

All pairs shortest paths: calculate the shortest paths between all vertices

1

3

Why do we care?

All pairs shortest paths: calculate the shortest paths between all vertices

Application 1: Calculate diameter in networks, i.e., the longest of all shortest paths (e.g., longest possible transit time between messages in a communication network)

Application 2: Navigational applications (e.g., Google Maps) often need to store APSPs to query in real-time routing

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths between all vertices

Easy solution?

4

2

This Class □ Floyd-Warshall Algorithm for APSP □ For general graphs Johnson's Algorithm □ Improvement in runtime for sparse graphs

6

This Class □ Floyd-Warshall Algorithm for APSP ■ For general graphs Johnson's Algorithm □ Improvement in runtime for sparse graphs

Floyd-Warshall: key idea Label all vertices with a number from 1 to V d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, \dots, k\}$

8

Floyd-Warshall: key idea Label all vertices with a number from 1 to V d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, \dots, k\}$ If we want all possibilities, how many values are there (i.e. what is the size of d_{ij}^{k})?

11

Floyd-Warshall: key idea Label all vertices with a number from 1 to V d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1,2,\ldots,k\}$ • i: all vertices j: all vertices k: all vertices

12

Floyd-Warshall: key idea Recursive relationship d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, ..., k\}$ Label all vertices with a number from 1 to V Assume we know d_{ii}^{k} d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, ..., k\}$ How can we calculate d_{ij}^{k+1} , i.e. shortest path now including vertex k+1? (Hint: in terms of d_{ij}^{k}) What is d_{ii}^{V} ? Two options: • Distance of the shortest path from i to j1) Vertex k+1 doesn't give us a shorter path • If we can calculate this, for all (i, j), we're done! 2) Vertex k+1 does give us a shorter path

13 14

```
Recursive relationship

d_{ij}{}^{k} = \text{ shortest path from vertex } i \text{ to vertex } j \\ \text{ using only vertices } \{1, 2, ..., k\}

Two options:

1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path
d_{ij}{}^{k+1} = ?

Two options:

1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path
d_{ij}{}^{k+1} = d_{ij}{}^{k}
```

16

Recursive relationship d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, \dots, k\}$ Two options: 1) Vertex k+1 doesn't give us a shorter path 2) Vertex k+1 does give us a shorter path $d_{ij}^{k+1} = d_{i(k+1)}^{k} + d_{(k+1)j}^{k}$ some vertices $\{1 \dots k\}$ some vertices $\{1...k\}$ $d_{(k+1)j}^k$ $d_{i(k+1)}^k$

19

Recursive relationship d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, \dots, k\}$ Two options: 1) Vertex k+1 doesn't give us a shorter path 2) Vertex k+1 does give us a shorter path $d_{ij}^{k+1} = ?$ How do we combine these two options?

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex jusing only vertices $\{1, 2, ..., k\}$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = \min(d_{ij}^{k}, d_{i(k+1)}^{k} + d_{(k+1)j}^{k})$$

Pick whichever is shorter

21

23

Floyd-Warshall

Calculate $d_{ij}{}^k$ for increasing k, i.e. k=1 to V

Floyd-Warshall(G = (V,E,W)):

 $d^0 = W$ // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

 $d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$

 $\mathsf{return}\ d^V$

```
Floyd-Warshall(G = (V,E,W)):
                                                                 d^0 = W // initialize with edge weights
                                                                  for i = 1 to V
                                                                   for j = 1 to V
                                                                    d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
k = 0
                              k = 1
                                                                         k = 1
                                                                                                       k = 2
                                                                   1 2 3 4 5
                                                                  0 4 −1 ∞ ∞
                                                                   ∞ 0 ∞ ∞ 5
                                                                                             2
 0 2 2
                                                                   ∞ 3 0 2 2
                                                                                             3
                                                                   ∞ ∞ ∞ 0 −3
                                                                   \infty \infty 1 \infty 0
```

24

22

Floyd-Warshall(G = (V,E,W)): $d^0 = W$ // initialize with edge weights for k = 1 to V for i = 1 to V for i = 1 to V $d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$ 0 4 −1 ∞ ∞ ∞ 0 ∞ ∞ 5 ∞ ∞ ∞ 0 -3 ∞ ∞ 1 ∞ 0 adjacency matrix

