Lecture 17: Virtual Memory (cont'd)

CS 105 Fall 2024



Review: Address Translation
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Review: Virtual Pages
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Review: Paging

Assume that you are currently executing a process P with
the following page table on a system with 16 byte pages:

: Frame Access

OXEA8B 1 0x47 RW
OXEAB8A 0 NULL R,W
OXEA89 0 0x13 R,W
OXEA88 1 0x23 R,X

. What is the physical address that corresponds to the
virtual address OXEA8B2?

- What is the physical address that corresponds to the
virtual address OXEA8AT7?

- What is the physical address that corresponds to the
virtual address OXEA89A?



Review: Evaluating Paging

- Isolation: don’t want different
process states collided in
physical memory

- Efficiency: want fast
reads/writes to memory

- Sharing: want option to
overlap for communication

- Utilization: want best use of
limited resource

- Virtualization: want to create
Illusion of more resources




Traditional Paging

- page table is stored in
physical memory

- Implemented as array of
page table entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

- Page table entries are
accessed by using the
page number as the index
Into the page table
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Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 48-bit address space, 4KB (2"12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation

- Performance: every data/instruction access requires two
memory accesses:
- One for the page table
- One for the data/instruction



Two-level Page Tables

- page table is stored in
virtual memory pages

. pﬁge_ dirlectory IS sitored In
physical memory (page
table for the page tab?e)

- Implemented as array of
page directory entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory
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Two-level Page Tables

vaddr| idx1 | idx2 | offset

MMU
page dir page table page
0 NULL ' 1 47 R.W
R . y v v
3 elsj * Framelidx1] 0 NULL RW Frame[idx2] | offset
0 13 R,W
1 77 > 1 42 R,X

+ only store in-use page table entries in physical memory
+ easier to allocate page table
- more memaory accesses



Example: Two-level Page Tables

Assume you are working on an architecture with a 32-bit
virtual address space in which each page is 64 KB and a
page table entry is 16 bytes. idx1 is 4 bits, idx2 is 12 bits,

and offset is 16 bits. 216 hytes = 64 KB
- How many bits will be in the offset? 16 bits

- How many bits will be in idx2? 12 bits

- How many bits will be in idx1? 4 bits

4 bitidx1 | 12 bit idx2 | 16 bit offset




Exercise: Two-level Page Tables

Assume you are still

working on that architecture.

4 bitidx1 | 12 bit idx2 | 16 bit offset

Compute the physical
address corresponding to
each of the virtual address:

a) 0x00000013

b) 0x20022002

c) 0x10015555

d) 0x10020105

page directory
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Ox1 1
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0x3 O

OxF 1
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oxo 1 0x0047

Oox1 O NULL R,W
0x2 0 0x0013 RW
0x3 1 0x0042 RX

Frame 30| SISt

Frame 31
0x0 0x002A R

0

ox1 1 OxCAFE RW
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0x3 0x2A04 RW




Multi-level Page Tables

- Problem: How big does the page directory get? 1 GB
- Assume you have a 48-bit address space
- Assume you have 4KB pages
- Assume you have 8 byte page table entries/page directory entries

27 bitidx1 9 bit idx2 | 12 bit offset

|
48 bits

- Goal: Page Table Directory should fit in one frame
- Multi-level page tables: add additional level(s) to tree

O bit idx1 | 9 bit idx2 | 9 bit idx3 | 9 bit idx4 | 12 bit offset

|
48 bits




Review: Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 64-bit address space, 4KB (2"12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation

. . _ five
- Performance: every data/instruction access requires-twe-

memaory aCCesses.
- One for tre~page~taiste each of the four levels of page table
- One for the data/instruction



Translation-Lookaside Buffer (TLB)

- General idea: If address translation iIs slow, cache some

of the answers

- Translation-lookaside buffer iIs an address translation
cache that is built into the MMU
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Exercise: TLB
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Assume you are running on an architecture with a one-level
page table with 4096 byte pages. For each of the following
virtual addresses, determine whether the address translation
IS stored in the TLB. If so, give the corresponding physical

address
- OX7E37C
- Ox16A48



Example: The Linux x86 Address Space

Use "only" 48-bit addresses (top
16 bits not used)
4KB pages by default

- supports larger "superpages"
Four-level page table

Physical memory stores

memory pages, memory-
mapped files, cached file pages

Page eviction algorithm uses
variant of LRU called 2Q

- approximates LRU with clock

- maintains two lists (active/inactive)
Stack is marked non-executable

Virtual address of stack/heap
start are randomized each time
process is initialized

Kernel (virtual)

Kernel (logical)

Stack

Heap

Data

Code

OxFFFFFFFFFFEF

0x800000000000

0x000000000000



Example: Core 17 Memory Accessing

CPU - L2, L3, and
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