SHORTEST PATHS

Devansh Jalota and D
CS 140 - Fall 2024

11/5/24

All pairs shortest paths
e

All pairs shortest paths: calculate the shortest paths
between all vertices

Why do we care?
[———

All pairs shortest paths: caleulate the shortest paths
between all vertices

Application 1: Calculate diameter in networks, i.e., the
longest of all shortest paths (e.g., longest possible transit
time between messages in a communication network)

Application 2: Navigational applications (e.g., Google
Maps) often need to store APSPs to query in real-time
routing

All pairs shortest paths
[———

All pairs shortest paths: caleulate the shortest paths
between all vertices

Easy solution?

11/5/24

All pairs shortest paths This Class
|) |)
Floyd-Warshall Algorithm for APSP
All pairs shortest paths: calculate the shortest paths For general graphs
between all vertices Johnson’s Algorithm
Improvement in runtime for sparse graphs
Run Bellman-Ford from each vertex!
O(VE)
* Bellman-Ford: O(VE)
* V calls, one for each vertex
5 6
This Class Floyd-Warshall: key idea
|] |]
o Floyd-Warshall Algorithm for APSP
For general graphs Label all vertices with a number from 1 to V
o Johnson's Algorithm
Improvement in runtime for sparse graphs dl//\' = shortest quh from vertex [to ver?exj
using only vertices {1, 2, ..., k}
7 8

11/5/24

Floyd-Warshall: key idea Floyd-Warshall: key idea
e e

d,,"" = shortest path from vertex i to vertex j

d,,/‘ = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

using only vertices {1, 2, ..., k}

What is dy532

dis3 = 1. Can't use vertex 4.

10

Floyd-Warshall: key idea

Floyd-Warshall: key idea
=

Label all vertices with a number from 1 to V Label all vertices with a number from 1 to V

d;* = shortest path from vertex [to vertex j

d; % = shortest path from vertex [to vertex j
using only vertices {1, 2, ..., k}

using only vertices {1, 2, ..., k}

3
If we want all possibilities, how many values are there v X
(i.e. what is the size of dij*)? * i all vertices

J: all vertices

k: all vertices

11 12

11/5/24

Floyd-Warshall: key idea

|]
Label all vertices with a number from 1 to V

d;j* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

What is d;;"2

Distance of the shortest path from i to j

If we can calculate this, for all (i,), we're done!

13

Recursive relationship
=

d,//" = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Assume we know d,/k

How can we calculate d,/"'“, i.e. shortest path now
including vertex k+12 (Hint: in terms of d,,/")

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

14

Recursive relationship
[

d;* = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

Two options:

1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

A+t =2

15

Recursive relationship
[

d;* = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

Two options:

1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

d”k’+1 - dijk

16

Recursive relationship

d,,"' = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

dif =2

Recursive relationship

d,," = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

d,'j"’“ =2

some vertices {1...k} some vertices {1...k}

What is the cost of this path?

17

18

Recursive relationship
=

d;* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

dif*t = digerny + dgerny;

some vertices {1...k}

difler1)* + e

some vertices {1...k}

Recursive relationship
=

d;* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

4+t =1

How do we combine these two options?

19

20

11/5/24

Recursive relationship
=

d,,’"’ = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

) K
di*t = min(di*, digesy + dgesny;)

Pick whichever is shorter

Floyd-Warshall
e

Calculate dijk for increasing k, i.e. k = 1 to V

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

. _ k-1 -
dij* =min(di* ', dye +di*)

return dV

21

22

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork =110V

fori=1t0V

forj=1toV

k-1
dif* = min(di* L dy +di T

return dV

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork =110V

fori=1t0V

forj=1toV

di* = min(di* " die + di*)

