
CS159 - Assignment 2b

Due: Wednesday, 9/18 @ 11:59pm

http://www.smbc-comics.com/index.php?db=comics&id=2884

For the main part of this assignment we will be constructing a number of smoothed versions of a
bigram language model and we will be evaluating its performance intrinsically using perplexity. For
this assignment you will be programming in Java. I have provided some starter code and have also
given you a specification to follow that will help guide you through the process and make grading
easier. You will be submitting your code and a short write-up.

You may (and I would encourage you to) work with a partner on this assignment. If you do, you
must both be there when either of you are working on the project and you should only be coding
on one computer (i.e. pair programming). If you would like a partner, but don’t have one, e-mail
me asap and I will try and pair you up.

1



1 Getting Started

First, read through this entire handout before getting started!

I have provided you with a number of data resources for use in training and evaluating your system
as well as some code that gives you a template to follow as you construct your language models.
All of this can be found in the assignment starter code.

1.1 Github Classroom

For this class, all starters will be distributed via github classroom and you will submit your work
using your github repo via gradescope.

If you don’t already, sign up for a github account and then go to:

https://classroom.github.com/a/3WCLTNiw

Sign in and then you should see something like (it may also ask you to join the class for this first
assignment):

You will need to create a new team. If you’re working solo, just put whatever team name you’d
like. If you’re working as a pair, only one person should create the team name. The other
person should then select the team when the join the assignment.

After you have created/selected a team, click the “Accept this assignment” button.

It can take a minute for it to generate your repo. If it takes longer than 30 seconds or so to redirect,
you can just go also go back to:

https://classroom.github.com/

2



and click through the class and you should see your new repo. If you open the repo, you’ll see all
of the starter (code and data). If you click on the green “Code” button, you can get the url for the
repo and can use that to get a local copy, e.g., using vscode or Eclipse.

1.2 Data

In the data directory of the starter there are is a file called sentences that contains 110,000
English sentences that we will be using to train and evaluate our language model. These sentences
were taken from a Simple English Wikipedia data set similar to the one we examined for the first
assignment. I have done all the preprocessing work for you:

• you should identify individual tokens/words by just splitting on whitespace

• and each line in the file should be treated as a sentence

You’ll also notice I’ve normalized the text in some cases, for example by lowercasing and converting
numbers to a special token. Do not do any additional processing (i.e. sentence splitting or word
tokenization) on this assignment since it will change your results.

1.3 Code

I have provided you with an interface to help structure your project and to make my life easier for
grading. Your language models will implement this interface.

LMModel: Describes the interface that a language model must implement, specifically a logProb

method for calculating the log probability of a sentence, getPerplexity method for determining
the perplexity of the text in the file and getBigramProb which will give you the probability of a
particular bigram. See the comments in the code for more detail.

Notice that the code I’ve provided for you is within the nlp.lm package. All of your code for
this assignment should also be in this package.

2 Building your first language model

Implement a bigram language model that is smoothed by adding a small λ to all of the frequency
counts in a class called LambdaLMModel. This class must:

• implement the LMModel interface

• Include a constructor as follows:

LambdaLMModel(String filename, double lambda)

which will train a new bigram language model from the text in filename smoothing with
lambda.

3



• Use the symbol <s> to mark the beginning of sentences and </s> to mark the end. You’ll
need to add these internally for all of the methods since the data will not include them.
Don’t forget to also do this in the logProb and perplexity methods when you’re given a
new sentence.

• Utilize a fixed vocabulary based on the training data provided and use the <UNK> symbol to
mark unknown or out of vocabulary words.

During training (i.e. when you are learning the probabilities)

– You should replace the first occurrence of each word with <UNK> and train the model
using that.

– <s> and </s> will be part of your vocabulary, but do NOT replace the first occurrences
of <s> and </s>.

For example, if you were given three sentences (I’ve used letters for words):

a a a b

a b b a

c a a a

this would become:

<s> <UNK> a a <UNK> </s>

<s> a b b a </s>

<s> <UNK> a a a </s>

and then you’d use this data to train your model. This would result in a vocabulary of
5 words, specifically <s>, <UNK>, a, </s> and b.

During testing (i.e. in the logProb, perplexity and getBigramProb methods)

– If you see a word that was not seen during training, you should replace it with the
<UNK> symbol. Notice that if you only saw a word once during training, it would be an
unknown word.

For example, given the training data above, if we were applying the model to the sentence

a b a a c a d

would become

<s> a b a a <UNK> a <UNK> </s>

• Smooth the bigrams using the supplied lambda. Because we’re using the <UNK> symbol, you
should NOT smooth the unigrams. To smooth the bigrams add lambda to each of the counts
and then normalize appropriately.

