
CS 105 Fall 2024

Lecture 17: Virtual Memory (cont'd)

Review: Address Translation

MMU
Virtual Address invalid

Exception
P

h
y
s
ic

a
l A

d
d
re

s
s

Data

Code

Data

Stack

Heap

vaddr = page_num<< log(page_size) + offset

paddr = frame_num<<log(page_size) + offset

Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 12

Frame 13

Frame 14

Frame 15

Frame 16

Frame 17

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

vaddr = page_num*page_size + offset

paddr = frame_num*frame_size + offset

Review: Virtual Pages

vaddr

S
e
g

F
a

u
lt

Data

paddr =

Code

Data

Stack

Heap

MMU

page# offset

Frame[page#] offset

…

v Frame Access

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

P
a
g

e
 F

a
u
lt

page table

Review: Paging

Assume that you are currently executing a process P with

the following page table on a system with 16 byte pages:

• What is the physical address that corresponds to the

virtual address 0xEA8B2?

• What is the physical address that corresponds to the

virtual address 0xEA8A7?

• What is the physical address that corresponds to the

virtual address 0xEA89A?

v Frame Access

1 0x47 R,W

0 NULL R,W

0 0x13 R,W

1 0x23 R,X

0xEA89

0xEA88

0xEA8B

0xEA8A

…
…

0xEA8A 0x7 segfault

page fault

0xEA8B 0x2 0x472

0xEA89 0xA

Review: Evaluating Paging

• Isolation: don’t want different
process states collided in
physical memory

• Efficiency: want fast
reads/writes to memory

• Sharing: want option to
overlap for communication

• Utilization: want best use of
limited resource

• Virtualization: want to create
illusion of more resources

Traditional Paging

• page table is stored in
physical memory

• implemented as array of
page table entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

• Page table entries are
accessed by using the
page number as the index
into the page table

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

PTBR

Problems with Paging

• Memory Consumption: page table is really big

• Example: consider 48-bit address space, 4KB (2^12) page size,

assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two

memory accesses:

• One for the page table

• One for the data/instruction

(2^36 pages) * (2^3 bytes/page table entry) = 2^39 bytes = 512 GB page table

Two-level Page Tables

• page table is stored in
virtual memory pages

• page directory is stored in
physical memory (page
table for the page table)

• Implemented as array of
page directory entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory

0 NULL

1 62

0 17

1 77
PTBR

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

Two-level Page Tables

vaddr

Data

MMU

Frame[idx2] offset

…

v PTFrame

0 NULL

1 62

0 17

1 77

page dir

idx1 offsetidx2

v Frame Acc

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

page table page

Frame[idx1]

…
+ only store in-use page table entries in physical memory

+ easier to allocate page table

- more memory accesses

Example: Two-level Page Tables

Assume you are working on an architecture with a 32-bit

virtual address space in which each page is 64 KB and a

page table entry is 16 bytes. idx1 is 4 bits, idx2 is 12 bits,

and offset is 16 bits.

• How many bits will be in the offset?

• How many bits will be in idx2?

• How many bits will be in idx1?

4 bit idx1 16 bit offset12 bit idx2

𝟐𝟏𝟔 bytes = 𝟔𝟒 KB

12 bits

16 bits

4 bits

Exercise: Two-level Page Tables

Assume you are still

working on that architecture.

Compute the physical

address corresponding to

each of the virtual address:

a) 0x00000013

b) 0x20022002

c) 0x10015555

d) 0x10020105

4 bit idx1 16 bit offset12 bit idx2

v PTFrame

1 0x2F

1 0x31

0 NULL

0 0x2F

page directory
v Frame Acc

1 0x0047 R,W

0 NULL R,W

0 0x0013 R,W

1 0x0042 R,X

page table

…

0x3

0x2

0x1

0x0

1 0x230xF

0 0x002A R

1 0xCAFE R,W

0 NULL R,W

0 0x2A04 R,W

…

0x3

0x2

0x1

0x0

0x0

0x1

0x2

0x3

…

0x00470013

segfault
0xCAFE5555

Frame 2F

Frame 30

Frame 31segfault

• Problem: How big does the page directory get?

• Assume you have a 48-bit address space

• Assume you have 4KB pages

• Assume you have 8 byte page table entries/page directory entries

• Goal: Page Table Directory should fit in one frame

• Multi-level page tables: add additional level(s) to tree

Multi-level Page Tables

27 bit idx1 12 bit offset9 bit idx2

48 bits

12 bit offset9 bit idx4

48 bits

9 bit idx39 bit idx1 9 bit idx2

1 GB

Review: Problems with Paging

• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,

assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two

memory accesses:

• One for the page table

• One for the data/instruction

five

each of the four levels of page table

Translation-Lookaside Buffer (TLB)

• General idea: if address translation is slow, cache some

of the answers

• Translation-lookaside buffer is an address translation

cache that is built into the MMU

Exercise: TLB

Assume you are running on an architecture with a one-level

page table with 4096 byte pages. For each of the following

virtual addresses, determine whether the address translation

is stored in the TLB. If so, give the corresponding physical

address

• 0x7E37C

• 0x16A48

TLB

idx v tag PPN v tag PPN v tag PPN v tag PPN

0 1 03 B 0 07 6 1 28 3 0 01 F

1 1 31 0 0 12 3 1 3E 4 1 0B 1

2 0 2A A 0 11 1 1 1F 8 1 07 5

3 1 07 3 0 2A A 0 1E 2 0 21 B

0111 11 10

0001 01 10

0x837C

TLB miss

0x7E 0x37c

0x16 0xA48

0x1F 2

0x05 2

Example: The Linux x86 Address Space

• Use "only" 48-bit addresses (top
16 bits not used)

• 4KB pages by default
• supports larger "superpages"

• Four-level page table

• Physical memory stores
memory pages, memory-
mapped files, cached file pages

• Page eviction algorithm uses
variant of LRU called 2Q
• approximates LRU with clock

• maintains two lists (active/inactive)

• Stack is marked non-executable

• Virtual address of stack/heap
start are randomized each time
process is initialized

Code

Data

Stack

Heap

Page 0: Invalid

0x800000000000
Kernel (logical)

Kernel (virtual)

0x000000000000

0xFFFFFFFFFFFF

Example: Core i7 Memory Accessing
CPU

TLBT TLBI

432

L1 TLB (16 sets, 4 entries/set)

...
PFO

12

Physical

address

(paddr)

CT CO

40 6

CI

6

Result

32/64

L1

hit

L2, L3, and

main memory

L1

miss

VPN VPO

36 12

Virtual address (vaddr)
...

L1 d-cache

(64 sets, 8-way, 64-byte/ln)

idx1 idx2

99

PDE

PTBR

Page tables

TLB

miss

idx3 idx4

99

PDE PDE PTE

PFN

40

TLB

hit

	Slide 1: Lecture 17: Virtual Memory (cont'd)
	Slide 2: Review: Address Translation
	Slide 3: Paging
	Slide 4: Review: Virtual Pages
	Slide 5: Review: Paging
	Slide 6: Review: Evaluating Paging
	Slide 7: Traditional Paging
	Slide 8: Problems with Paging
	Slide 9: Two-level Page Tables
	Slide 10: Two-level Page Tables
	Slide 11: Example: Two-level Page Tables
	Slide 12: Exercise: Two-level Page Tables
	Slide 13: Multi-level Page Tables
	Slide 14: Review: Problems with Paging
	Slide 15: Translation-Lookaside Buffer (TLB)
	Slide 16: Exercise: TLB
	Slide 17: Example: The Linux x86 Address Space
	Slide 18: Example: Core i7 Memory Accessing

