
CS 105 Fall 2024

Lecture 22: File Systems

Review: File Systems 101

• Long-term information storage goals

• should be able to store large amounts of information

• information must survive processes, power failures, etc.

• processes must be able to find information

• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction

• interface that provides operations involving

• files

• directories (a special kind of file)

Review: The File System Abstraction

• interface that provides operations on data stored long-term on
disk

• a file is a named sequence of stored bytes
• name is defined on creation

• processes use name to subsequently access that file

• a file is comprised of two parts:
• data: information a user or application puts in a file

• an array of untyped bytes

• metadata: information added and managed by the OS
• e.g., size, owner, security info, modification time

• two types of files
• normal files: data is an arbitrary sequence of bytes

• directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)

Review: The File System Stack

POSIX API (open, read, write, close, …)

Generic Block Interface (block read/write)

Specific Block Interface (protocol-specific read/write)

Language Libraries (e.g.,fopen, fread, fwrite, fclose,…)

Application

u
s
e

r
le

v
e
l

k
e
rn

e
l
m

o
d

eFile System

Generic Block Layer

Device Driver

Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

Directories

• a directory is a file that provides mappings from human-

readable names to low-level names (i.e., file numbers):

• a list of human-readable names

• a mapping from each name to a specific underlying file or directory

• OS uses path name to find directories and files

music 320

work 219
foo.txt 871

 File 871

"/home/eleanor/foo.txt"

File 818

"/home/eleanor"

ada 682

eleanor 818
rett 830

File 158

"/home"

Exercise 1: Linked Allocation

• How many disk reads would be required to read (all of) a
file named /foo/bar/baz.txt?

• assume all files can be read will one disk read

1. read / directory file, find foo’s file number

2. read foo directory file, find bar’s file number

3. read bar directory file, find baz.txt’s file number

4. read baz.txt

Multiple human-readable names

• Many file systems allow a given file to have multiple

names

• Hard links are multiple file directory entries that map

different path names to the same file number

• Symbolic Links or soft links are directory entries that map

one name to another (effectively a redirect)

Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

• File system index structures: file number -> block(s)

File System Challenges

• Performance: despite limitations of disks

• Flexibility: need to support diverse file types and

workloads

• Persistence: store data long term

• Reliability: resilient to OS crashes and hardware failures

File System Properties

• Most files are small

• need strong support for small files (optimize the common case)

• block size can't be too big

• Directories are typically small

• usually 20 or fewer entries

• Some files are very large

• must handle large files

• large file access should be reasonably efficient

• File systems are usually about half full

Storing Files

Possible ways to allocate files:

• Continuous allocation: all bytes together, in order

• Linked structure: each block points to the next block

• Indexed structure: index block points to many other blocks

• Log structure: sequence of segments, each containing updates

Continuous Allocation

All bytes together, in order

+ Simple: state required per file = start block & size

+ Efficient: entire file can be read with one seek

- Fragmentation: external is bigger problem

- Usability: user needs to know size of file at time of

creation

file1 file2 file3 file4 file5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

start size

file1 0 4

file2 4 4

file3 10 3

file4 13 4

file5 21 3

Linked Allocation

Each file is stored as linked list of blocks: One word of each

block points to next block, rest of disk block is file data

0 X 7 X 8 X 5 3 X 410 9 1112

start

file1 2

file2 9

file3 6

file4 13

file5 15

Decoupled Linked Allocation

Each file is stored as linked list of blocks: First word of each

block points to next block, rest of disk block is file data

0 X 7 X 8 X 5 3 X 410 9 1112

start

file1 2

file2 9

file3 6

file4 13

file5 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Exercise 2: (Decoupled) Linked Allocation

• How many disk reads would be required to read (all of) a

215 byte file named /foo/bar/baz.txt?

• assume 4096 byte (4 KB or 212 byte) blocks

• assume that all directories are small enough to fit in one block

1. read / directory block, find foo’s file number

2. read foo’s directory block, find bar’s file number

3. read bar’s directory block, find baz.txt’s file number

4. read baz.txt’s block 0

5. read ptr to baz.txt’s block 1 in FAT

6. read baz.txt’s block 1

7. read ptr to baz.txt’s block 2 in FAT

8. read baz.txt’s block 2

 …
15. read ptr to baz.txt’s block 6 in FAT

16. read baz.txt’s block 6

17. read ptr to baz.txt’s block 7 in FAT

18. read baz.txt’s block 7

19. read EOF ptr in FAT

FAT File System

Directory

cecil.txt 9

eleanor.txt 12

• Developed by Microsoft
for MS-DOS

• decoupled linked
allocation

• 1 FAT entry per block
("next pointer")
• EOF for last block

• 0 indicates free block

• low-level file name = FAT
index of first block in file

Linked Allocation

Each file is stored as linked list of blocks: First word of each

block points to next block, rest of disk block is file data

+ Simple: directory only need to store 1st block of

 each file

+ Space Utilization: no space lost to external

fragmentation

- Performance: random access is slow

~ Space Utilization: overhead of pointers

start

file1 2

file2 9

file3 6

file4 13

file5 15

0 X 7 X 8 X 5 3 X 410 9 1112

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Indexed Allocation: Fast File System (FFS)

• tree-based, multi-level index

• superblock identifies file system's key parameters

• inodes store metadata and pointers

• datablocks store data

superblock
inode blocks data blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

FFS Superblock

• Identifies file system’s key parameters:

• type

• block size

• inode array location and size

• location of free list

superblock
inode blocks data blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

FFS inodes

• inode blocks contain an array

of inodes

• each inode contains:

