
10/17/24

1

Greedy algorithms
David Kauchak

cs140
Fall 2024

1

Administrative
Assignment 6

Elshiekh group session: Today, 3:30-4:30pm

Midterm 2 next week

2

Midterm 2
Two pages of notes

9/12 (data structures review) through 10/8

Will make some practice problems available

3

Midterm 2 topics
Data structures
l BSTs, red black trees, binary heaps, binomial heaps
l Proofs by induction (structural)
l Run-times and functionality basics

Amortized analysis
l Aggregate and accounting methods

Dynamic programming

4

10/17/24

2

Greedy algorithms
Algorithm that makes a local decision with the goal of
creating a globally optimal solution

Method for solving problems where optimal solutions can
be defined in terms of optimal solutions to sub-problems

5

Greedy
Greedy

To solve the general problem:

Pick a locally optimal solution and repeat

6

Horn formula

A horn formula is a set of implications and
negative clauses:

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

7

Horn formula

A horn formula is a set of implications and
negative clauses:

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

LHS: positive literals anded
RHS: single positive literal

𝑝	 𝑞	 𝑝	 ⇒ 𝑞
T
T
F
F

T
F
T
F

T
F
T
T

8

10/17/24

3

Horn formula

A horn formula is a set of implications and
negative clauses:

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

Negated literals ored

9

Goal
Given a horn formula, determine if the formula is
satisfiable, i.e. an assignment of true/false to the variables
that is consistent with all of the implications/causes

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

u x y z
0 1 1 0

10

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w 0

x 0

y 0

z 0

11

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w 0

x 1

y 0

z 0

12

10/17/24

4

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w 0

x 1

y 1

z 0

13

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w 1

x 1

y 1

z 0

14

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w 1

x 1

y 1

z 0

not satisfiable

15

A greedy solution

16

10/17/24

5

A greedy solution

set all variables of
the implications of
the form “Þx” to
true

17

A greedy solution

if the all variables of
the lhs of an
implication are true,
then set the rhs
variable to true

18

A greedy solution

see if all of the
negative clauses are
satisfied

19

A greedy solution

How is this a greedy algorithm?

20

10/17/24

6

A greedy solution

How is this a greedy algorithm?

Make a greedy decision about
which variables to set and then
moves on

21

Correctness of greedy solution
Two parts:

l If our algorithm returns an assignment, is it a valid
assignment?

l If our algorithm does not return an assignment,
does an assignment exist?

22

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid
assignment?

23

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid
assignment?

explicitly check all
negative clauses

24

10/17/24

7

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid
assignment?

don’t stop until all
implications with all
lhs elements true
have rhs true

25

Correctness of greedy solution
If our algorithm does not return an
assignment, does an assignment exist?

Our algorithm is
“stingy”. It only
sets those variables
that have to be true.
All others remain
false.

26

Correctness of greedy solution
If our algorithm does not return an
assignment, does an assignment exist?

27

Running time?

?
n = number of
variables

m = number of
formulas

28

10/17/24

8

Running time?

O(nm)
n = number of
variables

m = number of
formulas

29

Data compression
Given a file containing some data of a fixed alphabet Σ
(e.g. A, B, C, D), we would like to pick a binary
character code that minimizes the number of bits
required to represent the data.

A C A D A A D B … 0010100100100 …

minimize the size of
the encoded file

30

Compression algorithms

http://en.wikipedia.org/wiki/Lossless_data_compression

31

Simplifying assumption:
frequency only

Assume that we only have character
frequency information for a file

A C A D A A D B …

=
Symbol Frequency

A
B
C
D

70
3

20
37

32

10/17/24

9

Fixed length code
Use 𝑙𝑜𝑔2 Σ bits for each character

A =
B =
C =
D =

33

Fixed length code
Use 𝑙𝑜𝑔2 Σ bits for each character

A = 00
B = 01
C = 10
D = 11

Symbol Frequency

A
B
C
D

70
3

20
37

How many bits to
encode the file?

2 x 70 +
2 x 3 +
2 x 20 +
2 x 37 =

260 bits

34

Fixed length code
Use 𝑙𝑜𝑔2 Σ bits for each character

A = 00
B = 01
C = 10
D = 11

Symbol Frequency

A
B
C
D

70
3

20
37

Can we do better?

2 x 70 +
2 x 3 +
2 x 20 +
2 x 37 =

260 bits

35

Variable length code
What about:

A = 0
B = 01
C = 10
D = 1

Symbol Frequency

A
B
C
D

70
3

20
37

1 x 70 +
2 x 3 +
2 x 20 +
1 x 37 =

153 bits How many bits to
encode the file?

36

10/17/24

10

Decoding a file

A = 0
B = 01
C = 10
D = 1

010100011010

What characters does this
sequence represent?

37

Decoding a file

A = 0
B = 01
C = 10
D = 1

010100011010

What characters does this
sequence represent?

A D or B?

38

Variable length code
What about:

A = 0
B = 100
C = 101
D = 11

Symbol Frequency

A
B
C
D

70
3

20
37

Is it decodeable?

39

Variable length code
What about:

A = 0
B = 100
C = 101
D = 11

Symbol Frequency

A
B
C
D

70
3

20
37

How many bits to
encode the file?

