

Administrative

Assignment 6

Elshiekh group session: Today, 3:30-4:30pm

Midterm 2 next week

1

Midterm 2

Two pages of notes

9/12 (data structures review) through 10/8

Will make some practice problems available

Midterm 2 topics

Data structures

- BSTs, red black trees, binary heaps, binomial heaps
- Proofs by induction (structural)
- Run-times and functionality basics

Amortized analysis

Aggregate and accounting methods

Dynamic programming

4

2

Greedy Greedy To solve the general problem: Pick a locally optimal solution and repeat

5

Horn formula

A horn formula is a set of implications and negative clauses:

$$\Rightarrow x \qquad x \wedge u \Rightarrow z$$

$$\Rightarrow y \qquad \bar{x} \lor \bar{y} \lor \bar{z}$$

Horn formula

negative clauses:

$x \wedge u \Rightarrow x$	Z
$\overline{x} \vee \overline{y} \vee \overline{z}$	-

LHS: positive literals anded RHS: single positive literal

p	q	$p \Rightarrow q$
Т	т	Т
Т	F	F
Ė	Т	Т
F	F	т

8

Horn formula

A horn formula is a set of implications and **negative clauses**:

 $\Rightarrow x$

 $x \wedge u \Rightarrow z$

 $\Rightarrow y$

 $\bar{x} \vee \bar{y} \vee \bar{z}$

Negated literals ored

Goal

Given a horn formula, determine if the formula is satisfiable, i.e. an assignment of true/false to the variables that is consistent with all of the implications/causes

 $\Rightarrow x$

 $x \wedge u \Rightarrow z$

 $\Rightarrow y$

 $\bar{x} \vee \bar{y} \vee \bar{z}$

u x y z

0 1 1 0

9

10

A greedy solution?

 $\Rightarrow x \qquad x \land z \Rightarrow w \quad w \land y \land z \Rightarrow x$

 $x \Rightarrow y$

 $x \wedge y \Rightarrow w \quad \overline{w} \vee \overline{x} \vee \overline{y}$

w 0

x 0

y 0

z 0

A greedy solution?

 $\Rightarrow x$ $x \land z \Rightarrow w \quad w \land y \land z \Rightarrow x$

 $x \Rightarrow y$

 $x \wedge y \Rightarrow w \quad \overline{w} \vee \overline{x} \vee \overline{y}$

w 0

x 1

y 0 z 0

12

z 0

15

$$\begin{split} & \text{HUFPMAN}(F) \\ & 2 \quad \text{for } i-1 \text{ to } [Q]-1 \\ & 2 \quad \text{for } i-1 \text{ to } [Q]-1 \\ & 4 \quad \quad |etf|z| - x - \text{EXTRACTMIN}(Q) \\ & 5 \quad \quad |etf|z| - |x - |\text{EXTRACTMIN}(Q) \\ & 6 \quad \quad |f|z| - |f|z| + |f|y| \\ & 7 \quad \quad |\text{ISERT}(Q,z)| \\ & 8 \quad \text{return EXTRACTMIN}(Q) \end{split}$$
Symbol Frequency 70 В 3 С 20 37 Heap **ABCD 130** 70 3 20

62

Symbol Frequency What is the code 70 (assume left = 0)? В 3 С 20 D 37 20

63

Non-optimal greedy algorithms

All the greedy algorithms we've looked at so far give the optimal answer

Some of the most common greedy algorithms generate good, but non-optimal solutions

- set cover
- clustering
- hill-climbing
- relaxation

69

71

70