return d¥
k=0 k=1 k=1 k=2

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
110 4 -1 o o 110 4 -1 o o 110 4 -1 o o 1 0 4 -1 (2
2l 0 (0 o o 5 2 o 0 o ®w 5 2| o (0 o o 5 2
3o 3 0 2 2 3w 3 0 2 2 3o 3 0 2 2 3
4| 0 0o o (O =3 4| 0 o o (0 -3 4 0 0 o 0 =3 4
5w o 1 o 0 51l 0 © | o« 0 5l o oo 1 o 0 5

adjacency matrix no change

23 24

11/5/24

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork =110V
fori=1t0V
forj=1toV

dijk = min(di*~L dy T+ di* T

Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

k-1 -
dy = min@@* " dge +di* Y

return dV return dV
k=2
12 3 4 s 12 3 4 5 2 3 4 5
110 4 -1 o (x 1 0 4 -1 =19 10 4 -1 » 9 1
2 o 0 o o (5 2 2w Q0 o ®w 5 2
3o 3 0 2 2 3 3w 3 0 2 2 3
4| 0 o o 0 -3 4 4| © © o 0 -3 4
5/l 0w 0o 1 o 0 5 51w o 1 o 0 5
minimum
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights

fork=1toV

fori=1toV

forj=1toV

k-1
di* = min(di* " dy. + di* Y

fork =1tV
fori=1toV

forj=1toV

k-1
di* = min(di* " dg. +di*Th)

return dV return d¥
k=2 k=3 k=2
12 3 4 5 T2 3 4 5 2 3 4 s

110 (4) <1 o 9 1 0 2 110 4 -1 o 9 1
20 0 o o 5 2 2| 0 o o 5 2
3l 3,0 2 2 3 3lew 3 0 2 2 3
4| ® © o 0 -3 4 4| 0 o0 o 0 -3 4
5l o o 1 o 0 5 w o | o 0 5

minimum Found a shorter path!

27 28

11/5/24

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1t0V fori=1toV
forj=1toV forj=1toV
k-1 _ L ket -
iy = min(@* N dg + dig* Y = min(di L dpc o+ digt
return dV return dV
k=2
12 3 4 s T2 3 2 3 4 5 T2 3
110 4 -1 o 9 o2 -1 110 4 =l 9 o2 -1
2w 0 ®w© o 5 2 2w Q0 o ®w 5 2
3o 3 0 2 2 3 3w 3 012 2 3
4| 0 o o 0 -3 4 4| © © o 0 -3 4
5/l 0w 0o 1 o 0 5 51w o 1 o 0 5
minimum
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V

fori=1toV
forj=1toV

k-1
di* = min(di* " dy. + di* Y

fori=1toV
forj=1toV

k-1
di* = min(di* " dg. +di*Th)

return dV return d¥
k=2 k=3 k=2 k=3
12 3 4 5 T2 03 2 3 4 s 123
110 4 -1 » 9 1 0 2 -1 110 4 -1 © 9 1 0 2 -1
2|l 0 0 o o 5 2 2|l o0 Q) o w© 5 2
3o 3 0 2 2 3 3o 3 0 2 2 3
4| 0 o ow (=3 4 4| 0 o w (=3 4
5/ 0o | o 0 5 w o | o 0 5
31 32

