
CS 105 Fall 2024

Lecture 19: Threads and Concurrency

Why Concurrent Programs?

1.06

0.54
0.28 0.29 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

E
la

p
s

e
d

 t
im

e
 (

s
)

Threads

Program Structure: expressing logically

concurrent programs
Responsiveness: shifting work to run

in the background

Performance: exploiting multiprocessorsResponsiveness: managing I/O devices

Traditional View of a Process

• Process = process context + (virtual) memory state

0

Program context:

 Data registers

 Stack pointer (rsp)

 Condition codes

 Program counter (rip)

Virtual Memory

rsp

rip

brk

Process Control Block

Kernel context:

 VM structures

 File table

 brk pointer

Code

Data

Stack

Heap

Alternate View of a Process

• Process = thread + other state

Thread context:

 Data registers

 Stack pointer (rsp)

 Condition codes

 Program counter (rip)

Other data

rsp

Thread (main thread)

Kernel context:

 VM structures

 File table

 brk pointer

Stack

0

brk

Code

Data

Heap

A Process With Multiple Threads

• Multiple threads can be associated with a process
• Each thread has its own logical control flow

• Each thread has its own stack for local variables

• Each thread has its own thread id (TID)

• Each thread shares the same code, data, and kernel context

Thread 1 (main thread) Shared dataThread 2 (peer thread)

Thread 1 context:

 Data registers

 Stack pointer

 Condition codes

 Program counter

rsp
Stack 1

Thread 2 context:

 Data registers

 Stack pointer

 Condition codes

 Program counter

rsp
Stack 2

Kernel context:

 VM structures

 File table

 brk pointer

0

brk

Code

Data

Heap

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow

• Each can run concurrently with others (possibly on different

cores)

• Each is scheduled and context switched

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not

• Threads are somewhat less expensive than processes

• Thread control (creating and reaping) is half as expensive as process
control

• ~20K cycles to create and reap a process

• ~10K cycles (or less) to create and reap a thread

• Thread context switches are less expensive (e.g., don't flush TLB)

Posix Threads Interface

C (Pthreads)

• Creating and reaping threads

• pthread_create()

• pthread_join()

• Determining your thread ID

• pthread_self()

• Terminating threads

• pthread_cancel()

• pthread_exit()

• exit() [terminates all threads]

• RET [terminates current thread]

Python (threading)

• Creating and reaping threads

• Thread()

• thread.join()

• Determining your thread ID

• thread.get_ident()

• Terminating threads

• thread.exit()

• RET [terminates current thread]

void *thread(void *vargp){ /* thread routine */

 printf("Hello, world!\n");
return NULL;

}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main(){

 pthread_t tid;
 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, NULL);

exit(0);
}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

Return value

(void **p)

hello.c

Thread ID

Thread routine

hello.c

Example: Sharing with Threads

char** ptr; /* global var */

int main(){

 pthread_t tid;

char* msgs[2] = {"Hello from foo",

 "Hello from bar"};

ptr = msgs;

for (int i = 0; i < 2; i++){

pthread_create(&tid, NULL,

fun, (void*) i);

}

pthread_exit(NULL);

}

void* fun(void* vargp){

 long myid = (long) vargp;

 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

fun threads reference main thread’s

stack indirectly through global ptr variable

Mapping Variable Instances to Memory

• Global variables

• Def: Variable declared outside of a function

• Virtual memory contains exactly one instance of any global

variable

• Local variables

• Def: Variable declared inside function

• Each thread stack contains one instance of each local variable

• Local static variables
• Def: Variable declared inside function with the static attribute

• Virtual memory contains exactly one instance of any local

static variable.

without static attribute

char** ptr; /* global var */

int main(){

 pthread_t tid;

char* msgs[2] = {"Hello from foo",

 "Hello from bar"};

ptr = msgs;

for (int i = 0; i < 2; i++){

pthread_create(&tid, NULL,

fun, (void *)i);

pthread_exit(NULL);

}

void* fun(void* vargp){

 long myid = (long) vargp;

 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

Exercise 1: Shared Variables

Which variables are

shared (aka can be

accessed by more than

one thread)?

• ptr

• cnt

• i

• msgs

• myid

Exercise 1: Shared Variables

• Which variables are shared?
• A variable x is shared iff multiple threads reference at least one

instance of x.

• ptr, cnt, and msgs are shared

• i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.main

msgs.main

myid.fun0

myid.fun1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char** argv){

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

pthread_create(&tid1, NULL,

count_func, &niters);

pthread_create(&tid2, NULL,

count_func, &niters);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void* count_func(void* vargp){

 long i, niters;

 niters = *((long*) vargp);

 for (i = 0; i < niters; i++){

cnt++;

}

return NULL;

}

linux> ./badcnt 10000

OK cnt=20000

linux> ./badcnt 10000

BOOM! cnt=13051

linux>

Why not Concurrent Programs?

Assembly Code for Counter Loop

for (i = 0; i < niters; i++){

cnt++;

}

C code for counter loop in thread i

movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Li : Load cnt

Ui : Update cnt
Si : Store cnt

Ti : Tail

Race conditions

• A race condition is a timing-dependent error involving

shared state

• whether the error occurs depends on thread schedule

• program execution/schedule can be non-deterministic

• compilers and processors can re-order instructions

A concrete example…

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

• Liveness: if you are out of milk, someone buys milk

• Safety: you never have more than one quart of milk

Algorithm 1:

Look in fridge.

