
CS159 - Assignment 1

Data Analysis and Regular Expressions

Due: Wednesday, 9/4 @ 11:59pm

http://www.smbc-comics.com/index.php?db=comics&id=2884

Regular expressions are one of the more useful tools for many NLP tasks. The goals of this
assignment are to familiarize yourself with regular expressions, to play with them in different
languages/environments, to get some experience with some useful command-line tools, and to get
a feeling for text data analysis.

1

http://www.smbc-comics.com/index.php?db=comics&id=2884

You will only be handing in a write-up for this assignment, however, it will involve coding and
experimentation. You will not hand-in any code, but you are still expected to write the code
yourself and should not be copying material from online, etc. If you have any question about what
is appropriate, feel free to come talk to me.

You may (and I’d encourage you to) work in pairs if you’d like. If you do, whenever either of you
are working on the assignment, you should both be there and working on it together (i.e., don’t
split up the assignment into parts and work on it separately!).

sed and grep

For this assignment, we’ll be using two command-line tools, grep and sed. If you’re using a Mac,
these are built-in and can be accessed via terminal. If you’re using Windows, I’d recommend
installing a Linux emulator like cygwin (https://www.cygwin.com/), which has these built-in,
though you’re also welcome to try and install sed and grep individually. Worst case, the CS labs
in Edmunds are all Macs and have access to these tools available and you should all have accounts
on those machines.

Before starting, you may find it useful to read the notes section at the end of this handout which
discusses grep and sed as well as review some of the links posted at the end of the regular expression
slides posted on the course webpage.

Resources

For some of the problems in this assignment you will be processing real data. These files can all be
found at:

http://www.cs.pomona.edu/classes/cs159/assignments/assignment1_resources.zip

String matching [10 points]

For all of the following problems you MUST use regular expressions exclusively.

1. Write two Java functions that take as input a String and return a boolean indicating
whether that string is a valid social security number. They should both use a single regular
expression to do the entire matching (one per problem) and should not do any additional
string processing, etc.

(a) To start with, we’ll define a social security number (SSN) as a number consisting of 9
digits. Optionally, the SSN may be separated into 3 digits, 2 digits and 4 digits by two
dashes ‘-’ (note that it must either have 2 dashes or none).

2

https://www.cygwin.com/
http://www.cs.pomona.edu/classes/cs159/assignments/assignment1_resources.zip

(b) The first version isn’t exactly correct for social security numbers. Currently, the first
three digits of the SSN must be less than or equal to 7721, though the other 6 numbers can
be any number. Write a second Java function that enforces this additional restriction.
For simplicity, you may assume that for this version the user must enter dashes.

Include these two functions in your writeup.

2. For this problem, we’re going to be analyzing 100K twitter posts found in twitter.posts.txt

in the assignment1 resources data.

Before there was an explicit mechanism to retweet, users would use various notations to indi-
cate a retweet. Write a statement using grep that selects all the lines in the file that contain
retweets. A retweet is signified by the characters “rt” (all capitalization variants) or the
word “Retweet”, optionally follow by a colon, optionally followed by some number of spaces,
followed by an ‘@’, directly followed by a username (which consist of only alphanumeric char-
acters), and then concluded with either whitespace, a colon, or the end of the string. A
retweet must be preceded by a space or be at the beginning of the string, so be careful not
to match something like “blurt @bobby”.

The following are examples of valid retweets:
RT @profkauchak ...
... rt @teran471
blah blah Retweet:@theman blah blah

Include your grep statement in your writeup as well as your answers to the following questions:

(a) Of the 100K tweets, how many included a retweet? (Hint: The wc command might be
useful for counting.)

(b) How many used “RT” to denote the retweet? “Rt”? “rt”? “Retweet”?

A quick overview of grep can be found at the end of this handout.

String replacement [10 points]

3. HTML processing

Using sed, write one command-line expression, i.e., that you type it all and then press return
only once (though you can use multiple sed statements chained together with pipes), to do
all of the following to an input file:

• remove all the html tags from the document (an html tag is any text surrounded by
‘<>’ and may contain spaces). Be careful about greedy matching. Both ‘*’ and ‘+’ try
and match as much as they can, so if you just use them with say ‘<.*>’, it can match
the whole line if the whole line starts and ends with brackets (even though it may be

1along with a few other restrictions we won’t worry about

3

multiple tags). Think about what characters can and, more importantly, can’t be inside
an html tag.

• change any sequences of to spaces

• the title of an html article is enclosed with “<title> ... </title>” tags. Before removing
the html tags, identify the title and prepend it with “Title:”. For example, if in the
file the title was “<title>A Brave New World</title>”, then you would replace this
sequence with “Title: A Brave New World”.

The input file should be called filename.

For example, if the the following html was in the filename

<html>

<title>This is the best title!</title>

<body>

This <i>test</i> article uses old school formatting

rather than css.

</body>

</html>

then the result of running your call would be:

Title: This is the best title!

This test article uses old school formatting

rather than css.

A quick overview of sed can be found at the end of this handout.

4. Write a function in Perl, Python or Java that takes as input a string representing a single
word and returns a pig latin version of that word. Any string processing should be done using
ONLY the regular expression functionality of the language. To turn a word into pig latin,
move any sequence of one or more consonants at the beginning of the word to the end, then,
regardless of what letter the word starts with, add ‘ay’ to the end of it. For example “crouton
→ outoncray” or “snake → akesnay” or “another” → “anotheray”.