11/5/24

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1t0V fori=1toV
forj=1toV forj=1toV
dy* = mindi* Ly + dih dy* = min(di* 1 g+ di*h
return dV return dV
k=2 k=3 k=2 =3
12 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
110 4 <1 o (9 1 02 -1 14 10 4 -1 » 9 1 0 2 -1 1 1
2|l o () w o 5 2 2|l o () ® o 5 2 w 0 © 5
3l 3 0 2 2 3 3w 3 0 2 2 31w 3 0 2 2
4| 0 o0 o0 (0 =3 4 4] 0 o0 o (0 =3 4 w oo oo (O =3
51 0 oo | o 0 51 0 o | o 0 5 oo (2
minimum Found a shorter path!
33 34
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1t0V fori=1t0V
forj=1toV forj=1toV
4% = min(di*1, dg <" k-1 K oincdikt g <t k-1
= min(di* L dge 4 digTh dij* = min(di* L dy +di Y
return dV return dV
k=2 k=3 k=2 k=3
12 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
110 4 -1 o 9 1 0 2 -1 1 1 110 4 -1 o 9 1 0 2 -1 1 1
2|l 0 0 o o 5 2 © 0 ®o o 5 2|l o 0 o o 5 2 © 0 o o 5
3lew(3 0 2 2 3l 3 0 2 2 3o 3 0 2 2 3leo 3 0 2 2
4| 0 o ow (=3 4 w o 0 -3 4| 0 o w (=3 4 w oo oo (O =3
5| o (0 (1) © 0 5| o (4 ©w o |1 o 0 51w 4 1 (2
minimum Found a shorter path!

35

36

11/5/24

Floyd-Warshall(G = (V.EW)):

fork =110V
fori=11toV
forj=1toV

k-1 -
dy* = min(@* " dpe +di*)

return dV

do=w // initialize with edge weights

Floyd-Warshall(G = (V,E,W)):

fork =110V
fori=1toV
forj=1toV

k-1 -
dy = min@@* " dge +di* Y

do=w // initialize with edge weights

return dV
k=2 k=3 k=2 k=3
12 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5

110 4 -1 o 9 02 -1 1 1 10 4 -1 » 9 0 2 -1 1 1
2|l o () w o 5 2 w () o oo 5 2|l o () ® o 5 2 w () o oo 5
3w 3 0 (2 2 3o 3 0 2 2 3w 3 0 2 2 31w 3 0 2 2
4| 0 o0 o0 (0 =3 4 w oo oo (O =3 4] 0 o0 o (0 =3 4 w oo oo (O =3
50w o (1 (0 0 51w 4 1 (3 5l 0 1 o 0 S| 4 1 3 0

minimum Found a shorter path!

37 38

Floyd-Warshall(G = (V.EW)):
do=w /!
fork =110V

lize with edge weights

fori=1toV
forj=1toV

k-1
di* = min(di* " dy. + di* Y

Floyd-Warshall(G = (V,EW)):

do=w //in
fork =1tV

ize with edge weights

fori=1toV
forj=1toV

k-1
di* = min(di* " dg. +di*Th)

return d¥ return d¥
k=3 k=4 k=3 k=4
12 3 4 5 12 3 4 s 2 3 4 5 12 3 4 s
! 02 -1 1 1 1 02 -11 1 0 2 -1(11(1 1 02 -11 £
2 o (o o 5 2 2 w (0 o o 5 2
Sl 3 0 2 2 3 3w 3 0 2 2 3
4 o ow o (=3 4 4 o oo oo (O =3 4
5w o | o 0 5 ©w o | o 0 5
minimum Found a shorter path!
39 40

10

11/5/24

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1t0V fori=1toV
forj=1toV forj=1toV
i = min(@i*tdp T+ it dy = minqat a4 dgt Y
return dV return d¥
k=3 k=4 k=3 =4
2 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
1 02 -1 1 1 1 02 -11 =2 1 0 2 -1 1 1 1 02 -1 1 =2
2 © 0 ® o 5 2 2 o 0 w o 5 2 o (0 o o 5
3 © 3 0 2 2 3 3 © 3 0 2 2 3 © 3 0 2 2
4 © o o (0 -3 4 4 ®© o o 0 -3 4
5 ©w o 1 o 0 5 5 © o 1 o« 0 5
41 42
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1t0V fori=1t0V
forj=1toV forj=1toV
4% = min(di*1, dg <" k-1 K oincdikt g <t k-1
G5 = min(d* L dge 4 di*h) dy* = min(d* L dge +di*h)
return d¥ return d¥
k=3 k=4 k=3 k=4
12 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
1 02 -1 1 1 1 02 -1 1 =2 1 02 -1 1 1 1 02 -1 1 -2
2 © 0 ®© o« 5 2 © 0 o o 35 2 © 0 ®o «© 5 2 © 0 o o 5
3 o 3 0 (2) 2 3 o 3 0 2 =1 3 ©° 3 0 2 2 S lew 3 0 2 -1
4 © o o (0 =3 4 4 o o o (0 -3 4 o o o (0 -3
5 o o] o« 0 s © o | w 0 S|l 4 1 3 0
minimum Found a shorter path!
43 44

