Lecture 17: Virtual Memory (cont'd)

CS 105 Fall 2024

Review: Address Translation

Stack

Virtual Address

Data

MMU

-
=

<
28
o
L
x>
a
Q
-
®
0
7

invalid

Exception

Virtual Memory

Physical Memory

v

Page 7
Page 6 StaCK r
Page 5
Page 4
Page 3 L,
Page 2 I:Ieap —
Page 1 Data
Page 0 Code
vaddr = page_num*page_size + offset
=

paddr = frame_num*frame_size + offset

Frame 17

Frame 16
Frame 15

Frame 14

Frame 13

Frame 12
Frame 11

Frame 10

Frame 9
Frame 8
Frame 7

Frame 6
Frame 5

Frame 4

Frame 3

Frame 2
Frame 1

Frame O

Review: Virtual Pages

Stack

page# offset

L \ | vaddr MMU

age table
e
1 47 R.W

NULL R,W
— 0 13 R,W
42 R,X

paddr =

G
3 %
%%
?;(a
%O
%
Q
neq4bas

§
Y
5
Q
(75)
Jjne4 abed

Frame[page#j

offset

Review: Paging

Assume that you are currently executing a process P with
the following page table on a system with 16 byte pages:

: Frame Access

OXEA8B 1 0x47 RW
OXEAB8A 0 NULL R,W
OXEA89 0 0x13 R,W
OXEA88 1 0x23 R,X

. What is the physical address that corresponds to the
virtual address OXEA8B2?

- What is the physical address that corresponds to the
virtual address OXEA8AT7?

- What is the physical address that corresponds to the
virtual address OXEA89A?

Review: Evaluating Paging

- Isolation: don’t want different
process states collided in
physical memory

- Efficiency: want fast
reads/writes to memory

- Sharing: want option to
overlap for communication

- Utilization: want best use of
limited resource

- Virtualization: want to create
Illusion of more resources

Traditional Paging

- page table is stored in
physical memory

- Implemented as array of
page table entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

- Page table entries are
accessed by using the
page number as the index
Into the page table

NULL
NULL

R.W
R,.W

NULL
5

R.W
R, X

a7
NULL

R,.W
R,.W

R OO P |k OO O

13
42

RW
R,X

PTBR

Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 48-bit address space, 4KB (2"12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation

- Performance: every data/instruction access requires two
memory accesses:
- One for the page table
- One for the data/instruction

Two-level Page Tables

- page table is stored in
virtual memory pages

. pﬁge_ dirlectory IS sitored In
physical memory (page
table for the page tab?e)

- Implemented as array of
page directory entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory

NULL
NULL

RW
RW

NULL
62

NULL
59

R,.W
R, X

O |+~ O

17
77

47
NULL

R,.W
R,.W

R OO Pk O|O O

13
42

R,.W
R, X

PTBR

Two-level Page Tables

vaddr| idx1 | idx2 | offset

MMU
page dir page table page
0 NULL ' 1 47 R.W
R . y v v
3 elsj * Framelidx1] 0 NULL RW Frame[idx2] | offset
0 13 R,W
1 77 > 1 42 R,X

+ only store in-use page table entries in physical memory
+ easier to allocate page table
- more memaory accesses

Example: Two-level Page Tables

Assume you are working on an architecture with a 32-bit
virtual address space in which each page is 64 KB and a
page table entry is 16 bytes. idx1 is 4 bits, idx2 is 12 bits,

and offset is 16 bits. 216 hytes = 64 KB
- How many bits will be in the offset? 16 bits

- How many bits will be in idx2? 12 bits

- How many bits will be in idx1? 4 bits

4 bitidx1 | 12 bit idx2 | 16 bit offset

Exercise: Two-level Page Tables

Assume you are still

working on that architecture.

