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Lecture 25: TCP
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Transport Layer Protocols

User Datagram Protocol (UDP)

• unreliable, unordered 
delivery

• connectionless

• best-effort, segments might 
be lost, delivered out-of-
order, duplicated

• reliability (if required) is the 
responsibility of the app

Transmission Control Protocol (TCP)

• reliable, in-order delivery

• connection setup

• flow control

• congestion control



Transport-Layer Segment Formats

UDP TCP

application message (payload)

Source Port # Dest. Port #
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accept Illustrated
listenfd(3)

Client
1. Server blocks in accept, 
waiting for connection request 
on listening descriptor 
listenfd

clientfd
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calling and blocking in connect

Connection
request

listenfd(3)
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3. Server returns connfd from accept. 
Client returns from connect. 
Connection is now established between 
clientfd and connfd

connfd(4)



TCP Connections

• TCP is connection-
oriented

• A connection is 
initiated with a three-
way handshake

• Recall: server will 
typically create a new 
socket to handle the 
new connection

…
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Reliable Transport

• Each SYN segment will include 
a randomly chosen sequence 
number

• Sequence number of each 
segment is incremented by data 
length 

• Receiver sends ACK segments 
acknowledging latest sequence 
number received

• Sender maintains copy of all 
sent but unacknowledged 
segments; resends if ACK does 
not arrive within timeout

• Timeout is dynamically adjusted 
to account for round-trip delay

Send Timeout



Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver



Example: Window Size = 4

• sender can have up to 

4 unacknowledged 

messages

• when ACK for first 

message is received, it 

can send another 

message 



Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver

• what should we do if a packet goes missing in the middle?



TCP Fast Retransmit

• Receiver always acks 

the last id it 

successfully received

• Sender detects loss 

without waiting for 

timeout, resends 

missing packet



Exercise: TCP Sequence Numbers

Consider the sequence of 
transmitted messages 
shown on the right

• What will be the next ACK 
number sent by the 
server?

• What will be the next Seq 
number sent by the client?



Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets

• increases throughput

• needs buffering at sender and receiver

• what should we do if a packet goes missing in the middle?

• how big should the window be?



TCP Congestion Control

• TCP operates under a principle of additive increase-

multiplicative decrease

• window size++ every RTT if no packets lost

• window size/2 if a packet is dropped



TCP Fairness

• Goal: if k TCP sessions share same bottleneck link of 

bandwidth R, each should have average rate of R/k 
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Loss: decreases throughput 
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Congestion avoidance: increases 

throughput linearly (evenly)



TCP Slow Start

• Problem: linear increase takes a long time to build up a 

decent window size, and most transactions are small

• Solution: allow window size to increase exponentially until 

first loss



Exercise: TCP Window Size 

• Assume someone changes the code of their TCP client by 

modifying the congestion avoidance as follows: instead of 

increasing the window size by 1 each time an ACK is 

received, they double the window size each time an ACK 

is received (like in the slow-start phase).

• What would be the pros and cons of this modification? 
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TCP Connections

• TCP is connection-
oriented

• A connection is initiated 
with a three-way 
handshake

• Recall: server will typically 
create a new socket to 
handle the new connection

• FIN works (mostly) like 
SYN but to teardown a 
connection

…



TCP Summary

• Reliable, in-order message delivery

• Connection-oriented, three-way handshake

• Transmission window for better throughput
• timeouts based on link parameters (e.g., RTT, variance)

• Congestion control 
• Linear increase, exponential backoff 

• Fast adaptation 
• Exponential increase in the initial phase 
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