
CS 105 Fall 2024

Lecture 25: TCP

Review: Networked Systems

Hardware Network

Server

Application

Hardware

Operating

System

Operating

System

Client

Application

Review: The Network Stack

Physical

Data Link

Network

Transport

Application

User-Level

Application

Operating

System

Hardware

(NIC)

Transport Layer Protocols

User Datagram Protocol (UDP)

• unreliable, unordered
delivery

• connectionless

• best-effort, segments might
be lost, delivered out-of-
order, duplicated

• reliability (if required) is the
responsibility of the app

Transmission Control Protocol (TCP)

• reliable, in-order delivery

• connection setup

• flow control

• congestion control

Transport-Layer Segment Formats

UDP TCP

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options

application message (payload)

Source Port # Dest. Port #

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

TCP Connections

• TCP is connection-
oriented

• A connection is
initiated with a three-
way handshake

• Recall: server will
typically create a new
socket to handle the
new connection

…

3. Exchange

data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

Reliable Transport

• Each SYN segment will include
a randomly chosen sequence
number

• Sequence number of each
segment is incremented by data
length

• Receiver sends ACK segments
acknowledging latest sequence
number received

• Sender maintains copy of all
sent but unacknowledged
segments; resends if ACK does
not arrive within timeout

• Timeout is dynamically adjusted
to account for round-trip delay

Send Timeout

Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver

Example: Window Size = 4

• sender can have up to

4 unacknowledged

messages

• when ACK for first

message is received, it

can send another

message

Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver

• what should we do if a packet goes missing in the middle?

TCP Fast Retransmit

• Receiver always acks

the last id it

successfully received

• Sender detects loss

without waiting for

timeout, resends

missing packet

Exercise: TCP Sequence Numbers

Consider the sequence of
transmitted messages
shown on the right

• What will be the next ACK
number sent by the
server?

• What will be the next Seq
number sent by the client?

Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver

• what should we do if a packet goes missing in the middle?

• how big should the window be?

TCP Congestion Control

• TCP operates under a principle of additive increase-

multiplicative decrease

• window size++ every RTT if no packets lost

• window size/2 if a packet is dropped

TCP Fairness

• Goal: if k TCP sessions share same bottleneck link of

bandwidth R, each should have average rate of R/k

R

RConnection 1 Throughput

C
o

n
n

e
c
ti

o
n

 2
 T

h
ro

u
g

h
p

u
t

Loss: decreases throughput

proportional to current bandwidth

Congestion avoidance: increases

throughput linearly (evenly)

TCP Slow Start

• Problem: linear increase takes a long time to build up a

decent window size, and most transactions are small

• Solution: allow window size to increase exponentially until

first loss

Exercise: TCP Window Size

• Assume someone changes the code of their TCP client by

modifying the congestion avoidance as follows: instead of

increasing the window size by 1 each time an ACK is

received, they double the window size each time an ACK

is received (like in the slow-start phase).

• What would be the pros and cons of this modification?

5. Drop client
4. Disconnect client

3. Exchange

data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

TCP Connections

• TCP is connection-
oriented

• A connection is initiated
with a three-way
handshake

• Recall: server will typically
create a new socket to
handle the new connection

• FIN works (mostly) like
SYN but to teardown a
connection

…

TCP Summary

• Reliable, in-order message delivery

• Connection-oriented, three-way handshake

• Transmission window for better throughput
• timeouts based on link parameters (e.g., RTT, variance)

• Congestion control
• Linear increase, exponential backoff

• Fast adaptation
• Exponential increase in the initial phase

	Slide 1: Lecture 25: TCP
	Slide 2: Review: Networked Systems
	Slide 3: Review: The Network Stack
	Slide 4: Transport Layer Protocols
	Slide 5: Transport-Layer Segment Formats
	Slide 6: Sockets Interface
	Slide 7: Sockets Interface
	Slide 8: accept Illustrated
	Slide 9: TCP Connections
	Slide 10: Sockets Interface
	Slide 11: Reliable Transport
	Slide 12: Pipelined Protocols
	Slide 13: Example: Window Size = 4
	Slide 14: Pipelined Protocols
	Slide 15: TCP Fast Retransmit
	Slide 16: Exercise: TCP Sequence Numbers
	Slide 17: Pipelined Protocols
	Slide 18: TCP Congestion Control
	Slide 19: TCP Fairness
	Slide 20: TCP Slow Start
	Slide 21: Exercise: TCP Window Size
	Slide 22: Sockets Interface
	Slide 23: TCP Connections
	Slide 24: TCP Summary