• Any logs should be log base 10 (use Math.log10).

Hints/Advice

4



• I strongly suggest that debug your code using examples that you’ve verified by hand. You
can use your solutions from Assignment 2a for this with very minor changes to your code
(e.g. comment out the part(s) in your code that add in the begin and end sentence words).
You can then print out or use the debugger to look at individual probability distributions,
i.e. p(·|a). You might also want to do a few extra examples by hand to test other cases. For
example, make up three sentences or so with just 3-4 words in the vocabulary (like the above
examples) and work out what the probabilities should be.

• There are many ways of calculating the probabilities, but my advice is to run through the
data once and record all of the counts that you need. Then, go back through your stored
counts and calculate the probabilities.

• You should use HashMaps (i.e. hashtables) and related structures such as HashSet wherever
appropriate to store your counts and probabilities, otherwise, it’s going to be too slow.

• There are a number of possible approaches for storing the bigrams. You could use a single
HashMap with the key being the bigram, however, a better way to do it is to use a hashtable
of hashtables. The main hashtable is keyed off of the first word and the value is another
hashtable. The second hashtable is keyed off of the second word in the bigram and has
the value as the probability. This approach will make it much easier for later parts of this
assignment (don’t say I didn’t warn you).

• You should only store bigrams that you’ve actually seen in the table. During testing, if you
encounter a bigram that you have not seen before, then you can calculate its probability on
the fly based on lambda and the size of your vocabulary. If this doesn’t make sense, come
talk to me.

• Be careful about underflow. When calculating the log prob of a sentences do NOT simply
calculate the product of the bigram probabilities and then take the log. Instead, take the
sum of the logs of the individual bigram probabilities. If you don’t do it this way, you may
have problems, particularly for longer sentences.

• When you do start training on larger amounts of text, you may need to increase your heap
size (you’ll probably get an out of memory exception if you don’t). If you’re running on the
command-line, just add -Xmx2G after java (2G specified 2 GB of heap space which should be
plenty). If you’re using Eclipse, under “Run Configurations...”, select the “Arguments” tab
and under “VM arguments:” included -Xmx2G.

• On my laptop, my implementation finishes in less than 2 seconds. If you find that yours is
taking a long time (i.e. much more than a minute or so) you’re probably doing something
inefficiently and you should try and fix it.

3 A better language model?

The language model above does not use the unigram probabilities at all. We’re going to try
and improve this and construct a language model that backs off to the unigram probabilities.

5



Specifically, we’re going to construct an absolute discounted backoff language model (see the lecture
notes and the book).

Create a new class called DiscountLMModel that implements a backoff, discounted bigram model
with the following features:

• implements the LMModel interface.

• Includes a constructor

DiscountLMModel(String filename, double discount)

which will learn a new bigram language model from the text in filename discounting each
bigram count by discount to be used for backoff calculations.

• Like the language model above, we enclose sentences in <s> and </s> and use a closed
vocabulary with the same approach for using <UNK> as for LambdaLMModel.

• Unigram probabilities should be calculated normally. Note that <s>, </s> and <UNK> will
all have their own unigram probabilities since they are part of the vocabulary.

• During training, when calculating bigram probabilities, you will discount the actual bigram
count by discount (.75 is a good place to start). During testing, if you encounter an unseen
bigram, you will calculate its probability as the backoff factor (α in the book) times the
unigram probability of the second word in the bigram. α will be different for each word
and will depend on how many bigrams were discounted that started with the first
word in the unseen bigram. This should be straightforward to calculate if you represented
the bigram probabilities as a hash of hashes like I suggested.

• Again, make sure to use log base 10 for all of your calculations.

Hints/Advice

• Again, I strongly encourage you to work out the probabilities by hand on a small example
and then compare them to the system’s output. Think simple, with just a few sentences of
length 4-5 and a vocabulary of just 3-4 words.

• If your training for the first language model was done in two steps, first collecting the counts,
then going back and calculating the probabilities, I would encourage you to reuse code. For
the discount model you’ll also need to aggregate the counts as the first step. The best way to
do this would be to create an intermediary abstract class (say something like LMBase) that
has appropriate protected variables for aggregating counts and the count collection method.
You can then extend this class with both your language model classes.

• Training this language model also runs in less than 2 seconds for my implementation on my
laptop. Again, if yours takes significantly longer than this (i.e. minutes) then you’re probably
doing something inefficiently and should try and figure out where.

