
CS 105 Fall 2024

Lecture 24: Networking (cont’d)

Review: Networked Systems

Hardware Network

Server

Application

Hardware

Operating

System

Operating

System

Client

Application

Review: Encapsulation
Server

Application

Client

Application

Port = 80Port = 4747

Hardware Hardware

Data!HTTP

TCP Data!HTTP

Data!TCP

Operating

System

Operating

System

Ports

• A port is a 16-bit integer that identifies a process
• Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.

• Well-known port: Associated with some type of service on server

• Example well-known ports corresponding services:
• echo server: 7/echo

• ssh servers: 22/ssh

• email server: 25/smtp

• web servers: 80/http

• secure web servers: /https

• If you are implementing a networked system, you implement
both server code and client code (and hard-code the server
port into the client code)

Transport-Layer Header Formats

UDP TCP

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options

application message (payload)

Source Port # Dest. Port #

Review: Encapsulation
Server

Application

Client

Application

Port = 80Port = 4747

Hardware Hardware

IP = 8.0.0.8IP = 123.25.129.217

TCP Data!HTTP

Data!TCP

IP

IP

Operating

System

Operating

System

application message (payload)

v Dest. Port #

offset

source address

header checksumTTL protocol

destination address

options

Internet Protocol (IP)

• Initiated by the DoD in
60s-70s

• Currently transitioning
(very slowly) from
IPv4 to IPv6

• Example address:
128.84.12.43

• interoperable
• network dynamically
routes packets from
source to destination

TOS total lengthIHL

identification fs

Aside: IPv4 and IPv6

• The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced

Internet Protocol Version 6 (IPv6) with 128-bit addresses

• Intended as the successor to IPv4

• As of April 2023, majority of Internet traffic still carried by IPv4

• 38-44% of users access Google services using IPv6.

• We will focus on IPv4, but will show you how to write

networking code that is protocol-independent.

Review: Encapsulation
Server

Application

Client

Application

Port = 80Port = 4747

Hardware Hardware

IP = 8.0.0.8IP = 123.25.129.217

Router

Router

Router

Router
Router

TCP Data!HTTP

Data!TCP

IP

IP

HTTP Data!TCPIPeth

HTTP Data!TCPIPWIFI

HTTP Data!

Operating

System

Operating

SystemHTTP Data!TCPIP

HTTP Data!TCPIPeth

The Network Stack

Physical

Data Link

Network

Transport

Application

User-Level

Application

Operating

System

Hardware

(NIC)

Client Server

Sockets

• What is a socket?
• IP address + port

• To the operating system, a socket is an endpoint of communication

• To an application, a socket is a file descriptor that lets the
application read/write from/to the network

• Recall: All Unix I/O devices, including networks, are modeled as files

• Clients and servers communicate with each other by
reading from and writing to socket descriptors

• The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

Sockets Interface: socket

• Clients and servers use the socket function to create a
socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is protocol
independent.

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

TCP connection

Sockets Interface: bind

• A server uses bind to ask the kernel to associate the server’s

socket address with a socket descriptor:

• Clients don’t have to do this

• The process can then read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor sockfd.

• Similarly, writes to sockfd are transferred along connection

whose endpoint is addr.

Best practice is to use getaddrinfo to supply the arguments

addr and addrlen.

int bind(int sockfd, SA* addr, socklen_t addrlen);

Sockets Interface: listen

• By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end of
a connection.

• A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

• Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

• backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Sockets Interface: accept

• Servers wait for connection requests from clients by
calling accept:

• Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address in

addr and size of the socket address in addrlen.

• Returns a connected descriptor that can be used to

communicate with the client via Unix I/O routines.

• Process can read and write to this connected descriptor to

get/send messages over the network

int accept(int listenfd, SA *addr, int *addrlen);

Connected vs. Listening Descriptors

• Listening descriptor
• End point for client connection requests

• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server

• A new descriptor is created each time the server accepts a
connection request from a client

• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many

client connections simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the

request

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

Sockets Interface: connect

• A client establishes a connection with a server by calling

connect:

• Attempts to establish a connection with server at socket
address addr

• If successful, then clientfd is now ready for reading and writing.

• Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

• x is client address

• y is ephemeral port that uniquely identifies client process on client host

• Best practice is to use getaddrinfo to supply the

arguments addr and addrlen.

int connect(int clientfd, SA* addr, socklen_t addrlen);

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Exercise: Connection Setup

• Consider the network operations we've discussed thus

far: socket, bind, listen, accept, connect. What sequence

are these operations called in if a client wants to send one

message to the server?

5. socket

6. connect

1. socket

2. bind

3. listen

4. accept

client server

3. Exchange

data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

Communicating over a channel

• Consider the network operations we've discussed thus

far: socket, bind, listen, accept, connect. What sequence

are these operations called in if a client wants to send one

message to the server?

5. socket

6. connect

8. write

1. socket

2. bind

3. listen

4. accept

7. read

client server

5. Drop client
4. Disconnect client

3. Exchange

data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect

The Network Stack

Physical

Data Link

Network

Transport

Application

User-Level

Application

Operating

System

Hardware

(NIC)

	Slide 1: Lecture 24: Networking (cont’d)
	Slide 2: Review: Networked Systems
	Slide 3: Review: Encapsulation
	Slide 4: Ports
	Slide 5: Transport-Layer Header Formats
	Slide 6: Review: Encapsulation
	Slide 7: Internet Protocol (IP)
	Slide 8: Aside: IPv4 and IPv6
	Slide 9: Review: Encapsulation
	Slide 10: The Network Stack
	Slide 11: Sockets
	Slide 12: Sockets Interface
	Slide 13: Sockets Interface: socket
	Slide 14: Sockets Interface: bind
	Slide 16: Sockets Interface: listen
	Slide 17: Sockets Interface: accept
	Slide 18: Connected vs. Listening Descriptors
	Slide 19: Sockets Interface
	Slide 20: Sockets Interface: connect
	Slide 21: accept Illustrated
	Slide 22: Exercise: Connection Setup
	Slide 23: Sockets Interface
	Slide 24: Communicating over a channel
	Slide 25: Sockets Interface
	Slide 26: The Network Stack