1 2 3 4 5 1 [0 4 −1 ∞ ?]


```
Floyd-Warshall(G = (V,E,W)):
d^0 = W // initialize with edge weights
for k = 1 to V
for i = 1 to V
 for j = 1 to V
   d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
       k = 2
                                      k = 3
                                 1 2 3 4 5
   1 2 3 4 5
0 4 1 ∞ 9
                                 0 2
 ∞ 0 ∞ ∞ 5
                            2
 ∞ (3) 0 2 2
                            3
  ∞ ∞ ∞ 0 −3
 \infty \infty 1 \infty 0
                                Found a shorter path!
        minimum
```


Floyd-Warshall(G = (V,E,W)): $d^0 = W$ // initialize with edge weights for k = 1 to V for i = 1 to V for i = 1 to V $d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$ k = 3k = 41 2 3 4 5 1 2 3 4 5 0 2 -1 1 1 0 2 -1 1 -2 ∞ 0 ∞ ∞ 5 2 ∞ 0 ∞ ∞ 5 ∞ 3 0 2 -1 3 ∞ ∞ 1 ∞ 0

minimum

43

Found a shorter path!

47

Floyd-Warshall analysis

Is it correct?

Any assumptions?

Floyd-Warshall(G = (V,E,W)): $d^0 = W // \text{ initialize with edge weights}$ for k = 1 to Vfor i = 1 to V $d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$ return d^V

Floyd-Warshall analysis

What type of algorithm is Floyd-Warshall?

Floyd-Warshall(G = (V,E,W)): do = W / initialize with edge weights for k = 1 to V for i = 1 to V for j = 1 to V $d_{ij}^{\ k} = \min(d_{ij}^{k-1}, d_{ik}^{\ k-1} + d_{kj}^{\ k-1})$ $return d^{V}$

55

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V $d_{ij}{}^k = \text{shortest path from vertex } i \text{ to vertex } j \text{ using only vertices } \{1, 2, ..., k\}$ If we want all possibilities, how many values are there (i.e. what is the size of $d_i{}^k$)?

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: θ(V³)

57

58

60

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Easy solution?

59

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)?

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

O(V² log V + V E)

• V calls to Dijkstras

• Dijkstras: O(V log V + E)

All pairs shortest paths $V* Bellman-Ford: O(V^2E)$ $Floyd-Warshall: \theta(V^3)$ $V* Dijkstras: O(V^2 log V + V E)$ Is this any better?

61

63

All pairs shortest paths $V*Bellman\text{-}Ford: O(V^2E)$ $Floyd\text{-}Warshall: \theta(V^3)$ $V*Dijkstras: O(V^2 log V + V E)$ If the graph is sparse!

All pairs shortest paths

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

64

Johnson's: key idea

Reweight the graph to make all edges positive such that shortest paths are preserved

What's the shortest path from A to D7

65

67

Lemma

let h be any function mapping a vertex to a real value

If we change the graph weights as:

 $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

The shortest paths are preserved

Lemma: proof $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

Let s, v1, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

 $\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1) + h(s) - h(v_1) + \hat{w}(v_1, ..., v_k, t)$

weight for first edge weight for remaining edges

68

Lemma: proof

 $\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

Justification?

Lemma: proof

 $\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

h(s) - h(t) is a constant and will be the same for all paths from s to t, so the absolute ordering of all paths from s to t will not change.

73

74

Lemma

let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

The shortest paths are preserved

Big question: how do we pick h?

Selecting h

Need to pick h such that the resulting graph has all weights as positive

 $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

75

Create G' run Bellman-Ford(G',s) if no negative-weight cycle reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G S**→**A:0 S→B: -2 S**→**C: S**→**D: S**→**E:

82

83

Johnson's algorithm

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G
run Dijkstra's from every vertex
reweight shortest paths based on G

Run-time?

103 104

All pairs shortest paths $V* Bellman-Ford: O(V^2E)$ $Floyd-Warshall: \theta(V^3)$ $Johnson's: O(V^2 log V + V E)$