6



4 Code specification

Make sure to follow the specifications outlined above. Do not change the LMModel interface and
make sure that your constructors are as defined above. Do not include any throws statements in
any of the public method declarations. This changes the interface and will make grading more of
a pain.

5 Evaluation

Now that we have some working systems, I’d like for you to evaluate how well each of the systems
are doing, with a variety of parameters and include a writeup (with data) describing the results
from the experiments below. In each case, provide the results of your experiments and a short
paragraph analyzing your results.

Create a file with your answers to the following question in a reasonable format. Make sure that
your name(s) are at the top of the file and number your sections so it’s easy to review.

1. What is the best lambda smoothing parameter?

Split the sentences into three parts: 90,000 training, 10,000 development and 10,000 testing
(the command-line commands head and tail may be useful).

• Calculate the perplexity on the development set for lambda in (.1, .01, .001, ..., .00000001)
and provide the results in your write-up (either as a table or a graph).

• Now, calculate the perplexity on the test set for lambda in (.1, .01, .001, ..., .00000001)
and provide the results in your write-up.

• Discuss your results. In particular, what is the best lambda on the dev and test set? If
you didn’t cheat (i.e. picked the best lambda using the dev set) how far off from the
optimal lambda would you have been? Add any other observations.

2. What is the best discount?

Do the same as above except now for the discounted model with discounts in (0.99, 0.9, 0.75,
0.5, 0.25, 0.1). Provide the results and analysis in your write-up.

3. Performance

Which model is better? Provide some quantitative and/or qualitative arguments (including
data or examples) of which approach is better. Make sure to clearly explain you evaluation
approach and your arguments.

4. Wrap-up

Very briefly answer the following questions: how long did you spend on this assignment?
what was the most fun part? least fun part? how would you improve it if I had to give it
again?

7



6 Ethics

Read the IEEE Spectrum article entitled “AI’s 6 Worst-Case Scenarios”

https://spectrum.ieee.org/ai-worst-case-scenarios

and answer the following questions:

5. Of the six scenarios, which do you see as the most problematic? Give a couple of sentences
justifying your answer.

6. What is one scenario that is also concerning that is not listed here? It can be NLP-specific
or more broadly to AI.

7 Extra Credit

More analysis [2 points]

Training data size

Investigate the impact on performance as you vary the training data size. Since we’re using per-
plexity for evaluation, we need to be careful that it’s a fair comparison, that is, all models should
be distributing their probability mass over the same number of things (i.e. the same vocabulary).
To investigate this, you’ll need to modify your code slightly:

• Generate a vocabulary that you will use for all of your experiments. A reasonable choice
would be the vocabulary from the largest test set.

• Modify your code so that you can optionally initialize it with a specified vocabulary list.
I’ll leave how you do this up to you, but make sure that your code still conforms to the
specifications above.

• Run experiments for varying sizes of training data. Think a bit about what to use for the
lambda and discount for these.

Provide data and analysis on your results.

More models [3 points]

Experiment with another smoothing techniques (for example, Kneser-Ney discounted backoff, in-
terpolated models, Good-Turing discounting, Witten-Bell discounting). If you do this, just create
other classes that implement the LMModel class. Do NOT change either of the classes above.

Include an additional section in your writeup where you provide results and analysis of the perfor-
mance of your new approach(es). You don’t necessarily have to answer all of the questions above,
but you should provide some results.

8



Submitting

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Your submission should should contain two things:

• Your writeup. Make sure that the names of everyone in your group is in the writeup.

• A directory called code: copy all of your code into this directory. Make sure you preserve the
package directory structure, i.e. all your code should be in nlp/lm/.

Only one person in the group should submit the material, though you should tag your partner in
the submission system when submitting

What to submit

You should submit the full working code including the LMModel interface as well the LambdaLMModel
and DiscountLMModel classes. You likely will have written additional code to run experiments,
etc. You don’t need to submit this, though if you do, make sure it compiles, etc. and I reserve the
right to look at it for style and commenting :)

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each class file you
modify.

• Each class and method should have appropriate JavaDoc comments.

• If anything is complicated, put a short note in there to help me out if there are any issues.

This is a non-trivial assignment and it can get complicated, which makes code style and comments
very important so that I can understand what you did. For this reason, you will lose points for
poorly commented or poorly organized code.

Autograder

I have included a very basic autograder that should run when you submit to Gradescope. These
tests will just test to make sure that you’ve followed the specifications, but does not test the actual
correctness of your algorithms or the functionality. Do make sure that your code at least passes
the basic tests after you submit.

9



Grading

Part points

LambdaLM 15
DiscountLM 15
evaluation/write-up 20

style/commenting 10

extra credit 5

total 60 + 5 extra

10