1 x 70 +
3 x 3 +
3 x 20 +
2 x 37 =

213 bits
(18% reduction)

40

10/17/24

11

Prefix codes
A prefix code is a set of codes where no
codeword is a prefix of any other codeword

A = 0
B = 100
C = 101
D = 11

A = 0
B = 01
C = 10
D = 1

Not prefix Prefix

41

Prefix tree
We can encode a prefix code using a full binary tree
where each leaf represents an encoding of a symbol

A = 0
B = 100
C = 101
D = 11

A

B C

D

0 1

42

Decoding using a prefix tree
To decode, we traverse the graph until a leaf
node is reached and output the symbol

A = 0
B = 100
C = 101
D = 11

A

B C

D

0 1

43

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

44

10/17/24

12

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B

45

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B A

46

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B A D

47

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B A D C

48

10/17/24

13

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B A D C A

49

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

B A D C A B

50

Determining the cost of a file

A

B C

D

0 1Symbol Frequency

A
B
C
D

70
3

20
37

51

Determining the cost of a file

A

B C

D

0 1Symbol Frequency

A
B
C
D

70
3

20
37 70

3 20

37

å =
=

n

i i ifT
1

)depth()(cost

52

10/17/24

14

Determining the cost of a file

A

B C

D

0 1Symbol Frequency

A
B
C
D

70
3

20
37 70

3 20

3723

60

If we label the internal nodes with
the sum of the children…

53

Determining the cost of a file

A

B C

D

0 1Symbol Frequency

A
B
C
D

70
3

20
37 70

3 20

3723

60

Cost is equal to the sum of the
internal nodes (excluding the root)
and the leaf nodes

54

Determining the cost of a file

A

B C

D

0 1

70

3 20

3723

60

60 times we see a prefix that
starts with a 1

of those, 37 times we see an
additional 1

the remaining 23 times we see
an additional 0

70 times we see a 0 by itself

of these, 20 times we see a last 1
and 3 times a last 0

As we move down the tree, one bit
gets read for every nonroot node

55

A greedy algorithm?
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes
the number of bits?

A

B C

D

0 1

Symbol Frequency

A
B
C
D

70
3

20
37

Where should the highest frequency items be?

56

10/17/24

15

A greedy algorithm?
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes
the number of bits?

57

Symbol Frequency

A
B
C
D

70
3

20
37

Heap

58

Symbol Frequency

A
B
C
D

70
3

20
37

Heap

B 3
C 20
D 37
A 70

59

Symbol Frequency

A
B
C
D

70
3

20
37

Heap

BC 23
D 37
A 70

B C

3 20

23

merging with this
node will incur an
additional cost of 23

60

10/17/24

16

Symbol Frequency

A
B
C
D

70
3

20
37

Heap

BCD 60
A 70

B C

3 20

23

D

37

60

61

Symbol Frequency

A
B
C
D

70
3

20
37

Heap

ABCD 130

B C

3 20

23

D

37

60

A

70

62

Symbol Frequency

A
B
C
D

70
3

20
37

B C

3 20

23

D

37

60

A

70

What is the code
(assume left = 0)?

63

Symbol Frequency

A
B
C
D

70
3

20
37

What is the code
(assume left = 0)?

B C

3 20

23

D

37

60

A

70
A: 1
B: 000
C: 001
D: 01

64

10/17/24

17

Proving correctness
The algorithm selects the symbols with the two
smallest frequencies first (call them f1 and f2)

65

Proving correctness:
proof by contradiction
The algorithm selects the symbols with the two smallest
frequencies first (call them f1 and f2)

Consider a tree that did not do this:

f1

fi f2

Is it optimal?

66

Proving correctness
The algorithm selects the symbols with the two smallest
frequencies first (call them f1 and f2)

Consider a tree that did not do this:

f1

fi f2

fi

f1 f2

- frequencies don’t change
- cost will decrease since
f1 < fi

contradiction

å =
=

n

i i ifT
1

)depth()(cost

67

𝑓!𝑑!+ 𝑓"𝑑#+ 𝑓#𝑑#− 𝑓!𝑑#+ 𝑓#𝑑#+ 𝑓"𝑑! =

𝑓!𝑑!+ 𝑓"𝑑#+ 𝑓#𝑑#− 𝑓!𝑑#− 𝑓#𝑑#− 𝑓"𝑑! =

𝑓!𝑑!+ 𝑓"𝑑#− 𝑓!𝑑#− 𝑓"𝑑! =

𝑓!𝑑!− 𝑓"𝑑!+ 𝑓"𝑑#− 𝑓!𝑑# =

(𝑓!− 𝑓")𝑑!+ (𝑓"−𝑓!)𝑑# =

−c𝑑!+ 𝑐𝑑#

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑡𝑟𝑒𝑒

f1

fi f2

d1

d2

fi

f1 f2

d1

d2

where c is some positive
constant, since 𝑓! > 𝑓"

Since	𝑑! < 𝑑# then −c𝑑!+ 𝑐𝑑# > 0 which shows that cost
of the new tree is less than the cost of the original tree

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑡𝑟𝑒𝑒 − 𝑛𝑒𝑤	𝑡𝑟𝑒𝑒 =

𝑛𝑒𝑤	𝑡𝑟𝑒𝑒

68

10/17/24

18

Runtime?

1 call to MakeHeap

2(n-1) calls ExtractMin

n-1 calls Insert

O(n log n)

69

Non-optimal greedy algorithms
All the greedy algorithms we’ve looked at so far
give the optimal answer

Some of the most common greedy algorithms
generate good, but non-optimal solutions

l set cover
l clustering
l hill-climbing
l relaxation

70

Handout

71

Decoding using a prefix tree
Traverse the graph until a leaf node is reached
and output the symbol

A

B C

D

0 1

1000111010100

72

10/17/24

19

Symbol Frequency

A
B
C
D
E

5
20
10
13
9

What is the tree?

What is the encoding?

How many bits to encode the file?

Heap

73

