
CS 105 Fall 2024

Lecture 21: System I/O

Memory Hierarchy

Regs

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,
and
cheaper

(per byte)
storage

devices
Remote secondary storage

(e.g., cloud, web servers)

Local disks hold files

retrieved from disks

on remote servers

L2 cache

(SRAM)

L1 cache holds cache lines retrieved

from the L2 cache.

CPU registers hold words retrieved from

the L1 cache.

L2 cache holds cache lines

 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,
and
costlier

(per byte)
storage

devices L3 cache

(SRAM)

L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds

disk blocks retrieved

from local disks.

Storage Devices

• Magnetic Disks

• Storage that rarely becomes corrupted

• Large capacity at low cost

• Block-level random access

• Slow performance for random access

• Better performance for streaming access

• Solid State Disks (Flash Memory)

• Storage that rarely becomes corrupted

• Capacity at moderate cost (50x magnetic)

• Block-level random access

• Good performance for random reads

• Not-as-good performance for random writes

1950s

IBM 350

5 MB

2021

WD Red

10 TB

2024

MacBook

1TB

File Systems 101

• Long-term information storage goals

• should be able to store large amounts of information

• information must survive processes, power failures, etc.

• processes must be able to find information

• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction

• interface that provides operations involving files

The File System Abstraction

• interface that provides operations on data stored long-term on
disk

• a file is a named sequence of stored bytes
• name is defined on creation

• processes use name to subsequently access that file

• a file is comprised of two parts:
• data: information a user or application puts in a file

• an array of untyped bytes

• metadata: information added and managed by the OS
• e.g., size, owner, security info, modification time

• two types of files
• normal files: data is an arbitrary sequence of bytes

• directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)

..
Path Names

• A file system has a root directory "/"

• Directories contain other files (including
subdirectories)

• Each UNIX directory also contains
2 special entries
• "." = this directory

• ".." = parent directory

• Each path from root is a name for a leaf
• /foo.txt

• /bar/baz/baz.txt

• Absolute paths: path of file from the
root directory

• Relative paths: path from current
working directory

/

bar

baz

foo.txt

bar.txt

baz.txt

.

.

.

..

..

fun

fun.txt

...

fun.txt

Exercise 1: Path Names

I’ve created a file named example1.txt in the directory cs105,

which is located in the root directory.

1. Specify an absolute path to the file example1.txt

2. Specify a relative path to the file example1.txt from your

home directory (/home/abcd2047/).

I've created a file named example2.txt in my home directory

(/home/ebac2018/).

3. Specify an absolute path to the file example2.txt

4. Specify a relative path to the file example2.txt from your

home directory

Hint: you can always get back to your home directory with cd ~

Basic File System Operations

1. Create a file

2. Delete a file

3. Write to a file

4. Read from a file

5. Seek to somewhere in a file

How should we implement this?

Unix I/O Interface

• Mapping of files to devices allows kernel to export simple

interface:

• Opening a file

• open()and close()

• Reading and writing a file

• read() and write()

• Changing the current file position (seek)

• indicates next offset into file to read or write

• lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

The File System Stack

POSIX API (open, read, write, close, …)

Generic Block Interface (block read/write)

Specific Block Interface (protocol-specific read/write)

Language Libraries (e.g.,fopen, fread, fwrite, fclose,…)

Application

u
s
e

r
le

v
e
l

k
e
rn

e
l
m

o
d

eFile System

Generic Block Layer

Device Driver

Opening Files

• Opening a file informs the kernel that you are getting
ready to access that file

• Returns a small identifying integer file descriptor
• fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with
three open files associated with a terminal:
• 0: standard input (stdin)

• 1: standard output (stdout)

• 2: standard error (stderr)

int fd; /* file descriptor */

fd = open("/etc/hosts", O_RDONLY);

if (fd < 0) {

 perror("open failed");

 exit(1);

}

Kernel Data Structures

Descriptor table

(table created on fork(),

one table

per process)

Open file table

(entry created on open,

shared by

child processes)

v-node table

(one per file,

shared by

all processes)

fd 0

fd 1

fd 2

fd 3

fd 4

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File pos

refcnt=1

...

File A

File pos

refcnt=1

...

File B

Reading Files

• Reading a file copies bytes from the current file position to
memory, and then updates file position

• Returns number of bytes read from file fd into buf
• Return type size_t is signed integer

• nbytes < 0 indicates that an error occurred

• Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

nbytes = read(fd, buf, sizeof(buf));

if (nbytes < 0) {

 perror("read error");

 exit(1);

}

Kernel Data Structures

Descriptor table

(table created on fork(),

one table

per process)

Open file table

(entry created on open,

shared by

child processes)

v-node table

(one per file,

shared by

all processes)

fd 0

fd 1

fd 2

fd 3

fd 4

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

pos=0

refcnt=1

...

File A

File pos

refcnt=1

...