Data analysis [30 points]

For this last problem, you will be analyzing a real corpus consisting of two files normal.txt

and simple.txt found in the assignment resources data. Each of these files contains text from
Wikipedia articles, normal.txt from English Wikipedia and simple.txt from Simple English

4

Wikipedia. The files each contain articles on the same 500 topics. The articles are delimited by
the TITLE descriptor and paragraphs are delimited by blank lines. To answer the questions in this
section, you may do it however you’d like; the only thing that matters is the answer.

5. Create a table that has normal Wikipedia in one column and simple Wikipedia in the other
column. Include a row for each of the following for each Wikipedia (in this order):

– Paragraphs: How many paragraphs does each data set contain? What is the average
number of paragraphs per article?

– Sentences: How many sentences does each data set contain? What is the average
number of sentences per article?

To do this, write a simple sentence segmenter. We will use a fairly simple definition of a
sentence. First, split the paragraphs into sentences based on any text that ends with a ‘?’
or ‘!’ or ‘.’ optionally proceeded by quotes. Now, go back through and merge sentences
with the following criterion: 1) sentences should not start with a lowercase letter, if one
does, merge it with the previous sentence 2) if a sentence ends with a period and the last
word is a capitalized word with three or less characters, then merge it with the sentence
that follows it.

– Words total: How many words does each data set contain?

To do this, write a simple word tokenizer. First split the text (not including the titles)
into tokens based on whitespace. Then, for each token, as long as it starts or ends with:
" , : ; ’ () . ? ! then split that character off as a new token. For example,
the token banana." would end up as three different tokens since you would continue to
split off trailing characters.

We’ll then define a “word” as any token that contains any alphanumeric characters, for
example, a period by itself or “()” would not be considered a word.

– Words per article: What is the average number of words per article?

– Words per sentence: What is the average number of words per sentence?

– Vocab size: How many different words are there in each of the data sets (i.e what
is the vocabulary size)? Count different capitalization variants as different words, i.e.
“dog” and “Dog” would count as two different words.

– Vocab size2: What is the vocabulary size if you lowercase all of the words, i.e. “dog”
and “Dog” would be considered one word?

6. List one example (you can make it up) where our sentence splitting approach does not do the
correct thing.

7. List one example (you can make it up) where our tokenization technique does not do the
correct thing.

8. List the top ten most frequent words in each data set with their frequencies. Are there any
surprises? Do they differ much?

5

9. Find two more interesting pieces of data to compare/contrast between these data sets. You
will be graded on how creative your analysis is, how difficult the analysis was and how
profound your results are. If you need ideas, come talk to me (earlier than later) and we can
bounce some ideas around. Extra credit will be given for particularly insightful analysis.

Ethics [4 points]

Read the following article:
https://www.scientificamerican.com/article/ai-chatbots-seem-as-ethical-as-a-new-york-times-advice-columnist/

10. What is one ethical concern mentioned in the article?

11. Besides those mentioned in the article, what are other ethical concerns that might come up
with respect to LLMs/AI-advice?

Extra credit [up to 4 points]

In the data analysis work, we implemented fairly basic word tokenizers and sentence segmenters.
For extra credit, you may improve one or both of these. If you do, include in your writeup a) what
you did and b) how this changed your results compared to the “original” versions. Extra credit
will be awarded based on the quality of the improvements.

When you’re done

Submit your writeup via Gradescope. Make sure to select the problems as you submit it to make
grading easier.

If you worked with a partner, only one person should submit, but make sure to tag the partner in
the submission.

6

https://www.scientificamerican.com/article/ai-chatbots-seem-as-ethical-as-a-new-york-times-advice-columnist/

Useful notes

• grep

grep is a command line tool that allows you to find lines in a file that match particular regular
expressions. Most frequently, grep takes two parameters, a double quoted regular expression
and a filename. grep will then print to the console all lines in the file that match the regular
expression (the -v flag causes grep to return all non-matching lines). For example

grep "banana" file

would output all lines in the file that contained the string banana, including lines that had
other variants like bananas. grep does not have the character class shortcuts (like \d, \w,
etc.) however, you can make your own using brackets (like [0-9]). grep has many other useful
features that you can experiment with. I would suggest always using grep -E, which has uses
the more traditional notation.

You can find documentation for grep online, for example:

http://www.panix.com/~elflord/unix/grep.html

is pretty good. You can also type man grep to get some information. Using grep -E does
have a few extra useful features, for example it will allow you to use the \b character for
denoting a boundary (whitespace or the beginning/end).

• sed

sed is another command-line program. sed is particularly useful for doing string substitutions
in a file. Like grep, the most common way to use sed is to pass it a command in quotes as
the first argument and then a filename as the second. The most common way to use sed is
with the substitution command:

sed -E "s/aa/bb/" filename

which will substitute the first occurrent of “aa” on each line with “bb” and print it out to
the console (or you could redirect it to an file using ‘>’). If you want it to substitute all
occurrences, use the global flag:

sed -E "s/aa/bb/g" filename

You can use other standard regular expression techniques with sed including things like
‘.’ for matching everything, character classes using ‘[]’, and the use of groups identified by
parenthesis in the matching expression and then denoted by ‘\\1’, ‘\\2’, etc. For example:

sed -E "s/([dD]ave)/\\1 is great/g" filename

would add “ is great” after every occurrence of “dave” or “Dave” in a file.

sed will also read input from the console if you don’t provide a filename. This features is
frequently used to chain sed statements together. For example:

sed -E "s/[0-9]+//g" filename | sed -E "s/ +/ /g"

which first removes all numbers then pipes/sends the output from that to another sed call
using ‘|’, which then removes multiple spaces.

7

http://www.panix.com/~elflord/unix/grep.html

For additional information type man sed or see resources online, for example

http://www.grymoire.com/Unix/Sed.html.

8