11

11/5/24

Floyd-Warshall(G = (V,E,W)):
:jvzkv:v1 . V// initialize with edge weights Floyd —WG rshCl ” anda |y5i5
fori=1toV
forj=1toV =
iy = min(@d* L dg "+ dit Y
Is it correct?
return dV
k=4 k=5
2 3 4 5 1 2 3 4 5
o2 11 2 fo 2 11 22 e <tse et
© (0 © o 5 2 w 0 (6 (8 5 fork =110V * *
© 3 0 2 -1 3 © 3 0 2 -1 fori=1tV
© o o 0 -3 sl ol @ 0 =3 forj =110V
© o 1 o 0 5 © 4 1 3 0 dy* = m‘n(d‘/k_lrdlkk_l +di*
Donel return dV
45 46
Floyd-Warshall analysis Floyd-Warshall analysis
|

Is it correct?

Any assumptions?

Floyd-Warshall(G = (VEW)):

do=w // initialize with edge weights
fork =110V
fori=1tV
forj =1tV

K _ i =a g =2 k-1
di* = min(di* 1, dy +di“ Y

return dV

Is it correct?
Assuming the graph has no negative cycles!

What happens if there is a negative cycle?
Floyd-Warshall(G = (V.EW)):

do=w // initialize with edge weights
fork =110V
fori=1tV
forj=1toV

K _ i = g =0 k-1
di;* = min(di* 1, dy. +di“)

return dV

47

48

12

11/5/24

Floyd-Warshall analysis Floyd-Warshall analysis
| |
If the graph has a negative weight cycle, at the end, at .
least one of the diagonal entries will be a negative Run-time?
number, i.e., there’s a way to get back to a vertex using all
of the vertices that results in a negative weight
2 3 4 5
1 0 2 -1 1 =2 ::)yd\;:/urshul/\[/(} = (\‘/,E,wn:h) .
= initialize with edge weights
o0 7 9 5 fork =110V
3o 300 2 -1 fori=1toV
4l 1 =200 -3 forj =110V
51w o 1 o (0 4yt = mindi 1T 4t
return v
49 50
. .
Floyd-Warshall analysis Floyd-Warshall analysis
| |
Run-time: B(V3) What type of algorithm is Floyd-Warshall?
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1toV fori=1t0V
forj=1toV forj =110V
4" = min(di* dy T+ Y 4% = min(dy T 4 Y
return dV return dV
51 52

13

Floyd-Warshall analysis
e

Dynamic programming!!
Build up solutions to larger problems using solutions to
smaller problems. Use a table to store the values.

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

k-1 -
dy* = min(di* " dy +dt

return dV

Floyd-Warshall analysis
e

Space usage?

Floyd-Warshall(G = (VEW)):

do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

k-1 -
dy* = min(di* N dye 4+ dygt

return dV

53

54

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d; % = shortest path from vertex [to vertex j
using only vertices {1, 2, ..., k}

If we want all possibilities, how many values are there
(i.e. what is the size of dij*)?

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d;* = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k}

V3

¢ i:all vertices
¢ j:all vertices
e k: all vertices

Can we do better?

