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Storage Devices

• Magnetic Disks

• Storage that rarely becomes corrupted

• Large capacity at low cost

• Block-level random access

• Slow performance for random access

• Better performance for streaming access

• Solid State Disks (Flash Memory)

• Storage that rarely becomes corrupted

• Capacity at moderate cost (50x magnetic)

• Block-level random access

• Good performance for random reads

• Not-as-good performance for random writes
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File Systems 101

• Long-term information storage goals

• should be able to store large amounts of information

• information must survive processes, power failures, etc.

• processes must be able to find information

• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction

• interface that provides operations involving files



The File System Abstraction

• interface that provides operations on data stored long-term on 
disk

• a file is a named sequence of stored bytes
• name is defined on creation

• processes use name to subsequently access that file

• a file is comprised of two parts:
• data: information a user or application puts in a file

• an array of untyped bytes

• metadata: information added and managed by the OS 
• e.g., size, owner, security info, modification time

• two types of files
• normal files: data is an arbitrary sequence of bytes

• directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)



..
Path Names

• A file system has a root directory "/"

• Directories contain other files (including 
subdirectories)

• Each UNIX directory also contains         
2 special entries
• "." = this directory

• ".." = parent directory

• Each path from root is a name for a leaf
• /foo.txt

• /bar/baz/baz.txt

• Absolute paths: path of file from the 
root directory

• Relative paths: path from current 
working directory
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Exercise 1: Path Names

I’ve created a file named example1.txt in the directory cs105, 

which is located in the root directory. 

1. Specify an absolute path to the file example1.txt

2. Specify a relative path to the file example1.txt from your 

home directory (/home/abcd2047/). 

I've created a file named example2.txt in my home directory 

(/home/ebac2018/). 

3. Specify an absolute path to the file example2.txt

4. Specify a relative path to the file example2.txt from your 

home directory

Hint: you can always get back to your home directory with cd ~



Basic File System Operations

1. Create a file

2. Delete a file

3. Write to a file

4. Read from a file

5. Seek to somewhere in a file

How should we implement this?



Unix I/O Interface

• Mapping of files to devices allows kernel to export simple 

interface:

• Opening a file

• open()and close()

• Reading and writing a file

• read() and  write()

• Changing the current file position (seek)

• indicates next offset into file to read or write

• lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k



The File System Stack

POSIX API (open, read, write, close, …)

Generic Block Interface (block read/write)

Specific Block Interface (protocol-specific read/write)

Language Libraries (e.g.,fopen, fread, fwrite, fclose,…)

Application
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Opening Files

• Opening a file informs the kernel that you are getting 
ready to access that file

• Returns a small identifying integer file descriptor
• fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with 
three open files associated with a terminal:
• 0: standard input (stdin)

• 1: standard output (stdout)

• 2: standard error (stderr)

int fd;   /* file descriptor */

fd = open("/etc/hosts", O_RDONLY);

if (fd < 0) {

   perror("open failed");

   exit(1);

}



Kernel Data Structures
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Reading Files

• Reading a file copies bytes from the current file position to 
memory, and then updates file position

• Returns number of bytes read from file fd into buf
• Return type size_t is signed integer

• nbytes < 0 indicates that an error occurred

• Short counts (nbytes < sizeof(buf) ) are possible and are not 
errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open file fd ...  */

/* Then read up to 512 bytes from file fd */

nbytes = read(fd, buf, sizeof(buf));

if (nbytes < 0) {

   perror("read error");

   exit(1);

}



Kernel Data Structures
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Exercise 2: Reading and Writing

• Assume the file foobar.txt consists of the six ASCII 

characters foobar. What gets printed when the following 

program is run?

int main(int argc, char** argv){

    int fd1, fd2;

    char c;

    fd1 = open("foobar.txt", O_RDONLY);

    fd2 = open("foobar.txt", O_RDONLY);

    read(fd1, &c, 1);

    read(fd2, &c, 1);

    printf("c = %c\n", c);

    return 0;

}



Exercise 2: Reading and Writing
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Writing Files

• Writing a file copies bytes from memory to the current file 

position, and then updates current file position

• Returns number of bytes written from buf to file fd

• nbytes < 0 indicates that an error occurred

• As with reads, short counts are possible and are not errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

nbytes = write(fd, buf, sizeof(buf));

if (nbytes < 0) {

   perror("write error");

   exit(1);

}



On Short Counts

• Short counts can occur in these situations:

• Encountering (end-of-file) EOF on reads

• Reading text lines from a terminal

• Short counts never occur in these situations:

• Reading from disk files (except for EOF)

• Writing to disk files

• Best practice is to always allow for short counts. 



Buffered Reads/Writes

• stream data is stored in a kernel buffer and returned to the 

application on request

• enables same system call interface to handle both 

streaming reads (e.g., keyboard) and block reads (e.g., 

disk)



Closing Files

• Closing a file informs the kernel that you are finished 

accessing that file

• Closing an already closed file is a recipe for disaster in 

threaded programs 

• Moral: Always check return codes, even for seemingly 
benign functions such as close()

int fd;     /* file descriptor */

int retval; /* return value */

retval = close(fd);

if (retval < 0) {

   perror("close error");

   exit(1);

}



Processes and Files

• A child process inherits all file descriptors from its parent
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Exercise 3: Processes and Files

• Suppose the file foobar.txt consists of the six ASCII 

characters foobar. What is printed when the following 

program is run?

int main(int argc, char** argv){

    int fd;

    char c;

    fd = open("foobar.txt", O_RDONLY);

    if(fork() == 0){ // if child process

        read(fd, &c, 1);

        return 0;

    } else {         // if parent process

        wait();      // wait for child to complete

        read(fd, &c, 1);

        printf("c = %c\n", c);

        return 0;

    }

}
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Exercise 3: Processes and Files
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I/O Redirection

• Examples of I/O redirection

• a program can read input from a file: ./hex2raw < exploit.txt 

• a program can send output to a file: ./hex2raw > exploit-raw.txt 

• output of one program can be input to another: cat exploit.txt | 

./hex2raw | ./ctarget -q 

• I/O redirection uses a function called dup2

• changes newfd to point to same open file table entry as oldfd 

• returns file descriptor if OK, -1 on error

int dup2(int oldfd, int newfd);



I/O Redirection
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Exercise 4: I/O Redirection

• Suppose the file foobar.txt consists of the six ASCII 

characters foobar. What is printed when the following 

program is run?

int main(){

  int fd1, fd2;

  char c;

  fd1 = open("foobar.txt",O_RDONLY);

  fd2 = open("foobar.txt",O_RDONLY);

  read(fd2, &c, 1);

  dup2(fd2, fd1);

  read(fd1, &c, 1);

  printf("c = %c\n", c);

  return 0;

}



Exercise 4: I/O Redirect
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System I/O as a Uniform Interface

• Operating systems use the System I/O commands as an 
interface for all I/O devices

• The commands to read and write to an open file descriptor 
are the same no matter what type of "file" it is 

• Types of files include
• file

• keyboard

• screen 

• pipe

• device

• network
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