4 bitidx1 | 12 bit idx2 | 16 bit offset

Compute the physical
address corresponding to
each of the virtual address:

a) 0x00000013

b) 0x20022002

c) 0x10015555

d) 0x10020105

page directory

ox0o 1

Ox1 1
0x2 0
0x3 O

OxF 1

Ox2F
0x31
NULL
Ox2F

0x23

pagetable

Frame 2FI-

oxo 1 0x0047

Oox1 O NULL R,W
0x2 0 0x0013 RW
0x3 1 0x0042 RX

Frame 30| SISt

Frame 31
0x0 0x002A R

0

ox1 1 OxCAFE RW

0x2 0 NULL R,.W
0

0x3 0x2A04 RW

Multi-level Page Tables

- Problem: How big does the page directory get? 1 GB
- Assume you have a 48-bit address space
- Assume you have 4KB pages
- Assume you have 8 byte page table entries/page directory entries

27 bitidx1 9 bit idx2 | 12 bit offset

|
48 bits

- Goal: Page Table Directory should fit in one frame
- Multi-level page tables: add additional level(s) to tree

O bit idx1 | 9 bit idx2 | 9 bit idx3 | 9 bit idx4 | 12 bit offset

|
48 bits

Review: Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 64-bit address space, 4KB (2"12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation

. . _ five
- Performance: every data/instruction access requires-twe-

memaory aCCesses.
- One for tre~page~taiste each of the four levels of page table
- One for the data/instruction

Translation-Lookaside Buffer (TLB)

- General idea: If address translation iIs slow, cache some

of the answers

- Translation-lookaside buffer iIs an address translation
cache that is built into the MMU

Virtual
Address

| Page# Offset

Translation Lookaside Buffer (TLB)

o

Matching Entry ,@

B

Virtual Page
Page Frame Access

e

N Page Table
Lookup

Physical |
Address

Frame I Offset |-~

Exercise: TLB

0 1 03 B 0 07 6 1 28 3 0 01 E

1 3E
1 1F
0 1E

0 12 3
0 11 1
0 2A A

1 1 31 0
2 0 2A A
3 1 Q7 3

1 0B 1
1 Q77 5
0 B

4
8
2 21

Assume you are running on an architecture with a one-level
page table with 4096 byte pages. For each of the following
virtual addresses, determine whether the address translation
IS stored in the TLB. If so, give the corresponding physical

address
- OX7E37C
- Ox16A48

Example: The Linux x86 Address Space

Use "only" 48-bit addresses (top
16 bits not used)
4KB pages by default

- supports larger "superpages"
Four-level page table

Physical memory stores

memory pages, memory-
mapped files, cached file pages

Page eviction algorithm uses
variant of LRU called 2Q

- approximates LRU with clock

- maintains two lists (active/inactive)
Stack is marked non-executable

Virtual address of stack/heap
start are randomized each time
process is initialized

Kernel (virtual)

Kernel (logical)

Stack

Heap

Data

Code

OxFFFFFFFFFFEF

0x800000000000

0x000000000000

Example: Core 17 Memory Accessing

CPU - L2, L3, and
< Result -~ _
Virtual address (vaddr) f main memory
36 v 12 A
_\‘PN VPO{ L1 L1
- I A hit MISS
TLBT| TLBI
| L1d-cache
il . TLB (64 sets, 8-way, 64-byte/ln)
TLB nit
mISS | |: | | |A|A|A|A|:A| |A|A|4_
L1 TLB (16 sets, 4 entries/set)
.v9 .9 ; - .9 40 vy v 12 40 NS
idx1 | idx2 | idx3 | idx4 PEN PFO | = CcT cil co
‘ Physical —
PTBR
address
—»PDE] PDE PDE PTE (pad d I')
Page tables

	Slide 1: Lecture 17: Virtual Memory (cont'd)
	Slide 2: Review: Address Translation
	Slide 3: Paging
	Slide 4: Review: Virtual Pages
	Slide 5: Review: Paging
	Slide 6: Review: Evaluating Paging
	Slide 7: Traditional Paging
	Slide 8: Problems with Paging
	Slide 9: Two-level Page Tables
	Slide 10: Two-level Page Tables
	Slide 11: Example: Two-level Page Tables
	Slide 12: Exercise: Two-level Page Tables
	Slide 13: Multi-level Page Tables
	Slide 14: Review: Problems with Paging
	Slide 15: Translation-Lookaside Buffer (TLB)
	Slide 16: Exercise: TLB
	Slide 17: Example: The Linux x86 Address Space
	Slide 18: Example: Core i7 Memory Accessing