55

56

11/5/24

14

11/5/24

Floyd-Warshall analysis All pairs shortest paths
|) |

V * Bellman-Ford: O(V2E)

Space usage: B(V?)
Only need the current value and the previous Floyd-Warshall: e(V3)

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

= -
dy* = min(di* Y dy +d*

return dV
57 58
All pairs shortest paths All pairs shortest paths
| |
All pairs shortest paths for positive weight graphs: All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points calculate the shortest paths between all points

Easy solution? Run Dijsktras from each vertex!

Running time (in terms of E and V)?

59 60

15

11/5/24

All pairs shortest paths
=

calculate the shortest paths between all points

Run Dijsktras from each vertex!

O(V2log V + VE)
* V calls to Dijkstras
¢ Dijkstras: O(V log V + E)

All pairs shortest paths for positive weight graphs:

All pairs shortest paths
=

V * Bellman-Ford: O(V2E)
Floyd-Warshall: B(V3)

V * Dijkstras: O(V2 log V + V E)

Is this any better?

61

62

All pairs shortest paths
[

V * Bellman-Ford: O(VZ2E)
Floyd-Warshall: B(V3)

V * Dijkstras: O(V2 log V + V E)

If the graph is sparse!

All pairs shortest paths
[

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

63

64

16

This Class Johnson’s: key idea
| |
Reweight the graph to make all edges positive such
that shortest paths are preserved
Johnson’s Algorithm
Improvement in runtime for sparse graphs
What's the shortest path from A to D?
65 66
Lemma Lemma: proof W(wv)=w(u,v)+h()-h(v)
| =
Lets, vi, v2, ..., vk, t be a path from s to

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) = w(u,v)+h(u)-h()

The shortest paths are preserved

The weight in the reweighted graph is:

WS VeV) = W) +(8) = (0) + (Vs V1)

weight for first edge weight for remaining edges

67

68

11/5/24

17

11/5/24

Lemmc: proof W(M,V)= W(u,v)+h(u)—h(v)
|

Lets, v, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

WSV, Viut) = WS,V + () = h(0) + W (V.. v 0)
=w(s,v)+h(s)=h(v) + wv, vy +h,) = h(v,) + WV, ..., v,,1)

weight for
weight for first edge weight for second edge .
remaining edges

Lemma: p roof Wu,v)=w(u,v)+h(u)-h()
|]

Lets, vi, v2, ..., v, t be a path from s to t

The weight in the reweighted graph is:

WS, Ve Vis 1) = WSV +1(8) = h(v) + W(V..es vy)

=w(s,v)+h(s)=h(v)+wv,,v,)+h(v,) = h(v,) + W(v,

=w(s,v)+h(s)+w(v,,v,) = h(v,) + W(v,,...,v,.1)

69

70

Lemma: proof W) =w(,v)+h(u)-h(v)
Let s, vi, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

WS Vs VD) = WS, + ()= KW+ WV, eV, 1)
=0, 0) +h(8) & (0,) # Wy,)+ B0) = B, + WV, s V1)
=(5,) + () + WV, = h(,) £ WV, V1)
= s, 1)+ () + W0, = B0,) #0013) & B(,) = B0 + (Vs Vi 1)

weight for
weight for third edge remalning edges

Lemma: proof W) =w(uv)+h(u)-h(v)
Lets, vi, v2, ..., vk, t be a path from s to

The weight in the reweighted graph is:
WS VeV) = W) +(8) = (0) + (Vs V1)
=w(s,v)+h($) = h(v) # W vy +h(v)= h(vy) + (0, .. v, 1)

=w(s,v)+h(s)+wv,,v,) = h(v,) + W(v,,...,v,.1)

\

=W, + () + W,y)= B0) W0y 1) o h() = (0, 4 WV V1)

= W(5,0,) 4 H(S)+ W, v) 4 W 0) = () 4 (Ve 1)

= W(S,Vy5es V1) + () = h(1)

71

72

18

11/5/24

Lemma: proof

WS, Vysees Vi) = WS,V Vi,) + h(8) = (1)

Claim: the weight change preserves shortest paths, i.e. if a path was the
shortest from s to t in the original graph it will still be the shortest path

from s to t in the new graph.