• Metadata

• info about which blocks

store that file

File

Metadata

references

to file

blocks

superblock
inode blocks data blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

inode Metadata

• Type
• ordinary file

• directory

• symbolic link

• special device

• Size of the file (in #bytes)

• # links to the i-node

• Owner (user id and group id)

• Protection bits

• Times: creation, last accessed, last
modified

File

Metadata

references

to file

blocks

reference

s to file

blocks

FFS Index Structures

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

File

Metadata

Indirect Pointer

Double Ind Ptr

Triple Ind Ptr

Each "Pointer" is a block

number, not a memory address

Inode Array

Inode
Data

Blocks
Indirect

Blocks

Double

Indirect

Blocks

Triple

Indirect

Blocks

Indirect blocks contain

arrays of block numbers

Max File Size

File

Metadata

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Indirect Pointer

Double Ind Ptr

Triple Ind Ptr

Inode Array

Inode
Data

Blocks
Indirect

Blocks

Double

Indirect

Blocks

Triple

Indirect

Blocks

Assume: blocks are 4KB (212 bytes)

block numbers are 4 byte values

12 ⋅ 212 bytes directly

reachable from inode

210 ⋅ 212 bytes indirectly

reachable from inode

220 ⋅ 212 bytes doubly indirect

230 ⋅ 212 bytes triply indirect

Exercise 3: Inode Structures

Assume we are using the inode structure we just described,

and assume again that each block is 4K (212) and that each

block reference is 4 bytes.

• Which pointers in the inode of a 32KB file would be non-null?

• Which pointers in the inode of a 47MB file would be non-null?

the first 8 direct pointers

all 12 direct pointers, the indirect pointer,

and the doubly-indirect pointer

FFS Directory Structure

• Originally: directory was array of 16 byte entries

• 14 byte file name

• 2 byte i-node number

• Now: implicit list. Each entry contains:

• 4-byte inode number

• Full record length

• Length of filename

• Filename

• First entry is “.”, points to self

• Second entry is “..”, points to parent inode

Exercise 4: Indexed Allocation

1. inode #2 (root always has inumber 2), find root’s blocknum (912)
2. root directory (in block 912), find foo’s inumber (31)

3. inode #31, find foo’s blocknum (194)

4. foo (in block 194), find bar’s inumber (73)

5. inode #73, find bar’s blocknum (991)

6. bar (in block 991), find baz’s inumber (40)
7. inode #40, find data blocks (302, 913, 301)

8. data blocks 302

9. data block 913

10. data block 301

How many disk reads would be required to read (all of) file

/foo/bar/baz?

912 194 302

913

301

991

2 31 40 73

bin 47

foo 31

usr 98

remem
ber. I d
o and I
underst

baz 40
ni 80
nit 87

fie 23

far 81

bar 73

and.

I hear a
nd I for
get. I se
e and I

194 301 302 912 913 991

inodes data blocks

… … … … … …

Key Characteristics of FFS

• Tree Structure

• efficiently find any block of a file

• High Degree (or fan out)

• minimizes number of seeks

• supports sequential reads & writes

• Fixed Structure

• implementation simplicity

• Asymmetric

• not all data blocks are at the same level

• supports large files

• small files don’t pay large overheads

Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

Free List

To write files, need to keep track of which blocks are

currently free

How to maintain?

• linked list of free blocks

• inefficient (why?)

• linked list of metadata blocks that in turn point to free

blocks

• simple and efficient

• bitmap

• actually used

Problem: Poor Performance

• In a naïve implementation of FFS, performance starts bad

and gets worse

• One early implementation delivered only 2% disk

bandwidth

• The root of the problem: poor locality

• data blocks of a file were often far from its inode

• file system would end up highly fragmented: accessing a logically

continuous file would require going back and forth across the

Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

• Performance optimizations (e.g., locality heuristics)

Performance Optimizations

• Grouped Allocation: disk organized into groups that are

(temporally) close, try to allocate all file blocks in same group

• Defragmentation: periodically rearrange files to improve locality

• Page Cache: to reduce costs of accessing files, cache file

contents in memory (e.g., device data, memory-mapped files)

• Copy-on-write (COW): create new, updated copy at time of

update

• Write Buffering: buffer writes and periodically flush to disk

	Slide 1: Lecture 22: File Systems
	Slide 2: Review: File Systems 101
	Slide 3: Review: The File System Abstraction
	Slide 4: Review: The File System Stack
	Slide 5: Implementation Basics
	Slide 6: Directories
	Slide 7: Exercise 1: Linked Allocation
	Slide 8: Multiple human-readable names
	Slide 9: Implementation Basics
	Slide 10: File System Challenges
	Slide 11: File System Properties
	Slide 12: Storing Files
	Slide 13: Continuous Allocation
	Slide 14: Linked Allocation
	Slide 15: Decoupled Linked Allocation
	Slide 16: Exercise 2: (Decoupled) Linked Allocation
	Slide 17: FAT File System
	Slide 18: Linked Allocation
	Slide 20: Indexed Allocation: Fast File System (FFS)
	Slide 21: FFS Superblock
	Slide 22: FFS inodes
	Slide 23: inode Metadata
	Slide 24: FFS Index Structures
	Slide 25: Max File Size
	Slide 26: Exercise 3: Inode Structures
	Slide 27: FFS Directory Structure
	Slide 28: Exercise 4: Indexed Allocation
	Slide 29: Key Characteristics of FFS
	Slide 30: Implementation Basics
	Slide 31: Free List
	Slide 32: Problem: Poor Performance
	Slide 33: Implementation Basics
	Slide 34: Performance Optimizations