File B

read(3,buf, 47)

pos=47

read(3,buf, 13)

pos=60

Exercise 2: Reading and Writing

• Assume the file foobar.txt consists of the six ASCII

characters foobar. What gets printed when the following

program is run?

int main(int argc, char** argv){

 int fd1, fd2;

 char c;

 fd1 = open("foobar.txt", O_RDONLY);

 fd2 = open("foobar.txt", O_RDONLY);

 read(fd1, &c, 1);

 read(fd2, &c, 1);

 printf("c = %c\n", c);

 return 0;

}

Exercise 2: Reading and Writing

File descriptor table Open file table v-node table

0

1

2

3

4

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

pos=0

refcnt=1

...

foobar.txt

pos=0

refcnt=1

...
foobar.txt

fd2

fd1

Writing Files

• Writing a file copies bytes from memory to the current file

position, and then updates current file position

• Returns number of bytes written from buf to file fd

• nbytes < 0 indicates that an error occurred

• As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

nbytes = write(fd, buf, sizeof(buf));

if (nbytes < 0) {

 perror("write error");

 exit(1);

}

On Short Counts

• Short counts can occur in these situations:

• Encountering (end-of-file) EOF on reads

• Reading text lines from a terminal

• Short counts never occur in these situations:

• Reading from disk files (except for EOF)

• Writing to disk files

• Best practice is to always allow for short counts.

Buffered Reads/Writes

• stream data is stored in a kernel buffer and returned to the

application on request

• enables same system call interface to handle both

streaming reads (e.g., keyboard) and block reads (e.g.,

disk)

Closing Files

• Closing a file informs the kernel that you are finished

accessing that file

• Closing an already closed file is a recipe for disaster in

threaded programs

• Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

retval = close(fd);

if (retval < 0) {

 perror("close error");

 exit(1);

}

Processes and Files

• A child process inherits all file descriptors from its parent

fd 0

fd 1

fd 2

fd 3

fd 4

pos=0

refcnt=1
...

pos=47

refcnt=1

...

Parent's table

fd 0

fd 1

fd 2

fd 3

fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B

File descriptor table Open file table v-node table

refcnt=2

refcnt=2

Exercise 3: Processes and Files

• Suppose the file foobar.txt consists of the six ASCII

characters foobar. What is printed when the following

program is run?

int main(int argc, char** argv){

 int fd;

 char c;

 fd = open("foobar.txt", O_RDONLY);

 if(fork() == 0){ // if child process

 read(fd, &c, 1);

 return 0;

 } else { // if parent process

 wait(); // wait for child to complete

 read(fd, &c, 1);

 printf("c = %c\n", c);

 return 0;

 }

}

refcnt=1

Exercise 3: Processes and Files

fd 0

fd 1

fd 2

fd 3

fd 4

pos=0

refcnt=2

...

Parent's table

fd 0

fd 1

fd 2

fd 3

fd 4

Child's table

File access

...

File size

File type

foobar.txt

File descriptor table Open file table v-node table

pos=1

I/O Redirection

• Examples of I/O redirection

• a program can read input from a file: ./hex2raw < exploit.txt

• a program can send output to a file: ./hex2raw > exploit-raw.txt

• output of one program can be input to another: cat exploit.txt |

./hex2raw | ./ctarget -q

• I/O redirection uses a function called dup2

• changes newfd to point to same open file table entry as oldfd

• returns file descriptor if OK, -1 on error

int dup2(int oldfd, int newfd);

I/O Redirection

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

(one table

per process)

Open file table

(shared by

all processes)

v-node table

(shared by

all processes)

File pos

refcnt=0

...
File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A

File B

dup2(4,1)

Exercise 4: I/O Redirection

• Suppose the file foobar.txt consists of the six ASCII

characters foobar. What is printed when the following

program is run?

int main(){

 int fd1, fd2;

 char c;

 fd1 = open("foobar.txt",O_RDONLY);

 fd2 = open("foobar.txt",O_RDONLY);

 read(fd2, &c, 1);

 dup2(fd2, fd1);

 read(fd1, &c, 1);

 printf("c = %c\n", c);

 return 0;

}

Exercise 4: I/O Redirect

File descriptor table Open file table v-node table

0

1

2

3

4

stderr

stdout

stdin File access

...

File size

File type

File pos

refcnt=1

...

foobar.txt

File pos

refcnt=1

...
foobar.txt

fd2

fd1

refcnt=2

refcnt=0

System I/O as a Uniform Interface

• Operating systems use the System I/O commands as an
interface for all I/O devices

• The commands to read and write to an open file descriptor
are the same no matter what type of "file" it is

• Types of files include
• file

• keyboard

• screen

• pipe

• device

• network

	Slide 1: Lecture 21: System I/O
	Slide 2: Memory Hierarchy
	Slide 3: Storage Devices
	Slide 5: File Systems 101
	Slide 6: The File System Abstraction
	Slide 7: Path Names
	Slide 8: Exercise 1: Path Names
	Slide 9: Basic File System Operations
	Slide 10: Unix I/O Interface
	Slide 11: The File System Stack
	Slide 12: Opening Files
	Slide 13: Kernel Data Structures
	Slide 14: Reading Files
	Slide 15: Kernel Data Structures
	Slide 16: Exercise 2: Reading and Writing
	Slide 17: Exercise 2: Reading and Writing
	Slide 18: Writing Files
	Slide 19: On Short Counts
	Slide 20: Buffered Reads/Writes
	Slide 21: Closing Files
	Slide 22: Processes and Files
	Slide 23: Exercise 3: Processes and Files
	Slide 24: Exercise 3: Processes and Files
	Slide 25: I/O Redirection
	Slide 26: I/O Redirection
	Slide 27: Exercise 4: I/O Redirection
	Slide 28: Exercise 4: I/O Redirect
	Slide 29: System I/O as a Uniform Interface