Justification?

Lemma: proof

WS, Vpsees Vi 1) = WS, VsV 1) + h(8) = (1)

Claim: the weight change preserves shortest paths, i.e. if a path was the
shortest from s to t in the original graph it will still be the shortest path

from s to t in the new graph.

h(s) — h(t) is a constant and will be the same for all
paths from s to 1, so the absolute ordering of all paths

from s to t will not change.

73

74

Lemma
|

let h be any function mapping a vertex to a real value

If we change the graph weights as:

w(u,v) =w(u,v)+h(u)-h()

The shortest paths are preserved

Big question: how do we pick h?

Selecting h

|
Need to pick h such that the resulting graph has all

weights as positive

w(ut,v) = w(u,v)+ h(u) - h(v)

76

75

19

Johnson’s algorithm
e

Create G’ with one extra node s with O weight edges to all nodes
run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

77

78

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

79

80

11/5/24

20

11/5/24

Create G’

run Bellman-Ford(G's)

Create G’

run Bellman-Ford(G',s)
if no negative-weight cycle if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v

reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

run Dijkstra’s from every vertex

reweight shortest paths based on G reweight shortest paths based on G

SDA:0
SB: ?
SDC:
SDD:
SDE:

81 82

Create G’

run Bellman-Ford(G',s) SDA:0

if no negative-weight cycle S=B: -2
reweight edges in G with h(v)=shortest path from s to v SC: 0

run Dijkstra’s from every vertex

S2D: 0
SDE: -3

reweight shortest paths based on G

SDA:0
SB: -2
S2C: 0
S2D: 0
SDE: -3

83 84

21

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h)

h(v) in blue

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h®)
-1 + 0 - -2

h(v) in blue

85

86

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)

h(v) in blue

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)
2 +-2 -0

2 °
2 °
1 f I
N -3
5 -3
o
h(v) in blue

87

88

11/5/24

22

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h)

0

h(v) in blue

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h®)
4 +0 -0

o

h(v) in blue

89

90

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)

-2 o

h(v) in blue

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)
5 +0 - -3

h(v) in blue

91

92

11/5/24

23

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h)

h(v) in blue

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

93

94

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G.

95

96

11/5/24

24

11/5/24

ADB: -1 .
NEGN Selecting h
ADD: 1 e

ADE: -2

Need to pick h such that the resulting graph has all
weights as positive

Create G’ with one extra node s with O weight edges to all nodes
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that
reweighted graph has only positive edges)2

97 98

Reweighted graph is positive Reweighted graph is positive
| |
Take two nodes u and v Take two nodes u and v
h(u) shortest distance from s to u

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) shortest distance from s to v

Claim: h(v) = h(u)+w(u,v) Claim: h(v) = h(u)+w(u,v)

Why? If this weren'’t true, we could have made a shorter path s to v
using u

... but this is in contradiction with how we defined h(v)

99 100

25

11/5/24

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) = h(u)+w(u,v)

w(u,v)+h(u)-h(v)=0

W(u,v) = w(u,v)+h(u) - h(v)

non-negative

Reweighted graph is positive

Jo(,v) = w(tt,v) + By —h(v) =0 Al e49® veights in reweighted graph are

Reweighted graph is positive
|)

Take two nodes u and v

h(u) shortest distance from s to u

h(v) shortest distance from s to v

h(v) = h(u)+w(u,v)

w(u,v)+h(u)-h(v)=0

What is this?

101

102

Johnson’s algorithm
[

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

Johnson’s algorithm
[

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

a(v)
(VE)

6(E)
O(V2logV+VE)
6(E)

103

104

26

All pairs shortest paths

V * Bellman-Ford: O(V2E)

Floyd-Warshall: B(V3)

Johnson’s: O(V2 log V + V E)

105

11/5/24

27

