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Lecture 24: Networking (cont’d)
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Ports

• A port is a 16-bit integer that identifies a process
• Ephemeral port: Assigned automatically by client kernel when client 

makes a connection request.

• Well-known port: Associated with some type of service on server

• Example well-known ports corresponding services:
• echo server: 7/echo

• ssh servers: 22/ssh

• email server: 25/smtp

• web servers: 80/http

• secure web servers: /https

• If you are implementing a networked system, you implement 
both server code and client code (and hard-code the server 
port into the client code) 



Transport-Layer Header Formats
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application message (payload)

v Dest. Port #

offset

source address

header checksumTTL protocol

destination address

options

Internet Protocol (IP)

• Initiated by the DoD in 
60s-70s

• Currently transitioning 
(very slowly) from     
IPv4 to IPv6

• Example address: 
128.84.12.43

• interoperable
• network dynamically 
routes packets from 
source to destination

TOS total lengthIHL

identification fs



Aside: IPv4 and IPv6

• The original Internet Protocol, with its 32-bit addresses, is 

known as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced 

Internet Protocol Version 6 (IPv6) with 128-bit addresses

• Intended as the successor to IPv4

• As of April 2023, majority of Internet traffic still carried by IPv4

• 38-44% of users access Google services using IPv6.

• We will focus on IPv4, but will show you how to write 

networking code that is protocol-independent.
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Client Server

Sockets

• What is a socket?
• IP address  + port

• To the operating system, a socket is an endpoint of communication

• To an application, a socket is a file descriptor that lets the 
application read/write from/to the network

• Recall: All Unix I/O devices, including networks, are modeled as files

• Clients and servers communicate with each other by 
reading from and writing to socket descriptors

• The main distinction between regular file I/O and socket 
I/O is how the application “opens” the socket descriptors

clientfd serverfd



1. Start server

Client / 
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

acceptconnect



Sockets Interface: socket

• Clients and servers use the socket function to create a 
socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to 
generate the parameters automatically, so that code is protocol 
independent.

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using 
32-bit IPV4 addresses

Indicates that the socket 
will be the end point of a 

TCP connection



Sockets Interface: bind

• A server uses  bind to ask the kernel to associate the server’s 

socket address with a socket descriptor:

• Clients don’t have to do this

• The process can then read bytes that arrive on the connection 
whose endpoint is addr by reading from descriptor sockfd.

• Similarly, writes to sockfd are transferred along connection 

whose endpoint is addr.

Best practice is to use getaddrinfo to supply the arguments 

addr and addrlen. 

int bind(int sockfd, SA* addr, socklen_t addrlen);



Sockets Interface: listen

• By default, kernel assumes that descriptor from socket 
function is an active socket that will be on the client end of 
a connection.

• A server calls the listen function to tell the kernel that a 
descriptor will be used by a server rather than a client:

• Converts sockfd from an active socket to a listening 
socket that can accept connection requests from clients. 

• backlog is a hint about the number of outstanding 
connection requests that the kernel should queue up 
before starting to refuse requests. 

int listen(int sockfd, int backlog);



Sockets Interface: accept

• Servers wait for connection requests from clients by 
calling accept:

• Waits for connection request to arrive on the connection 
bound to listenfd, then fills in client’s socket address in 

addr and size of the socket address in addrlen. 

• Returns a connected descriptor that can be used to 

communicate with the client via Unix I/O routines. 

• Process can read and write to this connected descriptor to 

get/send messages over the network

int accept(int listenfd, SA *addr, int *addrlen);



Connected vs. Listening Descriptors

• Listening descriptor
• End point for client connection requests

• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server

• A new descriptor is created each time the server accepts a 
connection request from a client

• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many 

client connections simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the 

request
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Sockets Interface: connect

• A client establishes a connection with a server by calling 

connect:

• Attempts to establish a connection with server at socket 
address addr

• If successful, then clientfd is now ready for reading and writing. 

• Resulting connection is  characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

• x is client address

• y is ephemeral port that uniquely identifies client process on client host

• Best practice is to use getaddrinfo to supply the 

arguments addr and addrlen. 

int connect(int clientfd, SA* addr, socklen_t addrlen);



accept Illustrated
listenfd(3)
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Exercise: Connection Setup

• Consider the network operations we've discussed thus 

far: socket, bind, listen, accept, connect. What sequence 

are these operations called in if a client wants to send one 

message to the server?

5. socket

6. connect

1. socket

2. bind

3. listen

4. accept

client server
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Communicating over a channel

• Consider the network operations we've discussed thus 

far: socket, bind, listen, accept, connect. What sequence 

are these operations called in if a client wants to send one 

message to the server?

5. socket

6. connect

8. write

1. socket

2. bind

3. listen

4. accept

7. read

client server
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