
CS159 - Assignment 4

Due: Wednesday, 10/9

http://www.xkcd.com/1427/

In the last assignment we extracted PCFG rules using maximum likelihood estimation from an
existing treebank and then binarized the grammar. In this assignment, we will now take a binarized
grammar and use it to parse a new sentence using the CKY parsing algorithm.

For this assignment, I am again giving you a fair amount of flexibility for how you implement it.
You may use whatever programming language you like (within reason – check with me if you plan
to use something that is out of the ordinary). I have, however, provided you with a GrammarRule

1

class in Java that is similar to the one used for the last assignment (except it uses weights instead
of probabilities).

You may (and I would encourage you to) work with a partner on this assignment. If you do, you
must both be there when either of you are working on the project and you should only be coding
on one computer (i.e. pair programming). If you would like a partner, but don’t have one, e-mail
me asap and I will try and pair you up.

As always, read through the whole handout before starting coding. In particular, I’ve given you a
number of hints that should help direct you.

1 CKY parsing

Create a CKY parser. Your parser should be initialized based on a binary grammar. Once it is
initialized, it should be able to parse multiple sentences without having to reread the grammar.
Your parser must be efficient, which means you need to be efficient about many of the lookup
operations in the algorithm.

To get you some very basic experience playing with command-line scripts (and because I’m allowing
you to use any language you want), along with your code, you will also be submitting a script called
parse.sh (in your code directory) that allows you to run your parser from the command-line. Your
script should take two command-line parameters as input. The first, should be the name of the
grammar file and the second, the name of a file consisting of sentences to be parsed, with one
sentence per line. Your script should then output the most-likely parse for each sentence along
with the score for that parse separated by a tab, one per line. The parse tree output should be the
parenthesized format we saw before for assignment 2. If the sentence does not have a parse, just
output NULL.

For example, the following very basic script would work for a Java version:

#! /bin/bash

javac -cp . nlp/parser/*.java

java -Xmx1G -cp . nlp.parser.CKYParser $1 $2

assuming that the Java parser took two parameters from the command-line and it’s in a package
nlp.parser and the name of your class is CKYParser (you’ll need to adjust those based on the
actual package structure and class name). If this is confusing or you have troubles with this, please
come talk to me sooner than later (don’t wait until the last minute to ask me about this!).

For python, it would be something like:

#! /bin/bash

python3 ckyparser.py $1 $2

2

where ckyparser.py is the name of you python program.

As an example, if we tried to parse the following sentences using example.pcfg:

Mary likes John .

John codes with John .

Mary likes to code .

write giant programs .

giant programs write John .

We would see the output:

(S (X3 (NP (NNP Mary)) (VP (VB likes) (NP (NNP John)))) (. .)) -1.9

(S (X3 (NP (NNP John)) (VP (VB codes) (PP (IN with) (NP (NNP John))))) (. .)) -2.1

NULL

(S (VP (VB write) (NP (JJ giant) (NNS programs))) (. .)) -2.3

(S (X3 (NP (JJ giant) (NNS programs)) (VP (VB write) (NP (NNP John)))) (. .)) -2.35

Please make sure that you follow the output specification exactly!

Output

When you think you have it all working, parse the file test.sentences with the large gram-
mar file full.pcfg. Put the output of this file in a directory called output in a file name
test.sentences.parsed.

My parser takes less than a minute to parse these 10 sentences (though one doesn’t have a parse).
If you’re not careful about efficiency, yours can take much, much longer.

Grammar rules

For the last assignment, to keep debugging simpler, we learned PCFG rules. However, if you try
and parse with PCFG rules you can have underflow problems as you start to multiply together small
probabilities. Instead, we’re going to use rules that have a score/weight associated with them. In
our case, the weights will be the log of the probabilities, but in general, we could use any arbitrary
weights. Unlike probabilities, with weights the score of a parse is now the sum of the weights of
the associated rules, and we would still like to pick the parse tree with the largest sum. For log
probs, these sums will be negative, but we’ll still be picking the largest value (i.e., the ones closes
to +∞.

2 Provided Code/Data

To get started, join the assignment via Github classroom:

3

https://classroom.github.com/a/hIV2Ubdr

• Code: I have provided you with the same GrammarRule class as the last assignment, how-
ever, I’ve changed the comments to reflect the fact that we’re now using weights (instead of
probabilities).

• Data: I have provided you with a number of grammars and some sample output to get you
started. example.output contains the parser output from parsing example.input using the
grammar file example.pcfg. full.pcfg contains a very large grammar that should be able
to parse most sentences (though we’re not dealing with out of vocabulary, so if the sentence
has a new word, it won’t parse).

How to Proceed

The following is how I would suggest proceeding, though you’re welcome to do it however makes
the most sense for you:

1. Make sure you understand the CKY algorithm. We walked through the algorithm in class
and the book provides pseudo-code. What information are you going to need to store in your
table? All of the table access operations need to be fast (O(1)). How are you going to store
things in the table to make this work?

2. In addition to the parse for 4a, consider working through a few other examples by hand to
generate test cases. For example, you could do another sentence using the example.pcfg

grammar or you could convert one of the grammars discussed in class to a weighted grammar
(by taking the log of the probabilities) and redo one of the class examples. These will be
important for debugging your program.

