’re from a collection of sentences
that you don’t have access to (i.e., not the sentences above).

Given an <inputfile> as follows:

a TF L1

a TFIDF EUCLIDEAN

a PMI COSINE

If I called wordsim.sh with a stoplist and sentences (containing a very small number of words),
then an example output would be:

10 unique words

59 word occurrences

13 sentences/lines/documents

SIM: a TF L1

d 1.000537629821776

e 1.632993161855452

b 2.265448693889128

c 2.632993161855452

f 2.632993161855452

g 2.6329931618554525

some 3.047206724228547

sentence 3.047206724228547

other 3.047206724228547

SIM: a TFIDF EUCLIDEAN

d 0.5323025555230911

e 0.8454089623179316

b 0.946998582944023

c 1.1841476216541198

f 1.1841476216541198

some 1.4142135623730951

sentence 1.4142135623730951

other 1.4142135623730951

g 1.4142135623730951

SIM: a PMI COSINE

d 0.8660254037844387

e 0.6666666666666666

b 0.5773502691896257

8



f 0.28867513459481287

c 0.28867513459481287

g 0.0

other 0.0

sentence 0.0

some 0.0

9