If out of milk:

 go to store,
 buy milk,

 go home

 put milk in fridge

Algorithm 1:

if (milk == 0) { // no milk

 milk++; // buy milk

}

A problematic schedule

You

3:00 Look in fridge; out of milk

3:05 Leave for store

3:10 Arrive at store

3:15 Buy milk

3:20 Arrive home; put milk in

fridge

Your Roommate

3:10 Look in fridge; out of milk

3:15 Leave for store

3:20 Arrive at store

3:25 Buy milk

3:30 Arrive home; put milk in

fridge

Safety violation:

You have too much milk and it spoils

Solution 1: Leave a note

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

Algorithm 2:

if (milk == 0) { // no milk

 if (note == 0) { // no note

 note = 1; // leave note

 milk++; // buy milk

 note = 0; // remove note

 }

}

Safety violation: you've introduced a Heisenbug!

Solution 2: Leave note before check note

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

Algorithm 3:

note1 = 1

if (note2 == 0) { // no note from

 roommate

 if (milk == 0) {// no milk

 milk++; // buy milk

 }

}

note1 = 0

Liveness violation: No one buys milk

Solution 3: Keep checking for note

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

Algorithm 4:

note1 = 1

while (note2 == 1) { // wait until

 ; // no note

}

if (milk == 0) { // no milk

 milk++; // buy milk

}

note1 = 0

Liveness violation: You've introduced deadlock

Solution 4: Take turns

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

Algorithm 5:

note1 = 1

turn = 2

while (note2 == 1 and turn == 2){

 ;

}

if (milk == 0) { // no milk

 milk++; // buy milk

}

note1 = 0

(probably) correct, but complicated and inefficient

Locks

• A lock (aka a mutex) is a synchronization primitive that

provides mutual exclusion. When one thread holds a lock,

no other thread can hold it.

• a lock can be in one of two states: locked or unlocked

• a lock is initially unlocked

• function acquire(&lock) waits until the lock is unlocked, then

atomically sets it to locked

• function release(&lock) sets the lock to unlocked

Atomic Operations

• Solution: hardware primitives to support synchronization

• A machine instruction that (atomically!) reads and updates

• Example: xchg src, dest

• one instruction

• semantics: TEMP ← DEST; DEST ← SRC; SRC ← TEMP;

Spinlocks

acquire:

 mov $1, eax ; Set EAX to 1

 xchg eax, (rdi) ; Atomically swap EAX w/ lock val

 test eax, eax ; check if EAX is 0 (lock unlocked)

 jnz acquire ; if was locked, loop

 ret ; lock has been acquired, return

release:

 mov $0, eax ; Set EAX to 0

 xchg eax, (rdi) ; Atomically swap EAX w/ lock val

 ret ; lock has been released, return

Solution 5: use a lock

• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator

is always stocked with milk.

Algorithm 6:

acquire(&lock)

if (milk == 0) { // no milk

 milk++; // buy milk

}

release(&lock)

Correct!

Programming with Locks

C (pthreads)

• Defines lock type pthread_mutex_t

• functions to create/destroy
locks:

• int pthread_mutex_init(&lock, attr);

• int pthread_mutex_destroy(&lock);

• functions to acquire/release
lock:
• int pthread_mutex_lock(&lock);

• int pthread_mutex_unlock(&lock);

Python (threading)

• Defines class Lock

• constructor to create locks:

• Lock()

• destroyed by garbage collector

• functions to aquire/release
lock:

• lock.acquire()

• lock.release()

Exercise 2: Locks

• TODO: Modify this example

to guarantee correctness

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char** argv){

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

pthread_create(&tid1, NULL,

count_func, &niters);

pthread_create(&tid2, NULL,

count_func, &niters);

pthread_join(tid1, NULL);

pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void* count_func(void* vargp){

 long i, niters;

 niters = *((long*) vargp);

 for (i = 0; i < niters; i++){

cnt++;

}

return NULL;

}

Problems with Locks

1. Locks are slow

• threads that fail to acquire a lock on the first attempt must "spin",

which wastes CPU cycles

• threads get scheduled and de-scheduled while the lock is still

locked

2. Using locks correctly is hard

• hard to ensure all race conditions are eliminated

• easy to introduce synchronization bugs (deadlock, livelock)

Better Synchronization Primitives

• Semaphores

• stateful synchronization primitive

• Condition variables

• event-based synchronization primitive

	Slide 1: Lecture 19: Threads and Concurrency
	Slide 2: Why Concurrent Programs?
	Slide 3: Traditional View of a Process
	Slide 4: Alternate View of a Process
	Slide 5: A Process With Multiple Threads
	Slide 7: Threads vs. Processes
	Slide 9: Posix Threads Interface
	Slide 10: The Pthreads "hello, world" Program
	Slide 11: Example: Sharing with Threads
	Slide 12: Mapping Variable Instances to Memory
	Slide 15: Exercise 1: Shared Variables
	Slide 16: Exercise 1: Shared Variables
	Slide 17: Why not Concurrent Programs?
	Slide 18: Assembly Code for Counter Loop
	Slide 19: Race conditions
	Slide 20: A concrete example…
	Slide 21: A problematic schedule
	Slide 22: Solution 1: Leave a note
	Slide 23: Solution 2: Leave note before check note
	Slide 24: Solution 3: Keep checking for note
	Slide 25: Solution 4: Take turns
	Slide 26: Locks
	Slide 27: Atomic Operations
	Slide 28: Spinlocks
	Slide 29: Solution 5: use a lock
	Slide 30: Programming with Locks
	Slide 31: Exercise 2: Locks
	Slide 32: Problems with Locks
	Slide 33: Better Synchronization Primitives