3. Write the constructor for your parsing class which will read in the grammar rules and store
them in an efficient manner. I suggest storing them in three separate data structures, one
for lexical rules, one for non-lexical unary rules and one for binary rules. Think about how
you’re going to be accessing each of these in the algorithm (look at the hints below for more
on this).

4. Write a helper class representing one entry in your CKY table. What do you need to store?
What types of questions will you need to support? How can you answer these questions
efficiently? It may be simpler not to worry about storing the actual back references for
reconstructing the parse and just worrying about the weights to start with.

5. Start writing your parsing method. Create a new CKY table (two dimensions) and fill in the
diagonals based on the the lexical components. I would suggest writing a method that adds
a constituent to your table (either in your entry class or as a standalone method). Print out
the added constituents (either as they’re added or by printing out the table) and make sure
everything is added appropriately. You can compare against your hand-written example(s).

4

https://classroom.github.com/a/hIV2Ubdr

6. Add the check for unary rule applications in your add method. Every time you add a new
constituent (whether it be from a binary or a unary rule) you need to check to see if any unary
rules apply. Make sure to avoid infinite loops by checking that by adding the constituent,
you’re getting a better parse. In particular, if you’re adding a constituent to an entry in the
table that already has that constituent only add it if it has a better score. Also, make sure
you’ve stored your unary rules in such a way that checking if any unary rule applies is fast.
Check again against your hand-crafted test examples.

7. Write the main loops to fill in the rest of the table entries. If you’re good about debugging
your add method beforehand, you should just be able to focus on the loops and not on adding
things to the table. You should be able to get a full parse now. Check your result against
your hand example. Make sure the weights are right.

8. Work on actually reconstructing the parse. For each added constituent, you’ll need to keep
track of what subconstituents it came from. This may require creating a new data structure
that’s going to feel similar to a simplified version of ParseTree. You’ll also probably need to
modify your table entry class. Once you have the backpointers setup, try and print out the
parse. Recursion will be your friend here. A parse tree is a recursive structure.

3 Hints

• If you need more memory (which you may) you can give the Java virtual machine more
memory by adding -Xmx1G as a flag (which will set your heap at 1G). From the command
line, just add it after java. From Eclipse you’ll need to add it as a VM argument under
Run->Run Configurations... and then under the Arguments menu.

• To get things to run efficiently, you’ll need to use hashtables (e.g., HashMaps) in a number
of places.

• You will also need to be careful about the algorithm decisions that you make if you want to
be able to parse with the full grammar. One place where you can run into trouble is when
applying the binary rules. When you’re filling in the table with the binary rules, you’re trying
to create new constituents by combining constituents in some entry to the left, call it entry1,
and some entry below, call it entry2. There are two ways you can see if you have a binary
rule that matches:

a. consider all pairwise combinations in entry1 and entry2 and see if any of those pairs
match the right-hand side of any of the binary rules

b. iterate through all of the binary rules and see if any of the rules match, that is RHS1 is
in entry1 and RHS2 is in entry2

One of these is approaches much faster than the other!

• Debug your code incrementally and make sure to print things out as you go. If you wait until
the end to try and debug it, you’re going to have a bad time.

5

• We’re only looking for the best parse, which means for any entry in the table, we only need
to store the best version (based on weight) of each constituent.

• If you get stuck on printing out the parse, take a look at the ParseTree class and its toString
method from the last assignment. The idea should be fairly similar.

• Unary rules are tricky. Make sure that any time you add a new constituent, you add a unary
rule, but be careful about not getting stuck in infinite loops.

• Spend some time making sure you understand the algorithm and the design of your code.
It’s not a ton of code to write, but it does take some thought figuring out how everything fits
together.

4 Extra credit

There are two possibilities for extra credit on this assignment. Each is worth 3 points.

• Real trees: Right now, we’re outputting binarized versions of the trees. We’d really like
to get the original grammar trees back out. Add a flag -original to your parse.sh script
that outputs original grammar trees. Make sure that the default behavior is still the bi-
narized version. Include in your output folder a parsed version of test.sentences called
test.sentences.parsed.original containing these new parses.

• Beam search: We can speed up the implementation of the parser at the sacrifice of optimality
by doing beam search: at each cell, only keep the K most likely hypotheses. Decreasing K
will result in faster parses, while increasing K will result in slower parses, but more likely to
be correct. Add a flag -beam <num> to your parse.sh script that uses K = num as the
beam threshold.

5 When you’re done

Your code and your parse.sh script should all be in the code directory.

6

What to submit

You should submit your full working code. If the naming of the files isn’t obvious about where
various things are being done, please include a README file explaining your organization.

You should have a directory call output that should have a file call test.sentences.parsed
representing your parse of test.sentences using full.pcfg.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file you
modify.

• Each class and method should have appropriate JavaDoc comments (doc strings if you do it
in Python).

• If anything is complicated, put a short note in there to help me out if there are any issues.

This is a non-trivial assignment and it can get complicated, which makes code style and comments
very important so that I can understand what you did. For this reason, you will lose points for
poorly commented or poorly organized code.

Grading

Part points

Parser 50
Efficiency 10

style/commenting 5

extra credit 6

total 65 + 6 extra

7

	CKY parsing
	Provided Code/Data
	Hints
	Extra credit
	When you're done

