
CS 105 Fall 2024

Lecture 17: Virtual Memory (cont'd)



Review: Address Translation
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vaddr = page_num<< log(page_size) + offset

paddr = frame_num<<log(page_size) + offset
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Review: Virtual Pages
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Review: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:

• What is the physical address that corresponds to the 

virtual address 0xEA8B2?

• What is the physical address that corresponds to the 

virtual address 0xEA8A7?

• What is the physical address that corresponds to the 

virtual address 0xEA89A?

v Frame Access

1 0x47 R,W

0 NULL R,W

0 0x13 R,W

1 0x23 R,X

0xEA89

0xEA88

0xEA8B

0xEA8A

…
…

0xEA8A 0x7 segfault

page fault

0xEA8B 0x2 0x472

0xEA89 0xA



Review: Evaluating Paging

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Traditional Paging

• page table is stored in 
physical memory

• implemented as array of 
page table entries

• Page Table Base Register 
(PTBR) stores physical 
address of beginning of 
page table

• Page table entries are 
accessed by using the 
page number as the index 
into the page table
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Problems with Paging

• Memory Consumption: page table is really big

• Example: consider 48-bit address space, 4KB (2^12) page size,  

assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two 

memory accesses: 

• One for the page table

• One for the data/instruction 

(2^36 pages) * (2^3 bytes/page table entry) = 2^39 bytes = 512 GB page table 



Two-level Page Tables

• page table is stored in 
virtual memory pages

• page directory is stored in 
physical memory (page 
table for the page table)

• Implemented as array of 
page directory entries

• Page Table Base Register 
(PTBR) stores physical 
address of beginning of 
page directory

0 NULL
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Two-level Page Tables
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v PTFrame

0 NULL
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idx1 offsetidx2

v Frame Acc

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

page table page
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…
+ only store in-use page table entries in physical memory 

+ easier to allocate page table

- more memory accesses



Example: Two-level Page Tables

Assume you are working on an architecture with a 32-bit 

virtual address space in which each page is 64 KB and a 

page table entry is 16 bytes. idx1 is 4 bits, idx2 is 12 bits, 

and offset is 16 bits. 

• How many bits will be in the offset?

• How many bits will be in idx2?

• How many bits will be in idx1?

4 bit idx1 16 bit offset12 bit  idx2

𝟐𝟏𝟔 bytes = 𝟔𝟒 KB

12 bits

16 bits

4 bits



Exercise: Two-level Page Tables

Assume you are still 

working on that architecture.

Compute the physical 

address corresponding to 

each of the virtual address:

a) 0x00000013

b) 0x20022002

c) 0x10015555

d) 0x10020105

4 bit idx1 16 bit offset12 bit  idx2

v PTFrame

1 0x2F

1 0x31

0 NULL

0 0x2F

page directory
v Frame Acc

1 0x0047 R,W

0 NULL R,W

0 0x0013 R,W

1 0x0042 R,X

page table

…
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0 0x002A R

1 0xCAFE R,W

0 NULL R,W

0 0x2A04 R,W

…
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segfault
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• Problem: How big does the page directory get?

• Assume you have a 48-bit address space

• Assume you have 4KB pages 

• Assume you have 8 byte page table entries/page directory entries

• Goal: Page Table Directory should fit in one frame

• Multi-level page tables: add additional level(s) to tree

Multi-level Page Tables

27 bit idx1 12 bit offset9 bit  idx2

48 bits

12 bit offset9 bit  idx4

48 bits

9 bit  idx39 bit  idx1 9 bit  idx2

1 GB



Review: Problems with Paging

• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,  

assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two 

memory accesses: 

• One for the page table

• One for the data/instruction 

five

each of the four levels of page table



Translation-Lookaside Buffer (TLB)

• General idea: if address translation is slow, cache some 

of the answers

• Translation-lookaside buffer is an address translation 

cache that is built into the MMU



Exercise: TLB

Assume you are running on an architecture with a one-level 

page table with 4096 byte pages. For each of the following 

virtual addresses, determine whether the address translation 

is stored in the TLB. If so, give the corresponding physical 

address

• 0x7E37C

• 0x16A48

TLB

idx v tag PPN v tag PPN v tag PPN v tag PPN

0 1 03 B 0 07 6 1 28 3 0 01 F

1 1 31 0 0 12 3 1 3E 4 1 0B 1

2 0 2A A 0 11 1 1 1F 8 1 07 5

3 1 07 3 0 2A A 0 1E 2 0 21 B

0111 11 10

0001 01 10

0x837C

TLB miss

0x7E 0x37c

0x16 0xA48

0x1F 2

0x05 2



Example: The Linux x86 Address Space

• Use "only" 48-bit addresses (top 
16 bits not used)

• 4KB pages by default
• supports larger "superpages"

• Four-level page table

• Physical memory stores 
memory pages, memory-
mapped files, cached file pages

• Page eviction algorithm uses 
variant of LRU called 2Q
• approximates LRU with clock

• maintains two lists (active/inactive)

• Stack is marked non-executable

• Virtual address of stack/heap 
start are randomized each time 
process is initialized

Code

Data

Stack

Heap

Page 0: Invalid

0x800000000000
Kernel (logical)

Kernel (virtual)

0x000000000000

0xFFFFFFFFFFFF



Example: Core i7 Memory Accessing
CPU
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